semantic-link-labs 0.11.1__py3-none-any.whl → 0.11.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of semantic-link-labs might be problematic. Click here for more details.

Files changed (137) hide show
  1. {semantic_link_labs-0.11.1.dist-info → semantic_link_labs-0.11.3.dist-info}/METADATA +7 -6
  2. semantic_link_labs-0.11.3.dist-info/RECORD +212 -0
  3. sempy_labs/__init__.py +65 -71
  4. sempy_labs/_a_lib_info.py +1 -1
  5. sempy_labs/_ai.py +1 -1
  6. sempy_labs/_capacities.py +2 -2
  7. sempy_labs/_capacity_migration.py +5 -5
  8. sempy_labs/_clear_cache.py +1 -1
  9. sempy_labs/_connections.py +2 -2
  10. sempy_labs/_dashboards.py +16 -16
  11. sempy_labs/_data_pipelines.py +1 -1
  12. sempy_labs/_dataflows.py +101 -26
  13. sempy_labs/_dax.py +3 -3
  14. sempy_labs/_delta_analyzer.py +4 -4
  15. sempy_labs/_delta_analyzer_history.py +1 -1
  16. sempy_labs/_deployment_pipelines.py +1 -1
  17. sempy_labs/_environments.py +22 -21
  18. sempy_labs/_eventhouses.py +12 -11
  19. sempy_labs/_eventstreams.py +12 -11
  20. sempy_labs/_external_data_shares.py +78 -23
  21. sempy_labs/_gateways.py +47 -45
  22. sempy_labs/_generate_semantic_model.py +3 -3
  23. sempy_labs/_git.py +1 -1
  24. sempy_labs/_graphQL.py +12 -11
  25. sempy_labs/_helper_functions.py +169 -5
  26. sempy_labs/_job_scheduler.py +56 -54
  27. sempy_labs/_kql_databases.py +16 -17
  28. sempy_labs/_kql_querysets.py +12 -11
  29. sempy_labs/_kusto.py +2 -2
  30. sempy_labs/_labels.py +126 -0
  31. sempy_labs/_list_functions.py +2 -2
  32. sempy_labs/_managed_private_endpoints.py +18 -15
  33. sempy_labs/_mirrored_databases.py +16 -15
  34. sempy_labs/_mirrored_warehouses.py +12 -11
  35. sempy_labs/_ml_experiments.py +11 -10
  36. sempy_labs/_model_auto_build.py +3 -3
  37. sempy_labs/_model_bpa.py +5 -5
  38. sempy_labs/_model_bpa_bulk.py +3 -3
  39. sempy_labs/_model_dependencies.py +1 -1
  40. sempy_labs/_mounted_data_factories.py +12 -12
  41. sempy_labs/_notebooks.py +151 -2
  42. sempy_labs/_one_lake_integration.py +1 -1
  43. sempy_labs/_query_scale_out.py +1 -1
  44. sempy_labs/_refresh_semantic_model.py +1 -1
  45. sempy_labs/_semantic_models.py +30 -28
  46. sempy_labs/_spark.py +1 -1
  47. sempy_labs/_sql.py +1 -1
  48. sempy_labs/_sql_endpoints.py +12 -11
  49. sempy_labs/_sqldatabase.py +15 -15
  50. sempy_labs/_tags.py +11 -10
  51. sempy_labs/_translations.py +1 -1
  52. sempy_labs/_user_delegation_key.py +2 -2
  53. sempy_labs/_vertipaq.py +3 -3
  54. sempy_labs/_vpax.py +1 -1
  55. sempy_labs/_warehouses.py +15 -14
  56. sempy_labs/_workloads.py +1 -1
  57. sempy_labs/_workspace_identity.py +1 -1
  58. sempy_labs/_workspaces.py +14 -13
  59. sempy_labs/admin/__init__.py +18 -18
  60. sempy_labs/admin/_activities.py +46 -46
  61. sempy_labs/admin/_apps.py +28 -26
  62. sempy_labs/admin/_artifacts.py +15 -15
  63. sempy_labs/admin/_basic_functions.py +1 -2
  64. sempy_labs/admin/_capacities.py +84 -82
  65. sempy_labs/admin/_dataflows.py +2 -2
  66. sempy_labs/admin/_datasets.py +50 -48
  67. sempy_labs/admin/_domains.py +25 -19
  68. sempy_labs/admin/_external_data_share.py +24 -22
  69. sempy_labs/admin/_git.py +17 -17
  70. sempy_labs/admin/_items.py +47 -45
  71. sempy_labs/admin/_reports.py +61 -58
  72. sempy_labs/admin/_scanner.py +2 -2
  73. sempy_labs/admin/_shared.py +18 -18
  74. sempy_labs/admin/_tags.py +2 -2
  75. sempy_labs/admin/_tenant.py +57 -51
  76. sempy_labs/admin/_users.py +16 -15
  77. sempy_labs/admin/_workspaces.py +2 -2
  78. sempy_labs/directlake/__init__.py +12 -12
  79. sempy_labs/directlake/_directlake_schema_compare.py +3 -3
  80. sempy_labs/directlake/_directlake_schema_sync.py +9 -7
  81. sempy_labs/directlake/_dl_helper.py +5 -2
  82. sempy_labs/directlake/_generate_shared_expression.py +1 -1
  83. sempy_labs/directlake/_get_directlake_lakehouse.py +1 -1
  84. sempy_labs/directlake/_guardrails.py +1 -1
  85. sempy_labs/directlake/_list_directlake_model_calc_tables.py +3 -3
  86. sempy_labs/directlake/_show_unsupported_directlake_objects.py +1 -1
  87. sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +3 -3
  88. sempy_labs/directlake/_update_directlake_partition_entity.py +4 -4
  89. sempy_labs/directlake/_warm_cache.py +3 -3
  90. sempy_labs/graph/__init__.py +3 -3
  91. sempy_labs/graph/_groups.py +81 -78
  92. sempy_labs/graph/_teams.py +21 -21
  93. sempy_labs/graph/_users.py +109 -10
  94. sempy_labs/lakehouse/__init__.py +7 -7
  95. sempy_labs/lakehouse/_blobs.py +30 -30
  96. sempy_labs/lakehouse/_get_lakehouse_columns.py +2 -2
  97. sempy_labs/lakehouse/_get_lakehouse_tables.py +29 -27
  98. sempy_labs/lakehouse/_helper.py +38 -1
  99. sempy_labs/lakehouse/_lakehouse.py +16 -7
  100. sempy_labs/lakehouse/_livy_sessions.py +47 -42
  101. sempy_labs/lakehouse/_shortcuts.py +22 -21
  102. sempy_labs/migration/__init__.py +8 -8
  103. sempy_labs/migration/_create_pqt_file.py +2 -2
  104. sempy_labs/migration/_migrate_calctables_to_lakehouse.py +35 -44
  105. sempy_labs/migration/_migrate_calctables_to_semantic_model.py +9 -20
  106. sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +5 -9
  107. sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +11 -20
  108. sempy_labs/migration/_migration_validation.py +1 -2
  109. sempy_labs/migration/_refresh_calc_tables.py +2 -2
  110. sempy_labs/mirrored_azure_databricks_catalog/__init__.py +2 -2
  111. sempy_labs/mirrored_azure_databricks_catalog/_discover.py +40 -40
  112. sempy_labs/mirrored_azure_databricks_catalog/_refresh_catalog_metadata.py +1 -1
  113. sempy_labs/ml_model/__init__.py +23 -0
  114. sempy_labs/ml_model/_functions.py +427 -0
  115. sempy_labs/report/__init__.py +10 -10
  116. sempy_labs/report/_download_report.py +2 -2
  117. sempy_labs/report/_export_report.py +2 -2
  118. sempy_labs/report/_generate_report.py +1 -1
  119. sempy_labs/report/_paginated.py +1 -1
  120. sempy_labs/report/_report_bpa.py +4 -3
  121. sempy_labs/report/_report_functions.py +3 -3
  122. sempy_labs/report/_report_list_functions.py +3 -3
  123. sempy_labs/report/_report_rebind.py +1 -1
  124. sempy_labs/report/_reportwrapper.py +248 -250
  125. sempy_labs/report/_save_report.py +3 -3
  126. sempy_labs/theme/_org_themes.py +19 -6
  127. sempy_labs/tom/__init__.py +1 -1
  128. sempy_labs/tom/_model.py +13 -8
  129. sempy_labs/variable_library/__init__.py +19 -0
  130. sempy_labs/variable_library/_functions.py +403 -0
  131. semantic_link_labs-0.11.1.dist-info/RECORD +0 -210
  132. sempy_labs/_dax_query_view.py +0 -57
  133. sempy_labs/_ml_models.py +0 -110
  134. sempy_labs/_variable_libraries.py +0 -91
  135. {semantic_link_labs-0.11.1.dist-info → semantic_link_labs-0.11.3.dist-info}/WHEEL +0 -0
  136. {semantic_link_labs-0.11.1.dist-info → semantic_link_labs-0.11.3.dist-info}/licenses/LICENSE +0 -0
  137. {semantic_link_labs-0.11.1.dist-info → semantic_link_labs-0.11.3.dist-info}/top_level.txt +0 -0
@@ -1,9 +1,7 @@
1
1
  import sempy.fabric as fabric
2
2
  import re
3
- import datetime
4
3
  from sempy_labs.lakehouse._get_lakehouse_tables import get_lakehouse_tables
5
4
  from sempy_labs._helper_functions import (
6
- resolve_lakehouse_name,
7
5
  format_dax_object_name,
8
6
  retry,
9
7
  )
@@ -11,16 +9,17 @@ from sempy_labs.tom import connect_semantic_model
11
9
  from typing import Optional
12
10
  from sempy._utils._log import log
13
11
  import sempy_labs._icons as icons
12
+ from uuid import UUID
14
13
 
15
14
 
16
15
  @log
17
16
  def migrate_calc_tables_to_semantic_model(
18
17
  dataset: str,
19
18
  new_dataset: str,
20
- workspace: Optional[str] = None,
21
- new_dataset_workspace: Optional[str] = None,
22
- lakehouse: Optional[str] = None,
23
- lakehouse_workspace: Optional[str] = None,
19
+ workspace: Optional[str | UUID] = None,
20
+ new_dataset_workspace: Optional[str | UUID] = None,
21
+ lakehouse: Optional[str | UUID] = None,
22
+ lakehouse_workspace: Optional[str | UUID] = None,
24
23
  ):
25
24
  """
26
25
  Creates new tables in the Direct Lake semantic model based on the lakehouse tables created using the 'migrate_calc_tables_to_lakehouse' function.
@@ -31,18 +30,18 @@ def migrate_calc_tables_to_semantic_model(
31
30
  Name of the import/DirectQuery semantic model.
32
31
  new_dataset : str
33
32
  Name of the Direct Lake semantic model.
34
- workspace : str, default=None
33
+ workspace : str | uuid.UUID, default=None
35
34
  The Fabric workspace name in which the import/DirectQuery semantic model exists.
36
35
  Defaults to None which resolves to the workspace of the attached lakehouse
37
36
  or if no lakehouse attached, resolves to the workspace of the notebook.
38
- new_dataset_workspace : str
37
+ new_dataset_workspace : str | uuid.UUID, default=None
39
38
  The Fabric workspace name in which the Direct Lake semantic model will be created.
40
39
  Defaults to None which resolves to the workspace of the attached lakehouse
41
40
  or if no lakehouse attached, resolves to the workspace of the notebook.
42
- lakehouse : str, default=None
41
+ lakehouse : str | uuid.UUID, default=None
43
42
  The Fabric lakehouse used by the Direct Lake semantic model.
44
43
  Defaults to None which resolves to the lakehouse attached to the notebook.
45
- lakehouse_workspace : str, default=None
44
+ lakehouse_workspace : str | uuid.UUID, default=None
46
45
  The Fabric workspace used by the lakehouse.
47
46
  Defaults to None which resolves to the workspace of the attached lakehouse
48
47
  or if no lakehouse attached, resolves to the workspace of the notebook.
@@ -53,18 +52,8 @@ def migrate_calc_tables_to_semantic_model(
53
52
  f"{icons.red_dot} The 'dataset' and 'new_dataset' parameters are both set to '{dataset}'. These parameters must be set to different values."
54
53
  )
55
54
 
56
- workspace = fabric.resolve_workspace_name(workspace)
57
55
  fabric.refresh_tom_cache(workspace=workspace)
58
56
 
59
- if new_dataset_workspace is None:
60
- new_dataset_workspace = workspace
61
-
62
- if lakehouse_workspace is None:
63
- lakehouse_workspace = new_dataset_workspace
64
- if lakehouse is None:
65
- lakehouse_id = fabric.get_lakehouse_id()
66
- lakehouse = resolve_lakehouse_name(lakehouse_id, lakehouse_workspace)
67
-
68
57
  icons.sll_tags.append("DirectLakeMigration")
69
58
 
70
59
  # Get calc tables but not field parameters
@@ -10,14 +10,15 @@ from sempy_labs.tom import connect_semantic_model
10
10
  from typing import Optional
11
11
  from sempy._utils._log import log
12
12
  import sempy_labs._icons as icons
13
+ from uuid import UUID
13
14
 
14
15
 
15
16
  @log
16
17
  def migrate_model_objects_to_semantic_model(
17
18
  dataset: str,
18
19
  new_dataset: str,
19
- workspace: Optional[str] = None,
20
- new_dataset_workspace: Optional[str] = None,
20
+ workspace: Optional[str | UUID] = None,
21
+ new_dataset_workspace: Optional[str | UUID] = None,
21
22
  ):
22
23
  """
23
24
  Adds the rest of the model objects (besides tables/columns) and their properties to a Direct Lake semantic model based on an import/DirectQuery semantic model.
@@ -28,11 +29,11 @@ def migrate_model_objects_to_semantic_model(
28
29
  Name of the import/DirectQuery semantic model.
29
30
  new_dataset : str
30
31
  Name of the Direct Lake semantic model.
31
- workspace : str, default=None
32
+ workspace : str | uuid.UUID, default=None
32
33
  The Fabric workspace name in which the import/DirectQuery semantic model exists.
33
34
  Defaults to None which resolves to the workspace of the attached lakehouse
34
35
  or if no lakehouse attached, resolves to the workspace of the notebook.
35
- new_dataset_workspace : str
36
+ new_dataset_workspace : str | uuid.UUID, default=None
36
37
  The Fabric workspace name in which the Direct Lake semantic model will be created.
37
38
  Defaults to None which resolves to the workspace of the attached lakehouse
38
39
  or if no lakehouse attached, resolves to the workspace of the notebook.
@@ -47,12 +48,7 @@ def migrate_model_objects_to_semantic_model(
47
48
  f"{icons.red_dot} The 'dataset' and 'new_dataset' parameters are both set to '{dataset}'. These parameters must be set to different values."
48
49
  )
49
50
 
50
- workspace = fabric.resolve_workspace_name(workspace)
51
51
  fabric.refresh_tom_cache(workspace=workspace)
52
-
53
- if new_dataset_workspace is None:
54
- new_dataset_workspace = workspace
55
-
56
52
  icons.sll_tags.append("DirectLakeMigration")
57
53
 
58
54
  dfT = fabric.list_tables(dataset=dataset, workspace=workspace)
@@ -1,22 +1,23 @@
1
1
  import sempy.fabric as fabric
2
2
  import pandas as pd
3
3
  from sempy_labs.directlake._generate_shared_expression import generate_shared_expression
4
- from sempy_labs._helper_functions import resolve_lakehouse_name, retry
4
+ from sempy_labs._helper_functions import retry
5
5
  from sempy_labs.lakehouse._lakehouse import lakehouse_attached
6
6
  from sempy_labs.tom import connect_semantic_model
7
7
  from typing import Optional
8
8
  from sempy._utils._log import log
9
9
  import sempy_labs._icons as icons
10
+ from uuid import UUID
10
11
 
11
12
 
12
13
  @log
13
14
  def migrate_tables_columns_to_semantic_model(
14
15
  dataset: str,
15
16
  new_dataset: str,
16
- workspace: Optional[str] = None,
17
- new_dataset_workspace: Optional[str] = None,
18
- lakehouse: Optional[str] = None,
19
- lakehouse_workspace: Optional[str] = None,
17
+ workspace: Optional[str | UUID] = None,
18
+ new_dataset_workspace: Optional[str | UUID] = None,
19
+ lakehouse: Optional[str | UUID] = None,
20
+ lakehouse_workspace: Optional[str | UUID] = None,
20
21
  ):
21
22
  """
22
23
  Adds tables/columns to the new Direct Lake semantic model based on an import/DirectQuery semantic model.
@@ -49,18 +50,6 @@ def migrate_tables_columns_to_semantic_model(
49
50
  f"{icons.red_dot} The 'dataset' and 'new_dataset' parameters are both set to '{dataset}'. These parameters must be set to different values."
50
51
  )
51
52
 
52
- workspace = fabric.resolve_workspace_name(workspace)
53
-
54
- if new_dataset_workspace is None:
55
- new_dataset_workspace = workspace
56
-
57
- if lakehouse_workspace is None:
58
- lakehouse_workspace = new_dataset_workspace
59
-
60
- if lakehouse is None:
61
- lakehouse_id = fabric.get_lakehouse_id()
62
- lakehouse = resolve_lakehouse_name(lakehouse_id, lakehouse_workspace)
63
-
64
53
  icons.sll_tags.append("DirectLakeMigration")
65
54
 
66
55
  # Check that lakehouse is attached to the notebook
@@ -72,11 +61,13 @@ def migrate_tables_columns_to_semantic_model(
72
61
  "\nLearn more here: https://learn.microsoft.com/fabric/data-engineering/lakehouse-notebook-explore#add-or-remove-a-lakehouse"
73
62
  )
74
63
  shEx = generate_shared_expression(
75
- item_name=lakehouse, item_type="Lakehouse", workspace=lakehouse_workspace
64
+ item_name=lakehouse,
65
+ item_type="Lakehouse",
66
+ workspace=lakehouse_workspace,
67
+ use_sql_endpoint=False,
76
68
  )
77
69
 
78
70
  fabric.refresh_tom_cache(workspace=workspace)
79
-
80
71
  dfC = fabric.list_columns(dataset=dataset, workspace=workspace)
81
72
  dfT = fabric.list_tables(dataset=dataset, workspace=workspace)
82
73
  dfT.rename(columns={"Type": "Table Type"}, inplace=True)
@@ -136,7 +127,7 @@ def migrate_tables_columns_to_semantic_model(
136
127
  tDC = r["Data Category"]
137
128
  tHid = bool(r["Hidden"])
138
129
  tDesc = r["Description"]
139
- ent_name = tName.replace(" ", "_")
130
+ ent_name = tName # .replace(" ", "_")
140
131
  for char in icons.special_characters:
141
132
  ent_name = ent_name.replace(char, "")
142
133
 
@@ -1,7 +1,6 @@
1
- import sempy.fabric as fabric
2
1
  import pandas as pd
3
2
  from typing import Optional
4
- from sempy_labs._list_functions import list_semantic_model_objects
3
+ from .._list_functions import list_semantic_model_objects
5
4
  from sempy._utils._log import log
6
5
  import sempy_labs._icons as icons
7
6
 
@@ -1,12 +1,12 @@
1
1
  import sempy.fabric as fabric
2
2
  import pandas as pd
3
3
  import re
4
- from sempy_labs.tom import connect_semantic_model
4
+ from ..tom import connect_semantic_model
5
5
  from typing import Optional
6
6
  from sempy._utils._log import log
7
7
  import sempy_labs._icons as icons
8
8
  from uuid import UUID
9
- from sempy_labs._helper_functions import (
9
+ from .._helper_functions import (
10
10
  resolve_workspace_name_and_id,
11
11
  resolve_dataset_name_and_id,
12
12
  save_as_delta_table,
@@ -1,7 +1,7 @@
1
- from sempy_labs.mirrored_azure_databricks_catalog._refresh_catalog_metadata import (
1
+ from ._refresh_catalog_metadata import (
2
2
  refresh_catalog_metadata,
3
3
  )
4
- from sempy_labs.mirrored_azure_databricks_catalog._discover import (
4
+ from ._discover import (
5
5
  discover_catalogs,
6
6
  discover_schemas,
7
7
  discover_tables,
@@ -1,6 +1,6 @@
1
1
  from uuid import UUID
2
2
  from typing import Optional
3
- from sempy_labs._helper_functions import (
3
+ from .._helper_functions import (
4
4
  resolve_workspace_id,
5
5
  _base_api,
6
6
  _create_dataframe,
@@ -54,20 +54,20 @@ def discover_catalogs(
54
54
 
55
55
  df = _create_dataframe(columns=columns)
56
56
 
57
- dfs = []
57
+ rows = []
58
58
  for r in responses:
59
59
  for i in r.get("value", []):
60
- new_data = {
61
- "Catalog Name": i.get("name"),
62
- "Catalog Full Name": i.get("fullName"),
63
- "Catalog Type": i.get("catalogType"),
64
- "Storage Location": i.get("storageLocation"),
65
- }
66
-
67
- dfs.append(pd.DataFrame(new_data, index=[0]))
68
-
69
- if dfs:
70
- df = pd.concat(dfs, ignore_index=True)
60
+ rows.append(
61
+ {
62
+ "Catalog Name": i.get("name"),
63
+ "Catalog Full Name": i.get("fullName"),
64
+ "Catalog Type": i.get("catalogType"),
65
+ "Storage Location": i.get("storageLocation"),
66
+ }
67
+ )
68
+
69
+ if rows:
70
+ df = pd.DataFrame(rows, columns=list(columns.keys()))
71
71
 
72
72
  return df
73
73
 
@@ -120,20 +120,20 @@ def discover_schemas(
120
120
 
121
121
  df = _create_dataframe(columns=columns)
122
122
 
123
- dfs = []
123
+ rows = []
124
124
  for r in responses:
125
125
  for i in r.get("value", []):
126
- new_data = {
127
- "Catalog Name": catalog,
128
- "Schema Name": i.get("name"),
129
- "Schema Full Name": i.get("fullName"),
130
- "Storage Location": i.get("storageLocation"),
131
- }
132
-
133
- dfs.append(pd.DataFrame(new_data, index=[0]))
134
-
135
- if dfs:
136
- df = pd.concat(dfs, ignore_index=True)
126
+ rows.append(
127
+ {
128
+ "Catalog Name": catalog,
129
+ "Schema Name": i.get("name"),
130
+ "Schema Full Name": i.get("fullName"),
131
+ "Storage Location": i.get("storageLocation"),
132
+ }
133
+ )
134
+
135
+ if rows:
136
+ df = pd.DataFrame(rows, columns=list(columns.keys()))
137
137
 
138
138
  return df
139
139
 
@@ -192,22 +192,22 @@ def discover_tables(
192
192
 
193
193
  df = _create_dataframe(columns=columns)
194
194
 
195
- dfs = []
195
+ rows = []
196
196
  for r in responses:
197
197
  for i in r.get("value", []):
198
- new_data = {
199
- "Catalog Name": catalog,
200
- "Schema Name": schema,
201
- "Table Name": i.get("name"),
202
- "Table Full Name": i.get("fullName"),
203
- "Storage Location": i.get("storageLocation"),
204
- "Table Type": i.get("tableType"),
205
- "Data Source Format": i.get("dataSourceFormat"),
206
- }
207
-
208
- dfs.append(pd.DataFrame(new_data, index=[0]))
209
-
210
- if dfs:
211
- df = pd.concat(dfs, ignore_index=True)
198
+ rows.append(
199
+ {
200
+ "Catalog Name": catalog,
201
+ "Schema Name": schema,
202
+ "Table Name": i.get("name"),
203
+ "Table Full Name": i.get("fullName"),
204
+ "Storage Location": i.get("storageLocation"),
205
+ "Table Type": i.get("tableType"),
206
+ "Data Source Format": i.get("dataSourceFormat"),
207
+ }
208
+ )
209
+
210
+ if rows:
211
+ df = pd.DataFrame(rows, columns=list(columns.keys()))
212
212
 
213
213
  return df
@@ -1,6 +1,6 @@
1
1
  from uuid import UUID
2
2
  from typing import Optional
3
- from sempy_labs._helper_functions import (
3
+ from .._helper_functions import (
4
4
  resolve_workspace_name_and_id,
5
5
  resolve_item_name_and_id,
6
6
  _base_api,
@@ -0,0 +1,23 @@
1
+ from ._functions import (
2
+ list_ml_models,
3
+ create_ml_model,
4
+ delete_ml_model,
5
+ activate_ml_model_endpoint_version,
6
+ deactivate_all_ml_model_endpoint_versions,
7
+ deactivate_ml_model_endpoint_version,
8
+ list_ml_model_endpoint_versions,
9
+ score_ml_model_endpoint,
10
+ score_ml_model_endpoint_version,
11
+ )
12
+
13
+ __all__ = [
14
+ "list_ml_models",
15
+ "create_ml_model",
16
+ "delete_ml_model",
17
+ "activate_ml_model_endpoint_version",
18
+ "deactivate_all_ml_model_endpoint_versions",
19
+ "deactivate_ml_model_endpoint_version",
20
+ "list_ml_model_endpoint_versions",
21
+ "score_ml_model_endpoint",
22
+ "score_ml_model_endpoint_version",
23
+ ]