semantic-compressor 2.1__py3-none-any.whl → 2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (84) hide show
  1. compressor/resources/nltk_data/tokenizers/punkt_tab/README +98 -0
  2. compressor/resources/nltk_data/tokenizers/punkt_tab/czech/abbrev_types.txt +118 -0
  3. compressor/resources/nltk_data/tokenizers/punkt_tab/czech/collocations.tab +96 -0
  4. compressor/resources/nltk_data/tokenizers/punkt_tab/czech/ortho_context.tab +52789 -0
  5. compressor/resources/nltk_data/tokenizers/punkt_tab/czech/sent_starters.txt +54 -0
  6. compressor/resources/nltk_data/tokenizers/punkt_tab/danish/abbrev_types.txt +211 -0
  7. compressor/resources/nltk_data/tokenizers/punkt_tab/danish/collocations.tab +101 -0
  8. compressor/resources/nltk_data/tokenizers/punkt_tab/danish/ortho_context.tab +53913 -0
  9. compressor/resources/nltk_data/tokenizers/punkt_tab/danish/sent_starters.txt +64 -0
  10. compressor/resources/nltk_data/tokenizers/punkt_tab/dutch/abbrev_types.txt +99 -0
  11. compressor/resources/nltk_data/tokenizers/punkt_tab/dutch/collocations.tab +37 -0
  12. compressor/resources/nltk_data/tokenizers/punkt_tab/dutch/ortho_context.tab +32208 -0
  13. compressor/resources/nltk_data/tokenizers/punkt_tab/dutch/sent_starters.txt +54 -0
  14. compressor/resources/nltk_data/tokenizers/punkt_tab/english/abbrev_types.txt +156 -0
  15. compressor/resources/nltk_data/tokenizers/punkt_tab/english/collocations.tab +37 -0
  16. compressor/resources/nltk_data/tokenizers/punkt_tab/english/ortho_context.tab +20366 -0
  17. compressor/resources/nltk_data/tokenizers/punkt_tab/english/sent_starters.txt +39 -0
  18. compressor/resources/nltk_data/tokenizers/punkt_tab/estonian/abbrev_types.txt +48 -0
  19. compressor/resources/nltk_data/tokenizers/punkt_tab/estonian/collocations.tab +100 -0
  20. compressor/resources/nltk_data/tokenizers/punkt_tab/estonian/ortho_context.tab +68544 -0
  21. compressor/resources/nltk_data/tokenizers/punkt_tab/estonian/sent_starters.txt +89 -0
  22. compressor/resources/nltk_data/tokenizers/punkt_tab/finnish/abbrev_types.txt +81 -0
  23. compressor/resources/nltk_data/tokenizers/punkt_tab/finnish/collocations.tab +167 -0
  24. compressor/resources/nltk_data/tokenizers/punkt_tab/finnish/ortho_context.tab +79765 -0
  25. compressor/resources/nltk_data/tokenizers/punkt_tab/finnish/sent_starters.txt +86 -0
  26. compressor/resources/nltk_data/tokenizers/punkt_tab/french/abbrev_types.txt +61 -0
  27. compressor/resources/nltk_data/tokenizers/punkt_tab/french/collocations.tab +18 -0
  28. compressor/resources/nltk_data/tokenizers/punkt_tab/french/ortho_context.tab +26726 -0
  29. compressor/resources/nltk_data/tokenizers/punkt_tab/french/sent_starters.txt +48 -0
  30. compressor/resources/nltk_data/tokenizers/punkt_tab/german/abbrev_types.txt +71 -0
  31. compressor/resources/nltk_data/tokenizers/punkt_tab/german/collocations.tab +28 -0
  32. compressor/resources/nltk_data/tokenizers/punkt_tab/german/ortho_context.tab +60260 -0
  33. compressor/resources/nltk_data/tokenizers/punkt_tab/german/sent_starters.txt +107 -0
  34. compressor/resources/nltk_data/tokenizers/punkt_tab/greek/abbrev_types.txt +100 -0
  35. compressor/resources/nltk_data/tokenizers/punkt_tab/greek/collocations.tab +7 -0
  36. compressor/resources/nltk_data/tokenizers/punkt_tab/greek/ortho_context.tab +29624 -0
  37. compressor/resources/nltk_data/tokenizers/punkt_tab/greek/sent_starters.txt +54 -0
  38. compressor/resources/nltk_data/tokenizers/punkt_tab/italian/abbrev_types.txt +125 -0
  39. compressor/resources/nltk_data/tokenizers/punkt_tab/italian/collocations.tab +6 -0
  40. compressor/resources/nltk_data/tokenizers/punkt_tab/italian/ortho_context.tab +29929 -0
  41. compressor/resources/nltk_data/tokenizers/punkt_tab/italian/sent_starters.txt +40 -0
  42. compressor/resources/nltk_data/tokenizers/punkt_tab/malayalam/abbrev_types.txt +285 -0
  43. compressor/resources/nltk_data/tokenizers/punkt_tab/malayalam/collocations.tab +153 -0
  44. compressor/resources/nltk_data/tokenizers/punkt_tab/malayalam/ortho_context.tab +10520 -0
  45. compressor/resources/nltk_data/tokenizers/punkt_tab/malayalam/sent_starters.txt +14 -0
  46. compressor/resources/nltk_data/tokenizers/punkt_tab/norwegian/abbrev_types.txt +106 -0
  47. compressor/resources/nltk_data/tokenizers/punkt_tab/norwegian/collocations.tab +54 -0
  48. compressor/resources/nltk_data/tokenizers/punkt_tab/norwegian/ortho_context.tab +54125 -0
  49. compressor/resources/nltk_data/tokenizers/punkt_tab/norwegian/sent_starters.txt +63 -0
  50. compressor/resources/nltk_data/tokenizers/punkt_tab/polish/abbrev_types.txt +225 -0
  51. compressor/resources/nltk_data/tokenizers/punkt_tab/polish/collocations.tab +57 -0
  52. compressor/resources/nltk_data/tokenizers/punkt_tab/polish/ortho_context.tab +81425 -0
  53. compressor/resources/nltk_data/tokenizers/punkt_tab/polish/sent_starters.txt +71 -0
  54. compressor/resources/nltk_data/tokenizers/punkt_tab/portuguese/abbrev_types.txt +72 -0
  55. compressor/resources/nltk_data/tokenizers/punkt_tab/portuguese/collocations.tab +5 -0
  56. compressor/resources/nltk_data/tokenizers/punkt_tab/portuguese/ortho_context.tab +30167 -0
  57. compressor/resources/nltk_data/tokenizers/punkt_tab/portuguese/sent_starters.txt +40 -0
  58. compressor/resources/nltk_data/tokenizers/punkt_tab/russian/abbrev_types.txt +1989 -0
  59. compressor/resources/nltk_data/tokenizers/punkt_tab/russian/collocations.tab +0 -0
  60. compressor/resources/nltk_data/tokenizers/punkt_tab/russian/ortho_context.tab +1 -0
  61. compressor/resources/nltk_data/tokenizers/punkt_tab/russian/sent_starters.txt +0 -0
  62. compressor/resources/nltk_data/tokenizers/punkt_tab/slovene/abbrev_types.txt +73 -0
  63. compressor/resources/nltk_data/tokenizers/punkt_tab/slovene/collocations.tab +74 -0
  64. compressor/resources/nltk_data/tokenizers/punkt_tab/slovene/ortho_context.tab +35434 -0
  65. compressor/resources/nltk_data/tokenizers/punkt_tab/slovene/sent_starters.txt +58 -0
  66. compressor/resources/nltk_data/tokenizers/punkt_tab/spanish/abbrev_types.txt +66 -0
  67. compressor/resources/nltk_data/tokenizers/punkt_tab/spanish/collocations.tab +7 -0
  68. compressor/resources/nltk_data/tokenizers/punkt_tab/spanish/ortho_context.tab +27443 -0
  69. compressor/resources/nltk_data/tokenizers/punkt_tab/spanish/sent_starters.txt +46 -0
  70. compressor/resources/nltk_data/tokenizers/punkt_tab/swedish/abbrev_types.txt +39 -0
  71. compressor/resources/nltk_data/tokenizers/punkt_tab/swedish/collocations.tab +8 -0
  72. compressor/resources/nltk_data/tokenizers/punkt_tab/swedish/ortho_context.tab +44485 -0
  73. compressor/resources/nltk_data/tokenizers/punkt_tab/swedish/sent_starters.txt +49 -0
  74. compressor/resources/nltk_data/tokenizers/punkt_tab/turkish/abbrev_types.txt +67 -0
  75. compressor/resources/nltk_data/tokenizers/punkt_tab/turkish/collocations.tab +14 -0
  76. compressor/resources/nltk_data/tokenizers/punkt_tab/turkish/ortho_context.tab +45926 -0
  77. compressor/resources/nltk_data/tokenizers/punkt_tab/turkish/sent_starters.txt +87 -0
  78. compressor/resources/nltk_data/tokenizers/punkt_tab.zip +0 -0
  79. compressor/semantic.py +37 -3
  80. {semantic_compressor-2.1.dist-info → semantic_compressor-2.3.dist-info}/METADATA +1 -1
  81. {semantic_compressor-2.1.dist-info → semantic_compressor-2.3.dist-info}/RECORD +84 -6
  82. {semantic_compressor-2.1.dist-info → semantic_compressor-2.3.dist-info}/LICENSE +0 -0
  83. {semantic_compressor-2.1.dist-info → semantic_compressor-2.3.dist-info}/WHEEL +0 -0
  84. {semantic_compressor-2.1.dist-info → semantic_compressor-2.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,98 @@
1
+ Pretrained Punkt Models -- Jan Strunk (New version trained after issues 313 and 514 had been corrected)
2
+
3
+ Most models were prepared using the test corpora from Kiss and Strunk (2006). Additional models have
4
+ been contributed by various people using NLTK for sentence boundary detection.
5
+
6
+ For information about how to use these models, please confer the tokenization HOWTO:
7
+ http://nltk.googlecode.com/svn/trunk/doc/howto/tokenize.html
8
+ and chapter 3.8 of the NLTK book:
9
+ http://nltk.googlecode.com/svn/trunk/doc/book/ch03.html#sec-segmentation
10
+
11
+ There are pretrained tokenizers for the following languages:
12
+
13
+ File Language Source Contents Size of training corpus(in tokens) Model contributed by
14
+ =======================================================================================================================================================================
15
+ czech.pickle Czech Multilingual Corpus 1 (ECI) Lidove Noviny ~345,000 Jan Strunk / Tibor Kiss
16
+ Literarni Noviny
17
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
18
+ danish.pickle Danish Avisdata CD-Rom Ver. 1.1. 1995 Berlingske Tidende ~550,000 Jan Strunk / Tibor Kiss
19
+ (Berlingske Avisdata, Copenhagen) Weekend Avisen
20
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
21
+ dutch.pickle Dutch Multilingual Corpus 1 (ECI) De Limburger ~340,000 Jan Strunk / Tibor Kiss
22
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
23
+ english.pickle English Penn Treebank (LDC) Wall Street Journal ~469,000 Jan Strunk / Tibor Kiss
24
+ (American)
25
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
26
+ estonian.pickle Estonian University of Tartu, Estonia Eesti Ekspress ~359,000 Jan Strunk / Tibor Kiss
27
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
28
+ finnish.pickle Finnish Finnish Parole Corpus, Finnish Books and major national ~364,000 Jan Strunk / Tibor Kiss
29
+ Text Bank (Suomen Kielen newspapers
30
+ Tekstipankki)
31
+ Finnish Center for IT Science
32
+ (CSC)
33
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
34
+ french.pickle French Multilingual Corpus 1 (ECI) Le Monde ~370,000 Jan Strunk / Tibor Kiss
35
+ (European)
36
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
37
+ german.pickle German Neue Zürcher Zeitung AG Neue Zürcher Zeitung ~847,000 Jan Strunk / Tibor Kiss
38
+ (Switzerland) CD-ROM
39
+ (Uses "ss"
40
+ instead of "ß")
41
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
42
+ greek.pickle Greek Efstathios Stamatatos To Vima (TO BHMA) ~227,000 Jan Strunk / Tibor Kiss
43
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
44
+ italian.pickle Italian Multilingual Corpus 1 (ECI) La Stampa, Il Mattino ~312,000 Jan Strunk / Tibor Kiss
45
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
46
+ norwegian.pickle Norwegian Centre for Humanities Bergens Tidende ~479,000 Jan Strunk / Tibor Kiss
47
+ (Bokmål and Information Technologies,
48
+ Nynorsk) Bergen
49
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
50
+ polish.pickle Polish Polish National Corpus Literature, newspapers, etc. ~1,000,000 Krzysztof Langner
51
+ (http://www.nkjp.pl/)
52
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
53
+ portuguese.pickle Portuguese CETENFolha Corpus Folha de São Paulo ~321,000 Jan Strunk / Tibor Kiss
54
+ (Brazilian) (Linguateca)
55
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
56
+ slovene.pickle Slovene TRACTOR Delo ~354,000 Jan Strunk / Tibor Kiss
57
+ Slovene Academy for Arts
58
+ and Sciences
59
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
60
+ spanish.pickle Spanish Multilingual Corpus 1 (ECI) Sur ~353,000 Jan Strunk / Tibor Kiss
61
+ (European)
62
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
63
+ swedish.pickle Swedish Multilingual Corpus 1 (ECI) Dagens Nyheter ~339,000 Jan Strunk / Tibor Kiss
64
+ (and some other texts)
65
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
66
+ turkish.pickle Turkish METU Turkish Corpus Milliyet ~333,000 Jan Strunk / Tibor Kiss
67
+ (Türkçe Derlem Projesi)
68
+ University of Ankara
69
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------
70
+
71
+ The corpora contained about 400,000 tokens on average and mostly consisted of newspaper text converted to
72
+ Unicode using the codecs module.
73
+
74
+ Kiss, Tibor and Strunk, Jan (2006): Unsupervised Multilingual Sentence Boundary Detection.
75
+ Computational Linguistics 32: 485-525.
76
+
77
+ ---- Training Code ----
78
+
79
+ # import punkt
80
+ import nltk.tokenize.punkt
81
+
82
+ # Make a new Tokenizer
83
+ tokenizer = nltk.tokenize.punkt.PunktSentenceTokenizer()
84
+
85
+ # Read in training corpus (one example: Slovene)
86
+ import codecs
87
+ text = codecs.open("slovene.plain","Ur","iso-8859-2").read()
88
+
89
+ # Train tokenizer
90
+ tokenizer.train(text)
91
+
92
+ # Dump pickled tokenizer
93
+ import pickle
94
+ out = open("slovene.pickle","wb")
95
+ pickle.dump(tokenizer, out)
96
+ out.close()
97
+
98
+ ---------
@@ -0,0 +1,118 @@
1
+ t
2
+ množ
3
+ např
4
+ j.h
5
+ man
6
+ ú
7
+ jug
8
+ dr
9
+ bl
10
+ ml
11
+ okr
12
+ st
13
+ uh
14
+ šp
15
+ judr
16
+ u.s.a
17
+ p
18
+ arg
19
+ žitě
20
+ st.celsia
21
+ etc
22
+ p.s
23
+ t.r
24
+ lok
25
+ mil
26
+ ict
27
+ n
28
+ tl
29
+ min
30
+ č
31
+ d
32
+ al
33
+ ravenně
34
+ mj
35
+ nar
36
+ plk
37
+ s.p
38
+ a.g
39
+ roč
40
+ b
41
+ zdi
42
+ r.s.c
43
+ přek
44
+ m
45
+ gen
46
+ csc
47
+ mudr
48
+ vic
49
+ š
50
+ sb
51
+ resp
52
+ tzn
53
+ iv
54
+ s.r.o
55
+ mar
56
+ w
57
+ čs
58
+ vi
59
+ tzv
60
+ ul
61
+ pen
62
+ zv
63
+ str
64
+ čp
65
+ org
66
+ rak
67
+ sv
68
+ pplk
69
+ u.s
70
+ prof
71
+ c.k
72
+ op
73
+ g
74
+ vii
75
+ kr
76
+ ing
77
+ j.o
78
+ drsc
79
+ m3
80
+ l
81
+ tr
82
+ ceo
83
+ ch
84
+ fuk
85
+ vl
86
+ viii
87
+ líp
88
+ hl.m
89
+ t.zv
90
+ phdr
91
+ o.k
92
+ tis
93
+ doc
94
+ kl
95
+ ard
96
+ čkd
97
+ pok
98
+ apod
99
+ r
100
+
101
+ a.s
102
+ j
103
+ jr
104
+ i.m
105
+ e
106
+ kupř
107
+ f
108
+
109
+ xvi
110
+ mir
111
+ atď
112
+ vr
113
+ r.i.v
114
+ hl
115
+ kv
116
+ t.j
117
+ y
118
+ q.p.r
@@ -0,0 +1,96 @@
1
+ i dejmala
2
+ ##number## prosince
3
+ h steina
4
+ ##number## listopadu
5
+ a dvořák
6
+ v klaus
7
+ i čnhl
8
+ ##number## wladyslawowo
9
+ ##number## letech
10
+ a jiráska
11
+ a dubček
12
+ ##number## štrasburk
13
+ ##number## juniorské
14
+ ##number## století
15
+ ##number## kola
16
+ ##number## pád
17
+ ##number## května
18
+ ##number## týdne
19
+ v dlouhý
20
+ k design
21
+ ##number## červenec
22
+ i ligy
23
+ ##number## kolo
24
+ z svěrák
25
+ ##number## mája
26
+ ##number## šimková
27
+ a bělého
28
+ a bradáč
29
+ ##number## ročníku
30
+ ##number## dubna
31
+ a vivaldiho
32
+ v mečiara
33
+ c carrićre
34
+ ##number## sjezd
35
+ ##number## výroční
36
+ ##number## kole
37
+ ##number## narozenin
38
+ k maleevová
39
+ i čnfl
40
+ ##number## pádě
41
+ ##number## září
42
+ ##number## výročí
43
+ a dvořáka
44
+ h g.
45
+ ##number## ledna
46
+ a dvorský
47
+ h měsíc
48
+ ##number## srpna
49
+ ##number## tř.
50
+ a mozarta
51
+ ##number## sudetoněmeckých
52
+ o sokolov
53
+ k škrach
54
+ v benda
55
+ ##number## symfonie
56
+ ##number## července
57
+ x šalda
58
+ c abrahama
59
+ a tichý
60
+ ##number## místo
61
+ k bielecki
62
+ v havel
63
+ ##number## etapu
64
+ a dubčeka
65
+ i liga
66
+ ##number## světový
67
+ v klausem
68
+ ##number## ženy
69
+ ##number## létech
70
+ ##number## minutě
71
+ ##number## listopadem
72
+ ##number## místě
73
+ o vlček
74
+ k peteraje
75
+ i sponzor
76
+ ##number## června
77
+ ##number## min.
78
+ ##number## oprávněnou
79
+ ##number## květnu
80
+ ##number## aktu
81
+ ##number## květnem
82
+ ##number## října
83
+ i rynda
84
+ ##number## února
85
+ i snfl
86
+ a mozart
87
+ z košler
88
+ a dvorskému
89
+ v marhoul
90
+ v mečiar
91
+ ##number## ročník
92
+ ##number## máje
93
+ v havla
94
+ k gott
95
+ s bacha
96
+ ##number## ad