seabirdfilehandler 0.5.2__py3-none-any.whl → 0.5.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of seabirdfilehandler might be problematic. Click here for more details.

@@ -1,3 +1,4 @@
1
+ from pathlib import Path
1
2
  from typing import Union
2
3
  from datetime import datetime, time
3
4
  import pandas as pd
@@ -22,12 +23,13 @@ class BottleFile(DataFile):
22
23
 
23
24
  """
24
25
 
25
- def __init__(self, path_to_file):
26
- super().__init__(path_to_file)
27
- self.original_df = self.create_dataframe()
28
- self.df = self.original_df
29
- self.setting_dataframe_dtypes()
30
- self.adding_timestamp_column()
26
+ def __init__(self, path_to_file: Path | str, only_header: bool = False):
27
+ super().__init__(path_to_file, only_header)
28
+ if not only_header:
29
+ self.original_df = self.create_dataframe()
30
+ self.df = self.original_df
31
+ self.setting_dataframe_dtypes()
32
+ self.adding_timestamp_column()
31
33
 
32
34
  def create_dataframe(self):
33
35
  """Creates a dataframe out of the btl file. Manages the double data
@@ -19,21 +19,26 @@ class CnvFile(DataFile):
19
19
  be able to use this representation for all applications concerning cnv
20
20
  files, like data processing, transformation or visualization.
21
21
 
22
- To achieve that, the metadata header is organized by the grandparent-class,
23
- SeaBirdFile, while the data table is extracted by this class. The data
24
- representation of choice is a pandas Dataframe. Inside this class, there
25
- are methods to parse cnv data into dataframes, do the reverse of writing a
26
- dataframe into cnv compliant form and to manipulate the dataframe in
27
- various ways.
22
+ To achieve that, the metadata header is organized by the parent-class,
23
+ DataFile, while the data table is extracted by this class. The data
24
+ representation can be a numpy array or pandas dataframe. The handling of
25
+ the data is mostly done inside parameters, a representation of the
26
+ individual measurement parameter data and metadata.
27
+
28
+ This class is also able to parse the edited data and metadata back to the
29
+ original .cnv file format, allowing for custom data processing using this
30
+ representation, while still being able to use Sea-Birds original software
31
+ on that output. It also allows to stay comparable with other parsers or
32
+ methods in general.
28
33
 
29
34
  Parameters
30
35
  ----------
31
36
  path_to_file: Path | str:
32
37
  the path to the file
33
- full_data_header: bool:
34
- whether to use the full data column descriptions for the dataframe
35
- long_header_names: bool:
36
- whether to use long header names in the dateframe
38
+ only_header: bool :
39
+ Whether to stop reading the file after the metadata header.
40
+ create_dataframe: bool :
41
+ Whether to create a pandas DataFrame from the data table.
37
42
  absolute_time_calculation: bool:
38
43
  whether to use a real timestamp instead of the second count
39
44
  event_log_column: bool:
@@ -55,9 +60,11 @@ class CnvFile(DataFile):
55
60
  super().__init__(path_to_file, only_header)
56
61
  self.validation_modules = self.obtaining_validation_modules()
57
62
  self.start_time = self.reading_start_time()
58
- self.parameters = Parameters(self.data, self.data_table_description)
63
+ self.parameters = Parameters(
64
+ self.data, self.data_table_description, only_header
65
+ )
59
66
  if create_dataframe:
60
- self.df = self.parameters.get_pandas_dataframe()
67
+ self.df = self.create_dataframe()
61
68
  if absolute_time_calculation:
62
69
  self.absolute_time_calculation()
63
70
  if event_log_column:
@@ -65,6 +72,13 @@ class CnvFile(DataFile):
65
72
  if coordinate_columns:
66
73
  self.add_position_columns()
67
74
 
75
+ def create_dataframe(self) -> pd.DataFrame:
76
+ """
77
+ Plain dataframe creator.
78
+ """
79
+ self.df = self.parameters.get_pandas_dataframe()
80
+ return self.df
81
+
68
82
  def reading_start_time(
69
83
  self,
70
84
  time_source: str = "System UTC",
@@ -18,15 +18,21 @@ logger = logging.getLogger(__name__)
18
18
 
19
19
 
20
20
  class DataFile:
21
- """Collection of methods for the SeaBird files that feature some kind of
22
- data table that is represented in a pandas dataframe.
21
+ """
22
+ The base class for all Sea-Bird data files, which are .cnv, .btl, and .bl .
23
+ One instance of this class, or its children, represents one data text file.
24
+ The different information bits of such a file are structured into individual
25
+ lists or dictionaries. The data table will be loaded as numpy array and
26
+ can be converted to a pandas DataFrame. Datatype-specific behavior is
27
+ implemented in the subclasses.
28
+
23
29
 
24
30
  Parameters
25
31
  ----------
26
-
27
- Returns
28
- -------
29
-
32
+ path_to_file: Path | str :
33
+ The file to the data file.
34
+ only_header: bool :
35
+ Whether to stop reading the file after the metadata header.
30
36
  """
31
37
 
32
38
  def __init__(
@@ -66,16 +72,10 @@ class DataFile:
66
72
  return self.file_data == other.file_data
67
73
 
68
74
  def read_file(self):
69
- """Reads and structures all the different information present in the
75
+ """
76
+ Reads and structures all the different information present in the
70
77
  file. Lists and Dictionaries are the data structures of choice. Uses
71
78
  basic prefix checking to distinguish different header information.
72
-
73
- Parameters
74
- ----------
75
-
76
- Returns
77
- -------
78
-
79
79
  """
80
80
  past_sensors = False
81
81
  with self.path_to_file.open("r", encoding="latin-1") as file:
@@ -109,14 +109,18 @@ class DataFile:
109
109
  def sensor_xml_to_flattened_dict(
110
110
  self, sensor_data: str
111
111
  ) -> list[dict] | dict:
112
- """Reads the pure xml sensor input and creates a multilevel dictionary,
112
+ """
113
+ Reads the pure xml sensor input and creates a multilevel dictionary,
113
114
  dropping the first two dictionaries, as they are single entry only
114
115
 
115
116
  Parameters
116
117
  ----------
118
+ sensor_data: str:
119
+ The raw xml sensor data.
117
120
 
118
121
  Returns
119
122
  -------
123
+ A list of sensor information, which is a structured dict.
120
124
 
121
125
  """
122
126
  full_sensor_dict = xmltodict.parse(sensor_data, process_comments=True)
@@ -153,8 +157,9 @@ class DataFile:
153
157
  return tidied_sensor_list
154
158
 
155
159
  def structure_metadata(self, metadata_list: list) -> dict:
156
- """Creates a dictionary to store the metadata that is added by using
157
- werums dship API.
160
+ """
161
+ Creates a dictionary to store custom metadata, of which Sea-Bird allows
162
+ 12 lines in each file.
158
163
 
159
164
  Parameters
160
165
  ----------
@@ -181,7 +186,8 @@ class DataFile:
181
186
  file_name: str | None = None,
182
187
  file_type: str = ".csv",
183
188
  ) -> Path:
184
- """Creates a Path object holding the desired output path.
189
+ """
190
+ Creates a Path object holding the desired output path.
185
191
 
186
192
  Parameters
187
193
  ----------
@@ -209,14 +215,13 @@ class DataFile:
209
215
  output_file_path: Path | str | None = None,
210
216
  output_file_name: str | None = None,
211
217
  ):
212
- """Writes a csv from the current dataframe. Takes a list of columns to
213
- use, a boolean for writing the header and the output file parameters.
218
+ """
219
+ Writes a csv from the given data.
214
220
 
215
221
  Parameters
216
222
  ----------
217
- selected_columns : list :
218
- a list of columns to include in the csv
219
- (Default value = self.df.columns)
223
+ data: pd.DataFrame | np.ndarray :
224
+ The source data to use.
220
225
  with_header : boolean :
221
226
  indicating whether the header shall appear in the output
222
227
  (Default value = True)
@@ -246,7 +251,8 @@ class DataFile:
246
251
  list_of_columns: list | str,
247
252
  df: pd.DataFrame,
248
253
  ):
249
- """Alters the dataframe to only hold the given columns.
254
+ """
255
+ Alters the dataframe to only hold the given columns.
250
256
 
251
257
  Parameters
252
258
  ----------
@@ -1,3 +1,4 @@
1
+ from __future__ import annotations
1
2
  from pathlib import Path
2
3
  import logging
3
4
  from collections import UserList
@@ -15,18 +16,63 @@ from seabirdfilehandler.utils import get_unique_sensor_data
15
16
  logger = logging.getLogger(__name__)
16
17
 
17
18
 
19
+ def get_collection(
20
+ path_to_files: Path | str,
21
+ file_suffix: str = "cnv",
22
+ only_metadata: bool = False,
23
+ sorting_key: Callable | None = None,
24
+ ) -> Type[FileCollection]:
25
+ """
26
+ Factory to create instances of FileCollection, depending on input type.
27
+
28
+ Parameters
29
+ ----------
30
+ path_to_files : Path | str :
31
+ The path to the directory to search for files.
32
+ file_suffix : str :
33
+ The suffix to search for. (Default value = "cnv")
34
+ only_metadata : bool :
35
+ Whether to read only metadata. (Default value = False)
36
+ sorting_key : Callable | None :
37
+ A callable that returns the filename-part to use to sort the collection. (Default value = None)
38
+ Returns
39
+ -------
40
+ An instance of FileCollection or one of its children.
41
+
42
+ """
43
+ mapping_suffix_to_type = {
44
+ "cnv": CnvCollection,
45
+ "btl": FileCollection,
46
+ "bl": FileCollection,
47
+ }
48
+ file_suffix = file_suffix.strip(".")
49
+ try:
50
+ collection = mapping_suffix_to_type[file_suffix](
51
+ path_to_files, file_suffix, only_metadata, sorting_key
52
+ )
53
+ except ValueError:
54
+ raise ValueError(f"Unknown input file type: {file_suffix}, aborting.")
55
+ else:
56
+ return collection
57
+
58
+
18
59
  class FileCollection(UserList):
19
- """A representation of multiple files of the same kind. These files share
60
+ """
61
+ A representation of multiple files of the same kind. These files share
20
62
  the same suffix and are otherwise closely connected to each other. A common
21
63
  use case would be the collection of CNVs to allow for easier processing or
22
64
  integration of field calibration measurements.
23
65
 
24
66
  Parameters
25
67
  ----------
26
-
27
- Returns
28
- -------
29
-
68
+ path_to_files : Path | str :
69
+ The path to the directory to search for files.
70
+ file_suffix : str :
71
+ The suffix to search for. (Default value = "cnv")
72
+ only_metadata : bool :
73
+ Whether to read only metadata. (Default value = False)
74
+ sorting_key : Callable | None :
75
+ A callable that returns the filename-part to use to sort the collection. (Default value = None)
30
76
  """
31
77
 
32
78
  def __init__(
@@ -39,61 +85,90 @@ class FileCollection(UserList):
39
85
  super().__init__()
40
86
  self.path_to_files = Path(path_to_files)
41
87
  self.file_suffix = file_suffix.strip(".")
42
- self.file_type: Type[DataFile]
43
- self.extract_file_type()
44
- self.individual_file_paths = []
45
- self.collect_files(sorting_key=sorting_key)
46
- self.load_files(only_metadata)
88
+ self.file_type = self.extract_file_type(self.file_suffix)
89
+ self.individual_file_paths = self.collect_files(
90
+ sorting_key=sorting_key
91
+ )
92
+ self.data = self.load_files(only_metadata)
47
93
  if not only_metadata:
48
- if self.file_type == DataFile:
49
- self.df_list = self.get_dataframes()
50
- self.df = self.get_collection_dataframe(self.df_list)
51
- if self.file_type == CnvFile:
52
- self.data_meta_info = self.get_data_table_meta_info()
53
- self.sensor_data = get_unique_sensor_data(
54
- [file.sensors for file in self.data]
55
- )
94
+ self.df_list = self.get_dataframes()
95
+ self.df = self.get_collection_dataframe(self.df_list)
56
96
 
57
97
  def __str__(self):
58
98
  return "/n".join(self.data)
59
99
 
60
- def extract_file_type(self):
61
- """ """
100
+ def extract_file_type(self, suffix: str) -> Type[DataFile]:
101
+ """
102
+ Determines the file type using the input suffix.
103
+
104
+ Parameters
105
+ ----------
106
+ suffix : str :
107
+ The file suffix.
108
+ Returns
109
+ -------
110
+ An object corresponding to the given suffix.
111
+ """
62
112
  mapping_suffix_to_type = {
63
113
  "cnv": CnvFile,
64
114
  "btl": BottleFile,
65
115
  "bl": BottleLogFile,
66
116
  }
117
+ file_type = DataFile
67
118
  for key, value in mapping_suffix_to_type.items():
68
- if key == self.file_suffix:
69
- self.file_type = value
119
+ if key == suffix:
120
+ file_type = value
70
121
  break
71
- else:
72
- self.file_type = DataFile
122
+ return file_type
73
123
 
74
124
  def collect_files(
75
125
  self,
76
126
  sorting_key: Callable | None = lambda file: int(
77
127
  file.stem.split("_")[3]
78
128
  ),
79
- ):
80
- """ """
81
- self.individual_file_paths = sorted(
129
+ ) -> list[Path]:
130
+ """
131
+ Creates a list of target files, recursively from the given directory.
132
+ These can be sorted with the help of the sorting_key parameter, which
133
+ is a Callable that identifies the part of the filename that shall be
134
+ used for sorting.
135
+
136
+ Parameters
137
+ ----------
138
+ sorting_key : Callable | None :
139
+ The part of the filename to use in sorting. (Default value = lambda file: int(file.stem.split("_")[3]))
140
+ Returns
141
+ -------
142
+ A list of all paths found.
143
+ """
144
+ return sorted(
82
145
  self.path_to_files.rglob(f"*{self.file_suffix}"),
83
146
  key=sorting_key,
84
147
  )
85
148
 
86
- def load_files(self, only_metadata: bool = False):
87
- """ """
149
+ def load_files(self, only_metadata: bool = False) -> list[DataFile]:
150
+ """
151
+ Creates python instances of each file.
152
+
153
+ Parameters
154
+ ----------
155
+ only_metadata : bool :
156
+ Whether to load only file metadata. (Default value = False)
157
+ Returns
158
+ -------
159
+ A list of all instances.
160
+ """
161
+ data = []
88
162
  for file in self.individual_file_paths:
89
163
  try:
90
- self.data.append(self.file_type(file))
164
+ data.append(self.file_type(file, only_metadata))
91
165
  except TypeError:
92
166
  logger.error(
93
167
  f"Could not open file {file} with the type "
94
168
  f"{self.file_type}."
95
169
  )
96
170
  continue
171
+ return data
97
172
 
98
173
  def get_dataframes(
99
174
  self,
@@ -101,35 +176,27 @@ class FileCollection(UserList):
101
176
  coordinates: bool = False,
102
177
  time_correction: bool = False,
103
178
  cast_identifier: bool = False,
104
- long_header_names: bool = False,
105
- full_data_header: bool = True,
106
179
  ) -> list[pd.DataFrame]:
107
180
  """
181
+ Collects all individual dataframes and allows additional column
182
+ creation.
108
183
 
109
184
  Parameters
110
185
  ----------
111
- event_log: bool :
112
- (Default value = False)
113
- coordinates: bool :
114
- (Default value = False)
115
- time_correction: bool :
116
- (Default value = False)
117
- cast_identifier: bool :
118
- (Default value = False)
119
- long_header_names: bool :
120
- (Default value = False)
121
- full_data_header: bool :
122
- (Default value = True)
186
+ event_log : bool :
187
+ (Default value = False)
188
+ coordinates : bool :
189
+ (Default value = False)
190
+ time_correction : bool :
191
+ (Default value = False)
192
+ cast_identifier : bool :
193
+ (Default value = False)
123
194
 
124
195
  Returns
125
196
  -------
126
-
197
+ A list of the individual pandas DataFrames.
127
198
  """
128
199
  for index, file in enumerate(self.data):
129
- if full_data_header:
130
- file.rename_dataframe_header(header_detail_level="longinfo")
131
- elif long_header_names:
132
- file.rename_dataframe_header(header_detail_level="name")
133
200
  if event_log:
134
201
  file.add_station_and_event_column()
135
202
  if coordinates:
@@ -145,33 +212,35 @@ class FileCollection(UserList):
145
212
  self, list_of_dfs: list[pd.DataFrame] | None = None
146
213
  ) -> pd.DataFrame:
147
214
  """
215
+ Creates one DataFrame from the individual ones, by concatenation.
148
216
 
149
217
  Parameters
150
218
  ----------
151
- list_of_dfs: list[pd.DataFrame] | None :
152
- (Default value = None)
153
-
219
+ list_of_dfs : list[pd.DataFrame] | None :
220
+ A list of the individual DataFrames. (Default value = None)
154
221
  Returns
155
222
  -------
156
-
223
+ A pandas DataFrame representing the whole dataset.
157
224
  """
158
225
  if not list_of_dfs:
159
226
  list_of_dfs = self.get_dataframes()
227
+ if not list_of_dfs:
228
+ raise ValueError("No dataframes to concatenate.")
160
229
  df = pd.concat(list_of_dfs, ignore_index=True)
161
- # df.meta.metadata = list_of_dfs[0].meta.metadata
230
+ self.df = df
162
231
  return df
163
232
 
164
233
  def tidy_collection_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
165
234
  """
235
+ Apply the different dataframe edits to the given dataframe.
166
236
 
167
237
  Parameters
168
238
  ----------
169
- df: pd.DataFrame :
170
-
171
-
239
+ df : pd.DataFrame :
240
+ A DataFrame to edit.
172
241
  Returns
173
242
  -------
174
-
243
+ The tidied dataframe.
175
244
  """
176
245
  df = self.use_bad_flag_for_nan(df)
177
246
  df = self.set_dtype_to_float(df)
@@ -179,15 +248,15 @@ class FileCollection(UserList):
179
248
 
180
249
  def use_bad_flag_for_nan(self, df: pd.DataFrame) -> pd.DataFrame:
181
250
  """
251
+ Replace all Nan values by the bad flag value, defined inside the files.
182
252
 
183
253
  Parameters
184
254
  ----------
185
- df: pd.DataFrame :
186
-
187
-
255
+ df : pd.DataFrame :
256
+ The dataframe to edit.
188
257
  Returns
189
258
  -------
190
-
259
+ The edited DataFrame.
191
260
  """
192
261
  bad_flags = set()
193
262
  for file in self.data:
@@ -201,15 +270,15 @@ class FileCollection(UserList):
201
270
 
202
271
  def set_dtype_to_float(self, df: pd.DataFrame) -> pd.DataFrame:
203
272
  """
273
+ Use the float-dtype for all DataFrame columns.
204
274
 
205
275
  Parameters
206
276
  ----------
207
- df: pd.DataFrame :
208
-
209
-
277
+ df : pd.DataFrame :
278
+ The dataframe to edit.
210
279
  Returns
211
280
  -------
212
-
281
+ The edited DataFrame.
213
282
  """
214
283
  for parameter in df.columns:
215
284
  if parameter in ["datetime"]:
@@ -222,37 +291,121 @@ class FileCollection(UserList):
222
291
 
223
292
  def select_real_scan_data(self, df: pd.DataFrame) -> pd.DataFrame:
224
293
  """
294
+ Drop data rows have no 'Scan' value, if that column exists.
225
295
 
226
296
  Parameters
227
297
  ----------
228
- df: pd.DataFrame :
229
-
230
-
298
+ df : pd.DataFrame :
299
+ The dataframe to edit.
231
300
  Returns
232
301
  -------
233
-
302
+ The edited DataFrame.
234
303
  """
235
- # TODO: fix this hardcoded name
236
304
  try:
237
- df = df.loc[df["Scan Count"].notna()]
238
- finally:
239
- pass
305
+ scan_column = [
306
+ c for c in df.columns if c.lower().startswith("scan")
307
+ ][0]
308
+ except IndexError:
309
+ return df
310
+ else:
311
+ df = df.loc[df[scan_column].notna()]
240
312
  return df
241
313
 
242
314
  def to_csv(self, file_name):
243
315
  """
316
+ Writes a csv file with the given filename.
244
317
 
245
318
  Parameters
246
319
  ----------
247
320
  file_name :
321
+ The new csv file name.
322
+ """
323
+ self.df.to_csv(file_name)
324
+
325
+
326
+ class CnvCollection(FileCollection):
327
+ """
328
+ Specific methods to work with collections of .cnv files.
329
+ """
330
+
331
+ def __init__(
332
+ self,
333
+ *args,
334
+ **kwargs,
335
+ ):
336
+ super().__init__(*args, **kwargs)
337
+ self.data_meta_info = self.get_data_table_meta_info()
338
+ self.sensor_data = get_unique_sensor_data(
339
+ [file.sensors for file in self.data]
340
+ )
341
+ self.array = self.get_array()
342
+
343
+ def get_dataframes(
344
+ self,
345
+ event_log: bool = False,
346
+ coordinates: bool = False,
347
+ time_correction: bool = False,
348
+ cast_identifier: bool = False,
349
+ ) -> list[pd.DataFrame]:
350
+ """
351
+ Collects all individual dataframes and allows additional column
352
+ creation.
353
+
354
+ Parameters
355
+ ----------
356
+ event_log : bool :
357
+ (Default value = False)
358
+ coordinates : bool :
359
+ (Default value = False)
360
+ time_correction : bool :
361
+ (Default value = False)
362
+ cast_identifier : bool :
363
+ (Default value = False)
364
+ Returns
365
+ -------
366
+ A list of the individual pandas DataFrames.
367
+ """
368
+ for index, file in enumerate(self.data):
369
+ if event_log:
370
+ file.add_station_and_event_column()
371
+ if coordinates:
372
+ file.add_position_columns()
373
+ if time_correction:
374
+ file.absolute_time_calculation()
375
+ file.add_start_time()
376
+ if cast_identifier:
377
+ file.add_cast_number(index + 1)
378
+ return [file.create_dataframe() for file in self.data]
248
379
 
380
+ def get_data_table_meta_info(self) -> list[dict]:
381
+ """
382
+ Ensures the same data description in all input cnv files and returns
383
+ it.
384
+ Acts as an early alarm when working on different kinds of files, which
385
+ cannot be concatenated together.
249
386
 
250
387
  Returns
251
388
  -------
389
+ A list of dictionaries that represent the data column information.
390
+ """
391
+ all_column_descriptions = [
392
+ file.parameters.metadata for file in self.data
393
+ ]
394
+ for info in all_column_descriptions:
395
+ if all_column_descriptions[0] != info:
396
+ raise AssertionError(
397
+ "Acting on differently formed data files, aborting"
398
+ )
399
+ return all_column_descriptions[0]
252
400
 
401
+ def get_array(self) -> np.ndarray:
253
402
  """
254
- self.get_collection_dataframe().to_csv(file_name)
403
+ Creates a collection array of all individual file arrays.
255
404
 
256
- def get_data_table_meta_info(self) -> list[list[dict]]:
257
- """ """
258
- return [file.parameters.metadata for file in self.data]
405
+ Returns
406
+ -------
407
+ A numpy array, representing the data of all input files.
408
+ """
409
+ return np.concatenate(
410
+ [file.parameters.create_full_ndarray() for file in self.data]
411
+ )
@@ -18,10 +18,10 @@ class Parameters(UserDict):
18
18
 
19
19
  Parameters
20
20
  ----------
21
- data: list:
22
- The raw data as extraced by SeaBirdFile
23
- metadata: list,
24
- The raw metadata as extraced by SeaBirdFile
21
+ data: list
22
+ The raw data as extraced by DataFile
23
+ metadata: list
24
+ The raw metadata as extraced by DataFile
25
25
 
26
26
  Returns
27
27
  -------
@@ -32,15 +32,20 @@ class Parameters(UserDict):
32
32
  self,
33
33
  data: list,
34
34
  metadata: list,
35
+ only_header: bool = False,
35
36
  ):
36
37
  self.raw_input_data = data
37
38
  self.raw_metadata = metadata
38
- self.full_data_array = self.create_full_ndarray()
39
39
  self.differentiate_table_description()
40
40
  self.metadata, self.duplicate_columns = self.reading_data_header(
41
41
  metadata
42
42
  )
43
- self.data = self.create_parameter_instances()
43
+ if not only_header:
44
+ self.full_data_array = self.create_full_ndarray()
45
+ self.data = self.create_parameter_instances()
46
+
47
+ def get_parameter_names(self) -> list[str]:
48
+ return [parameter["name"] for parameter in self.metadata.values()]
44
49
 
45
50
  def get_parameter_list(self) -> list[Parameter]:
46
51
  """ """
@@ -0,0 +1,53 @@
1
+ Metadata-Version: 2.3
2
+ Name: seabirdfilehandler
3
+ Version: 0.5.4
4
+ Summary: Library of parsers to interact with SeaBird CTD files.
5
+ Keywords: CTD,parser,seabird,data
6
+ Author: Emil Michels
7
+ Author-email: <emil.michels@io-warnemuende.de>
8
+ Requires-Python: >=3.12
9
+ Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
10
+ Classifier: Development Status :: 3 - Alpha
11
+ Classifier: Operating System :: OS Independent
12
+ Classifier: Intended Audience :: Science/Research
13
+ Classifier: Topic :: Scientific/Engineering :: Oceanography
14
+ Classifier: Programming Language :: Python :: 3 :: Only
15
+ Classifier: Programming Language :: Python :: 3.12
16
+ Classifier: Programming Language :: Python :: 3.13
17
+ Requires-Dist: pandas (>=2.2.1)
18
+ Requires-Dist: xmltodict (>=0.13.0)
19
+ Project-URL: Documentation, https://ctd-software.pages.io-warnemuende.de/seabirdfilehandler
20
+ Project-URL: Homepage, https://ctd-software.pages.io-warnemuende.de/seabirdfilehandler
21
+ Project-URL: Repository, https://git.io-warnemuende.de/CTD-Software/SeabirdFileHandler
22
+ Description-Content-Type: text/markdown
23
+
24
+ # Intro
25
+
26
+ This is a library for handling the different SeaBird file types. Each file is
27
+ meant to be represented by one object that stores all of its information in a
28
+ structured way. Through the grouping of different data types, more complex
29
+ calculations, visualisations and output forms are possible inside of those
30
+ objects.
31
+
32
+ By being able to parse edited data and metadata back to the original file
33
+ format, this package can be used to process data using custom ideas, while
34
+ staying compatible to the original SeaBird software packages. This way, one can
35
+ create new workflows that interchangeably use old and new processing modules.
36
+ One implementation of this idea is the [ctd-processing python package](https://ctd-software.pages.io-warnemuende.de/processing/), also developed at the IOW.
37
+
38
+ The structured metadata does provide the possibility to leverage the vast
39
+ amounts of information stored inside the extensive metadata header. Sensor data
40
+ and processing information are readily available in intuitive dictionaries.
41
+
42
+ ## Development roadmap
43
+
44
+ ### misc improvements
45
+
46
+ - refactor processing module handling
47
+ - extend individual parameter information
48
+ - handle duplicate input columns
49
+
50
+ ### visualisation
51
+
52
+ - write an intuitive visualisation module
53
+
@@ -0,0 +1,15 @@
1
+ seabirdfilehandler/__init__.py,sha256=rS1NfxKVWgOntk5NL-ndZyDt3LHW_tKr_F3iW_QbYvg,230
2
+ seabirdfilehandler/bottlefile.py,sha256=qCh506J3MWZXM11243aw_oJRocVB0ZIipXQLEgkD5M0,6046
3
+ seabirdfilehandler/bottlelogfile.py,sha256=MtMmEebdAktO3mk6KbmJC7dfx9sRLbV5qqDQt2qtpJE,4310
4
+ seabirdfilehandler/cnvfile.py,sha256=j7IR3EgCrGD3riKOzFSKFNW6lkuzZYGYkxI_czcD8XU,10196
5
+ seabirdfilehandler/datafiles.py,sha256=9r0Mh3zPYJJ3CoybgOBH4Dsq43kLDnca9m8s_V0cYU8,9378
6
+ seabirdfilehandler/file_collection.py,sha256=IXbNTpplF-BQmjDSPh6Cj_f5-mS5C-biBLDRnqaFhOo,12531
7
+ seabirdfilehandler/geomar_ctd_file_parser.py,sha256=4eCnkE0mvPKC8Dic8sXP4xpfwnk3K2MQcGFBf6loT8k,2655
8
+ seabirdfilehandler/parameter.py,sha256=CjC8T5wfbThryqVNjTcAolug9gi_BnInfZzkEfmKm5E,14561
9
+ seabirdfilehandler/utils.py,sha256=5KXdB8Hdv65dv5tPyXxNMct1mCEOyA3S8XP54AFAnx0,1745
10
+ seabirdfilehandler/validation_modules.py,sha256=eZ6x0giftUtlxnRMOnK_vCkgccdwUXPrDjajFa-E6n0,4698
11
+ seabirdfilehandler/xmlfiles.py,sha256=L_puQf8eg0ojv85AyEMID4jnwkOlV_fgZP3W5yeSUBY,4668
12
+ seabirdfilehandler-0.5.4.dist-info/LICENSE,sha256=Ifd1VPmYv32oJd2QVh3wIQP9X05vYJlcY6kONz360ws,34603
13
+ seabirdfilehandler-0.5.4.dist-info/METADATA,sha256=yt3BkhGRUOlsQ8tLPjziKPmobuYTDNUybjAARMJrcZw,2307
14
+ seabirdfilehandler-0.5.4.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
15
+ seabirdfilehandler-0.5.4.dist-info/RECORD,,
@@ -1,28 +0,0 @@
1
- Metadata-Version: 2.3
2
- Name: seabirdfilehandler
3
- Version: 0.5.2
4
- Summary: Library of parsers to interact with SeaBird CTD files.
5
- Keywords: CTD,parser,seabird,data
6
- Author: Emil Michels
7
- Author-email: <emil.michels@io-warnemuende.de>
8
- Requires-Python: >=3.12
9
- Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
10
- Classifier: Development Status :: 3 - Alpha
11
- Classifier: Operating System :: OS Independent
12
- Classifier: Intended Audience :: Science/Research
13
- Classifier: Topic :: Scientific/Engineering :: Oceanography
14
- Classifier: Programming Language :: Python :: 3 :: Only
15
- Classifier: Programming Language :: Python :: 3.12
16
- Classifier: Programming Language :: Python :: 3.13
17
- Requires-Dist: pandas (>=2.2.1)
18
- Requires-Dist: xmltodict (>=0.13.0)
19
- Project-URL: Homepage, https://git.io-warnemuende.de/CTD-Software/SeabirdFileHandler
20
- Project-URL: Repository, https://git.io-warnemuende.de/CTD-Software/SeabirdFileHandler
21
- Description-Content-Type: text/markdown
22
-
23
- This is a library for handling the different SeaBird file types. Each file is
24
- meant to be represented by one object that stores all of its information in a
25
- structured way. Through the grouping of different data types, more complex
26
- calculations, visualisations and output forms will be possible inside of those
27
- objects.
28
-
@@ -1,15 +0,0 @@
1
- seabirdfilehandler/__init__.py,sha256=rS1NfxKVWgOntk5NL-ndZyDt3LHW_tKr_F3iW_QbYvg,230
2
- seabirdfilehandler/bottlefile.py,sha256=nnfoDczPMG_ge40dT2rHNhifR7-NRgnZNFrfPM_9OSQ,5925
3
- seabirdfilehandler/bottlelogfile.py,sha256=MtMmEebdAktO3mk6KbmJC7dfx9sRLbV5qqDQt2qtpJE,4310
4
- seabirdfilehandler/cnvfile.py,sha256=LXpJcC3ukiD-2b5vy4aKESCbIvwV12TwQy1G6Y25_GE,9709
5
- seabirdfilehandler/datafiles.py,sha256=lqENvdGSwRKT6PyNFN2etaWKMA-4OONG0x-up1W5ezo,8991
6
- seabirdfilehandler/file_collection.py,sha256=b5iJaP4F34Vq7-FiJOlPvfS4IePGWsYx20XwWbZQw1A,6882
7
- seabirdfilehandler/geomar_ctd_file_parser.py,sha256=4eCnkE0mvPKC8Dic8sXP4xpfwnk3K2MQcGFBf6loT8k,2655
8
- seabirdfilehandler/parameter.py,sha256=UuwFzege94sqPt0kOjEqtMGGol4hjuFjj2_EH7o0pzA,14374
9
- seabirdfilehandler/utils.py,sha256=5KXdB8Hdv65dv5tPyXxNMct1mCEOyA3S8XP54AFAnx0,1745
10
- seabirdfilehandler/validation_modules.py,sha256=eZ6x0giftUtlxnRMOnK_vCkgccdwUXPrDjajFa-E6n0,4698
11
- seabirdfilehandler/xmlfiles.py,sha256=L_puQf8eg0ojv85AyEMID4jnwkOlV_fgZP3W5yeSUBY,4668
12
- seabirdfilehandler-0.5.2.dist-info/LICENSE,sha256=Ifd1VPmYv32oJd2QVh3wIQP9X05vYJlcY6kONz360ws,34603
13
- seabirdfilehandler-0.5.2.dist-info/METADATA,sha256=ER8rZi5Ei76THx_JdYv7JuXjNjIyErAzS_RMHd-Pspc,1289
14
- seabirdfilehandler-0.5.2.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
15
- seabirdfilehandler-0.5.2.dist-info/RECORD,,