select-ai 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of select-ai might be problematic. Click here for more details.

@@ -0,0 +1,562 @@
1
+ # -----------------------------------------------------------------------------
2
+ # Copyright (c) 2025, Oracle and/or its affiliates.
3
+ #
4
+ # Licensed under the Universal Permissive License v 1.0 as shown at
5
+ # http://oss.oracle.com/licenses/upl.
6
+ # -----------------------------------------------------------------------------
7
+
8
+ import json
9
+ from abc import ABC
10
+ from dataclasses import dataclass
11
+ from typing import AsyncGenerator, Iterator, Optional, Union
12
+
13
+ import oracledb
14
+
15
+ from select_ai import BaseProfile
16
+ from select_ai._abc import SelectAIDataClass
17
+ from select_ai._enums import StrEnum
18
+ from select_ai.async_profile import AsyncProfile
19
+ from select_ai.db import async_cursor, cursor
20
+ from select_ai.errors import VectorIndexNotFoundError
21
+ from select_ai.profile import Profile
22
+ from select_ai.sql import (
23
+ GET_USER_VECTOR_INDEX_ATTRIBUTES,
24
+ LIST_USER_VECTOR_INDEXES,
25
+ )
26
+
27
+
28
+ class VectorDBProvider(StrEnum):
29
+ ORACLE = "oracle"
30
+
31
+
32
+ class VectorDistanceMetric(StrEnum):
33
+ EUCLIDEAN = "EUCLIDEAN"
34
+ L2_SQUARED = "L2_SQUARED"
35
+ COSINE = "COSINE"
36
+ DOT = "DOT"
37
+ MANHATTAN = "MANHATTAN"
38
+ HAMMING = "HAMMING"
39
+
40
+
41
+ @dataclass
42
+ class VectorIndexAttributes(SelectAIDataClass):
43
+ """
44
+ Attributes of a vector index help to manage and configure the behavior of
45
+ the vector index.
46
+
47
+ :param int chunk_size: Text size of chunking the input data.
48
+ :param int chunk_overlap: Specifies the amount of overlapping
49
+ characters between adjacent chunks of text.
50
+ :param str location: Location of the object store.
51
+ :param int match_limit: Specifies the maximum number of results to return
52
+ in a vector search query
53
+ :param str object_storage_credential_name: Name of the credentials for
54
+ accessing object storage.
55
+ :param str profile_name: Name of the AI profile which is used for
56
+ embedding source data and user prompts.
57
+ :param int refresh_rate: Interval of updating data in the vector store.
58
+ The unit is minutes.
59
+ :param float similarity_threshold: Defines the minimum level of similarity
60
+ required for two items to be considered a match
61
+ :param VectorDistanceMetric vector_distance_metric: Specifies the type of
62
+ distance calculation used to compare vectors in a database
63
+ :param VectorDBProvider vector_db_provider: Name of the Vector database
64
+ provider. Default value is "oracle"
65
+ :param str vector_db_endpoint: Endpoint to access the Vector database
66
+ :param str vector_db_credential_name: Name of the credentials for accessing
67
+ Vector database
68
+ :param int vector_dimension: Specifies the number of elements in each
69
+ vector within the vector store
70
+ :param str vector_table_name: Specifies the name of the table or collection
71
+ to store vector embeddings and chunked data
72
+ """
73
+
74
+ chunk_size: Optional[int] = 1024
75
+ chunk_overlap: Optional[int] = 128
76
+ location: Optional[str] = None
77
+ match_limit: Optional[int] = 5
78
+ object_storage_credential_name: Optional[str] = None
79
+ profile_name: Optional[str] = None
80
+ refresh_rate: Optional[int] = 1440
81
+ similarity_threshold: Optional[float] = 0
82
+ vector_distance_metric: Optional[VectorDistanceMetric] = (
83
+ VectorDistanceMetric.COSINE
84
+ )
85
+ vector_db_endpoint: Optional[str] = None
86
+ vector_db_credential_name: Optional[str] = None
87
+ vector_db_provider: Optional[VectorDBProvider] = None
88
+ vector_dimension: Optional[int] = None
89
+ vector_table_name: Optional[str] = None
90
+ pipeline_name: Optional[str] = None
91
+
92
+ def json(self, exclude_null=True):
93
+ attributes = self.dict(exclude_null=exclude_null)
94
+ attributes.pop("pipeline_name", None)
95
+ return json.dumps(attributes)
96
+
97
+ @classmethod
98
+ def create(cls, *, vector_db_provider: Optional[str] = None, **kwargs):
99
+ for subclass in cls.__subclasses__():
100
+ if subclass.vector_db_provider == vector_db_provider:
101
+ return subclass(**kwargs)
102
+ return cls(**kwargs)
103
+
104
+
105
+ @dataclass
106
+ class OracleVectorIndexAttributes(VectorIndexAttributes):
107
+ """Oracle specific vector index attributes"""
108
+
109
+ vector_db_provider: Optional[VectorDBProvider] = VectorDBProvider.ORACLE
110
+
111
+
112
+ class _BaseVectorIndex(ABC):
113
+
114
+ def __init__(
115
+ self,
116
+ profile: BaseProfile = None,
117
+ index_name: Optional[str] = None,
118
+ description: Optional[str] = None,
119
+ attributes: Optional[VectorIndexAttributes] = None,
120
+ ):
121
+ """Initialize a Vector Index"""
122
+ if attributes and not isinstance(attributes, VectorIndexAttributes):
123
+ raise TypeError(
124
+ "'attributes' must be an object of type "
125
+ "select_ai.VectorIndexAttributes"
126
+ )
127
+ if profile and not isinstance(profile, BaseProfile):
128
+ raise TypeError(
129
+ "'profile' must be an object of type "
130
+ "select_ai.Profile or select_ai.AsyncProfile"
131
+ )
132
+ self.profile = profile
133
+ self.index_name = index_name
134
+ self.attributes = attributes
135
+ self.description = description
136
+
137
+ def __repr__(self):
138
+ return (
139
+ f"{self.__class__.__name__}(profile={self.profile}, "
140
+ f"index_name={self.index_name}, "
141
+ f"attributes={self.attributes}, description={self.description})"
142
+ )
143
+
144
+
145
+ class VectorIndex(_BaseVectorIndex):
146
+ """
147
+ VectorIndex objects let you manage vector indexes
148
+
149
+ :param str index_name: The name of the vector index
150
+ :param str description: The description of the vector index
151
+ :param select_ai.VectorIndexAttributes attributes: The attributes of the vector index
152
+ """
153
+
154
+ @staticmethod
155
+ def _get_attributes(index_name: str) -> VectorIndexAttributes:
156
+ """Get attributes of a vector index
157
+
158
+ :return: select_ai.VectorIndexAttributes
159
+ :raises: VectorIndexNotFoundError
160
+ """
161
+ with cursor() as cr:
162
+ cr.execute(GET_USER_VECTOR_INDEX_ATTRIBUTES, index_name=index_name)
163
+ attributes = cr.fetchall()
164
+ if attributes:
165
+ post_processed_attributes = {}
166
+ for k, v in attributes:
167
+ if isinstance(v, oracledb.LOB):
168
+ post_processed_attributes[k] = v.read()
169
+ else:
170
+ post_processed_attributes[k] = v
171
+ return VectorIndexAttributes.create(
172
+ **post_processed_attributes
173
+ )
174
+ else:
175
+ raise VectorIndexNotFoundError(index_name=index_name)
176
+
177
+ def create(self, replace: Optional[bool] = False):
178
+ """Create a vector index in the database and populates the index
179
+ with data from an object store bucket using an async scheduler job
180
+
181
+ :param bool replace: Replace vector index if it exists
182
+ :return: None
183
+ """
184
+
185
+ if self.attributes.profile_name is None:
186
+ self.attributes.profile_name = self.profile.profile_name
187
+
188
+ parameters = {
189
+ "index_name": self.index_name,
190
+ "attributes": self.attributes.json(),
191
+ }
192
+
193
+ if self.description:
194
+ parameters["description"] = self.description
195
+
196
+ with cursor() as cr:
197
+ try:
198
+ cr.callproc(
199
+ "DBMS_CLOUD_AI.CREATE_VECTOR_INDEX",
200
+ keyword_parameters=parameters,
201
+ )
202
+ except oracledb.DatabaseError as e:
203
+ (error,) = e.args
204
+ # If already exists and replace is True then drop and recreate
205
+ if error.code == 20048 and replace:
206
+ self.delete(force=True)
207
+ cr.callproc(
208
+ "DBMS_CLOUD_AI.CREATE_VECTOR_INDEX",
209
+ keyword_parameters=parameters,
210
+ )
211
+ else:
212
+ raise
213
+ self.profile.set_attribute("vector_index_name", self.index_name)
214
+
215
+ def delete(
216
+ self,
217
+ include_data: Optional[bool] = True,
218
+ force: Optional[bool] = False,
219
+ ):
220
+ """This procedure removes a vector store index
221
+
222
+ :param bool include_data: Indicates whether to delete
223
+ both the customer's vector store and vector index
224
+ along with the vector index object
225
+ :param bool force: Indicates whether to ignore errors
226
+ that occur if the vector index does not exist
227
+ :return: None
228
+ :raises: oracledb.DatabaseError
229
+ """
230
+ with cursor() as cr:
231
+ cr.callproc(
232
+ "DBMS_CLOUD_AI.DROP_VECTOR_INDEX",
233
+ keyword_parameters={
234
+ "index_name": self.index_name,
235
+ "include_data": include_data,
236
+ "force": force,
237
+ },
238
+ )
239
+
240
+ def enable(self):
241
+ """This procedure enables or activates a previously disabled vector
242
+ index object. Generally, when you create a vector index, by default
243
+ it is enabled such that the AI profile can use it to perform indexing
244
+ and searching.
245
+
246
+ :return: None
247
+ :raises: oracledb.DatabaseError
248
+
249
+ """
250
+ with cursor() as cr:
251
+ cr.callproc(
252
+ "DBMS_CLOUD_AI.ENABLE_VECTOR_INDEX",
253
+ keyword_parameters={"index_name": self.index_name},
254
+ )
255
+
256
+ def disable(self):
257
+ """This procedure disables a vector index object in the current
258
+ database. When disabled, an AI profile cannot use the vector index,
259
+ and the system does not load data into the vector store as new data
260
+ is added to the object store and does not perform indexing, searching
261
+ or querying based on the index.
262
+
263
+ :return: None
264
+ :raises: oracledb.DatabaseError
265
+ """
266
+ with cursor() as cr:
267
+ cr.callproc(
268
+ "DBMS_CLOUD_AI.DISABLE_VECTOR_INDEX",
269
+ keyword_parameters={"index_name": self.index_name},
270
+ )
271
+
272
+ def set_attributes(
273
+ self,
274
+ attribute_name: str,
275
+ attribute_value: Union[str, int, float],
276
+ attributes: VectorIndexAttributes = None,
277
+ ):
278
+ """
279
+ This procedure updates an existing vector store index with a specified
280
+ value of the vector index attribute. You can specify a single attribute
281
+ or multiple attributes by passing an object of type
282
+ :class `VectorIndexAttributes`
283
+
284
+ :param str attribute_name: Custom attribute name
285
+ :param Union[str, int, float] attribute_value: Attribute Value
286
+ :param VectorIndexAttributes attributes: Specify multiple attributes
287
+ to update in a single API invocation
288
+ :return: None
289
+ :raises: oracledb.DatabaseError
290
+ """
291
+ if attribute_name and attribute_value and attributes:
292
+ raise ValueError(
293
+ "Either specify a single attribute using "
294
+ "attribute_name and attribute_value or "
295
+ "pass an object of type VectorIndexAttributes"
296
+ )
297
+
298
+ parameters = {"index_name": self.index_name}
299
+ if attributes:
300
+ parameters["attributes"] = attributes.json()
301
+ self.attributes = attributes
302
+ else:
303
+ setattr(self.attributes, attribute_name, attribute_value)
304
+ parameters["attributes_name"] = attribute_name
305
+ parameters["attributes_value"] = attribute_value
306
+
307
+ with cursor() as cr:
308
+ cr.callproc(
309
+ "DBMS_CLOUD_AI.UPDATE_VECTOR_INDEX",
310
+ keyword_parameters=parameters,
311
+ )
312
+
313
+ def get_attributes(self) -> VectorIndexAttributes:
314
+ """Get attributes of this vector index
315
+
316
+ :return: select_ai.VectorIndexAttributes
317
+ :raises: VectorIndexNotFoundError
318
+ """
319
+ return self._get_attributes(self.index_name)
320
+
321
+ @classmethod
322
+ def list(cls, index_name_pattern: str = ".*") -> Iterator["VectorIndex"]:
323
+ """List Vector Indexes
324
+
325
+ :param str index_name_pattern: Regular expressions can be used
326
+ to specify a pattern. Function REGEXP_LIKE is used to perform the
327
+ match. Default value is ".*" i.e. match all vector indexes.
328
+
329
+ :return: Iterator[VectorIndex]
330
+ """
331
+ with cursor() as cr:
332
+ cr.execute(
333
+ LIST_USER_VECTOR_INDEXES,
334
+ index_name_pattern=index_name_pattern,
335
+ )
336
+ for row in cr.fetchall():
337
+ index_name = row[0]
338
+ if row[1]:
339
+ description = row[1].read() # Oracle.LOB
340
+ else:
341
+ description = None
342
+ attributes = cls._get_attributes(index_name=index_name)
343
+ yield cls(
344
+ index_name=index_name,
345
+ description=description,
346
+ attributes=attributes,
347
+ profile=Profile(profile_name=attributes.profile_name),
348
+ )
349
+
350
+
351
+ class AsyncVectorIndex(_BaseVectorIndex):
352
+ """
353
+ AsyncVectorIndex objects let you manage vector indexes
354
+ using async APIs. Use this for non-blocking concurrent
355
+ requests
356
+
357
+ :param str index_name: The name of the vector index
358
+ :param str description: The description of the vector index
359
+ :param VectorIndexAttributes attributes: The attributes of the vector index
360
+ """
361
+
362
+ @staticmethod
363
+ async def _get_attributes(index_name: str) -> VectorIndexAttributes:
364
+ """Get attributes of a vector index
365
+
366
+ :return: select_ai.VectorIndexAttributes
367
+ :raises: VectorIndexNotFoundError
368
+ """
369
+ async with async_cursor() as cr:
370
+ await cr.execute(
371
+ GET_USER_VECTOR_INDEX_ATTRIBUTES, index_name=index_name
372
+ )
373
+ attributes = await cr.fetchall()
374
+ if attributes:
375
+ post_processed_attributes = {}
376
+ for k, v in attributes:
377
+ if isinstance(v, oracledb.AsyncLOB):
378
+ post_processed_attributes[k] = await v.read()
379
+ else:
380
+ post_processed_attributes[k] = v
381
+ return VectorIndexAttributes.create(
382
+ **post_processed_attributes
383
+ )
384
+ else:
385
+ raise VectorIndexNotFoundError(index_name=index_name)
386
+
387
+ async def create(self, replace: Optional[bool] = False) -> None:
388
+ """Create a vector index in the database and populates it with data
389
+ from an object store bucket using an async scheduler job
390
+
391
+ :param bool replace: True to replace existing vector index
392
+
393
+ """
394
+
395
+ if self.attributes.profile_name is None:
396
+ self.attributes.profile_name = self.profile.profile_name
397
+ parameters = {
398
+ "index_name": self.index_name,
399
+ "attributes": self.attributes.json(),
400
+ }
401
+ if self.description:
402
+ parameters["description"] = self.description
403
+ async with async_cursor() as cr:
404
+ try:
405
+ await cr.callproc(
406
+ "DBMS_CLOUD_AI.CREATE_VECTOR_INDEX",
407
+ keyword_parameters=parameters,
408
+ )
409
+ except oracledb.DatabaseError as e:
410
+ (error,) = e.args
411
+ # If already exists and replace is True then drop and recreate
412
+ if error.code == 20048 and replace:
413
+ await self.delete(force=True)
414
+ await cr.callproc(
415
+ "DBMS_CLOUD_AI.CREATE_VECTOR_INDEX",
416
+ keyword_parameters=parameters,
417
+ )
418
+ else:
419
+ raise
420
+
421
+ await self.profile.set_attribute("vector_index_name", self.index_name)
422
+
423
+ async def delete(
424
+ self,
425
+ include_data: Optional[bool] = True,
426
+ force: Optional[bool] = False,
427
+ ) -> None:
428
+ """This procedure removes a vector store index.
429
+
430
+ :param bool include_data: Indicates whether to delete
431
+ both the customer's vector store and vector index
432
+ along with the vector index object.
433
+ :param bool force: Indicates whether to ignore errors
434
+ that occur if the vector index does not exist.
435
+ :return: None
436
+ :raises: oracledb.DatabaseError
437
+
438
+ """
439
+ async with async_cursor() as cr:
440
+ await cr.callproc(
441
+ "DBMS_CLOUD_AI.DROP_VECTOR_INDEX",
442
+ keyword_parameters={
443
+ "index_name": self.index_name,
444
+ "include_data": include_data,
445
+ "force": force,
446
+ },
447
+ )
448
+
449
+ async def enable(self) -> None:
450
+ """This procedure enables or activates a previously disabled vector
451
+ index object. Generally, when you create a vector index, by default
452
+ it is enabled such that the AI profile can use it to perform indexing
453
+ and searching.
454
+
455
+ :return: None
456
+ :raises: oracledb.DatabaseError
457
+
458
+ """
459
+ async with async_cursor() as cr:
460
+ await cr.callproc(
461
+ "DBMS_CLOUD_AI.ENABLE_VECTOR_INDEX",
462
+ keyword_parameters={"index_name": self.index_name},
463
+ )
464
+
465
+ async def disable(self) -> None:
466
+ """This procedure disables a vector index object in the current
467
+ database. When disabled, an AI profile cannot use the vector index,
468
+ and the system does not load data into the vector store as new data
469
+ is added to the object store and does not perform indexing, searching
470
+ or querying based on the index.
471
+
472
+ :return: None
473
+ :raises: oracledb.DatabaseError
474
+ """
475
+ async with async_cursor() as cr:
476
+ await cr.callproc(
477
+ "DBMS_CLOUD_AI.DISABLE_VECTOR_INDEX",
478
+ keyword_parameters={"index_name": self.index_name},
479
+ )
480
+
481
+ async def set_attributes(
482
+ self,
483
+ attribute_name: str,
484
+ attribute_value: Union[str, int],
485
+ attributes: VectorIndexAttributes = None,
486
+ ) -> None:
487
+ """
488
+ This procedure updates an existing vector store index with a specified
489
+ value of the vector index attribute. You can specify a single attribute
490
+ or multiple attributes by passing an object of type
491
+ :class `VectorIndexAttributes`
492
+
493
+ :param str attribute_name: Custom attribute name
494
+ :param Union[str, int, float] attribute_value: Attribute Value
495
+ :param VectorIndexAttributes attributes: Specify multiple attributes
496
+ to update in a single API invocation
497
+ :return: None
498
+ :raises: oracledb.DatabaseError
499
+ """
500
+ if attribute_name and attribute_value and attributes:
501
+ raise ValueError(
502
+ "Either specify a single attribute using "
503
+ "attribute_name and attribute_value or "
504
+ "pass an object of type VectorIndexAttributes"
505
+ )
506
+ parameters = {"index_name": self.index_name}
507
+ if attributes:
508
+ self.attributes = attributes
509
+ parameters["attributes"] = attributes.json()
510
+ else:
511
+ setattr(self.attributes, attribute_name, attribute_value)
512
+ parameters["attributes_name"] = attribute_name
513
+ parameters["attributes_value"] = attribute_value
514
+
515
+ async with async_cursor() as cr:
516
+ await cr.callproc(
517
+ "DBMS_CLOUD_AI.UPDATE_VECTOR_INDEX",
518
+ keyword_parameters=parameters,
519
+ )
520
+
521
+ async def get_attributes(self) -> VectorIndexAttributes:
522
+ """Get attributes of a vector index
523
+
524
+ :return: select_ai.VectorIndexAttributes
525
+ :raises: VectorIndexNotFoundError
526
+ """
527
+ return await self._get_attributes(index_name=self.index_name)
528
+
529
+ @classmethod
530
+ async def list(
531
+ cls, index_name_pattern: str = ".*"
532
+ ) -> AsyncGenerator[VectorIndex, None]:
533
+ """List Vector Indexes.
534
+
535
+ :param str index_name_pattern: Regular expressions can be used
536
+ to specify a pattern. Function REGEXP_LIKE is used to perform the
537
+ match. Default value is ".*" i.e. match all vector indexes.
538
+
539
+ :return: AsyncGenerator[VectorIndex]
540
+
541
+ """
542
+ async with async_cursor() as cr:
543
+ await cr.execute(
544
+ LIST_USER_VECTOR_INDEXES,
545
+ index_name_pattern=index_name_pattern,
546
+ )
547
+ rows = await cr.fetchall()
548
+ for row in rows:
549
+ index_name = row[0]
550
+ if row[1]:
551
+ description = await row[1].read() # AsyncLOB
552
+ else:
553
+ description = None
554
+ attributes = await cls._get_attributes(index_name=index_name)
555
+ yield VectorIndex(
556
+ index_name=index_name,
557
+ description=description,
558
+ attributes=attributes,
559
+ profile=await AsyncProfile(
560
+ profile_name=attributes.profile_name
561
+ ),
562
+ )
select_ai/version.py ADDED
@@ -0,0 +1,8 @@
1
+ # -----------------------------------------------------------------------------
2
+ # Copyright (c) 2025, Oracle and/or its affiliates.
3
+ #
4
+ # Licensed under the Universal Permissive License v 1.0 as shown at
5
+ # http://oss.oracle.com/licenses/upl.
6
+ # -----------------------------------------------------------------------------
7
+
8
+ __version__ = "1.0.0"
@@ -0,0 +1,125 @@
1
+ Metadata-Version: 2.4
2
+ Name: select_ai
3
+ Version: 1.0.0
4
+ Summary: Select AI for Python
5
+ Author-email: Abhishek Singh <abhishek.o.singh@oracle.com>
6
+ Maintainer-email: Abhishek Singh <abhishek.o.singh@oracle.com>
7
+ License-Expression: UPL-1.0
8
+ Project-URL: Homepage, https://github.com/oracle/python-select-ai
9
+ Project-URL: Repository, https://github.com/oracle/python-select-ai
10
+ Project-URL: Issues, https://github.com/oracle/python-select-ai/issues
11
+ Project-URL: Documentation, https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/pysai/
12
+ Keywords: oracle,select-ai,adbs,autonomous database serverless
13
+ Classifier: Development Status :: 5 - Production/Stable
14
+ Classifier: Intended Audience :: Developers
15
+ Classifier: Natural Language :: English
16
+ Classifier: Operating System :: OS Independent
17
+ Classifier: Programming Language :: Python :: 3 :: Only
18
+ Classifier: Programming Language :: Python :: 3.9
19
+ Classifier: Programming Language :: Python :: 3.10
20
+ Classifier: Programming Language :: Python :: 3.11
21
+ Classifier: Programming Language :: Python :: 3.12
22
+ Classifier: Programming Language :: Python :: 3.13
23
+ Classifier: Programming Language :: Python :: Implementation :: CPython
24
+ Classifier: Topic :: Database
25
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
26
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
27
+ Requires-Python: >=3.9
28
+ Description-Content-Type: text/markdown
29
+ License-File: LICENSE.txt
30
+ Requires-Dist: oracledb
31
+ Requires-Dist: pandas==2.2.3
32
+ Dynamic: license-file
33
+
34
+ # Select AI for Python
35
+
36
+
37
+ Select AI for Python enables you to ask questions of your database data using natural language (text-to-SQL), get generative AI responses using your trusted content (retrieval augmented generation), generate synthetic data using large language models, and other features – all from Python. With the general availability of Select AI Python, Python developers have access to the functionality of Select AI on Oracle Autonomous Database.
38
+
39
+ Select AI for Python enables you to leverage the broader Python ecosystem in combination with generative AI and database functionality - bridging the gap between the DBMS_CLOUD_AI PL/SQL package and Python's rich ecosystem. It provides intuitive objects and methods for AI model interaction.
40
+
41
+
42
+ ## Installation
43
+
44
+ Run
45
+ ```bash
46
+ python3 -m pip install select_ai
47
+ ```
48
+
49
+ ## Documentation
50
+
51
+ See [Select AI for Python documentation][documentation]
52
+
53
+ ## Samples
54
+
55
+ Examples can be found in the [/samples][samples] directory
56
+
57
+ ### Basic Example
58
+
59
+ ```python
60
+ import select_ai
61
+
62
+ user = "<your_select_ai_user>"
63
+ password = "<your_select_ai_password>"
64
+ dsn = "<your_select_ai_db_connect_string>"
65
+
66
+ select_ai.connect(user=user, password=password, dsn=dsn)
67
+ profile = select_ai.Profile(profile_name="oci_ai_profile")
68
+ # run_sql returns a pandas dataframe
69
+ df = profile.run_sql(prompt="How many promotions?")
70
+ print(df.columns)
71
+ print(df)
72
+ ```
73
+
74
+ ### Async Example
75
+
76
+ ```python
77
+
78
+ import asyncio
79
+
80
+ import select_ai
81
+
82
+ user = "<your_select_ai_user>"
83
+ password = "<your_select_ai_password>"
84
+ dsn = "<your_select_ai_db_connect_string>"
85
+
86
+ # This example shows how to asynchronously run sql
87
+ async def main():
88
+ await select_ai.async_connect(user=user, password=password, dsn=dsn)
89
+ async_profile = await select_ai.AsyncProfile(
90
+ profile_name="async_oci_ai_profile",
91
+ )
92
+ # run_sql returns a pandas df
93
+ df = await async_profile.run_sql("How many promotions?")
94
+ print(df)
95
+
96
+ asyncio.run(main())
97
+
98
+ ```
99
+ ## Help
100
+
101
+ Questions can be asked in [GitHub Discussions][ghdiscussions].
102
+
103
+ Problem reports can be raised in [GitHub Issues][ghissues].
104
+
105
+ ## Contributing
106
+
107
+ This project welcomes contributions from the community. Before submitting a pull request, please [review our contribution guide][contributing]
108
+
109
+ ## Security
110
+
111
+ Please consult the [security guide][security] for our responsible security vulnerability disclosure process
112
+
113
+ ## License
114
+
115
+ Copyright (c) 2025 Oracle and/or its affiliates.
116
+
117
+ Released under the Universal Permissive License v1.0 as shown at
118
+ <https://oss.oracle.com/licenses/upl/>.
119
+
120
+ [contributing]: https://github.com/oracle/python-select-ai/blob/main/CONTRIBUTING.md
121
+ [documentation]: https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/pysai/
122
+ [ghdiscussions]: https://github.com/oracle/python-select-ai/discussions
123
+ [ghissues]: https://github.com/oracle/python-select-ai/issues
124
+ [samples]: https://github.com/oracle/python-select-ai/tree/main/samples
125
+ [security]: https://github.com/oracle/python-select-ai/blob/main/SECURITY.md