sdg-hub 0.7.2__py3-none-any.whl → 0.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. sdg_hub/_version.py +2 -2
  2. sdg_hub/core/blocks/__init__.py +9 -2
  3. sdg_hub/core/blocks/base.py +4 -1
  4. sdg_hub/core/blocks/filtering/column_value_filter.py +2 -0
  5. sdg_hub/core/blocks/llm/__init__.py +3 -2
  6. sdg_hub/core/blocks/llm/llm_chat_block.py +2 -0
  7. sdg_hub/core/blocks/llm/{llm_parser_block.py → llm_response_extractor_block.py} +32 -9
  8. sdg_hub/core/blocks/llm/prompt_builder_block.py +2 -0
  9. sdg_hub/core/blocks/llm/text_parser_block.py +2 -0
  10. sdg_hub/core/blocks/transform/duplicate_columns.py +2 -0
  11. sdg_hub/core/blocks/transform/index_based_mapper.py +2 -0
  12. sdg_hub/core/blocks/transform/json_structure_block.py +2 -0
  13. sdg_hub/core/blocks/transform/melt_columns.py +2 -0
  14. sdg_hub/core/blocks/transform/rename_columns.py +2 -0
  15. sdg_hub/core/blocks/transform/text_concat.py +2 -0
  16. sdg_hub/core/blocks/transform/uniform_col_val_setter.py +2 -0
  17. sdg_hub/core/flow/base.py +7 -31
  18. sdg_hub/core/utils/flow_metrics.py +3 -3
  19. sdg_hub/flows/evaluation/rag/flow.yaml +6 -6
  20. sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/flow.yaml +4 -4
  21. sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/flow.yaml +3 -3
  22. sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/flow.yaml +4 -4
  23. sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/flow.yaml +2 -2
  24. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/flow.yaml +7 -7
  25. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/flow.yaml +7 -7
  26. sdg_hub/flows/text_analysis/structured_insights/flow.yaml +4 -4
  27. {sdg_hub-0.7.2.dist-info → sdg_hub-0.7.3.dist-info}/METADATA +2 -2
  28. {sdg_hub-0.7.2.dist-info → sdg_hub-0.7.3.dist-info}/RECORD +31 -31
  29. {sdg_hub-0.7.2.dist-info → sdg_hub-0.7.3.dist-info}/WHEEL +0 -0
  30. {sdg_hub-0.7.2.dist-info → sdg_hub-0.7.3.dist-info}/licenses/LICENSE +0 -0
  31. {sdg_hub-0.7.2.dist-info → sdg_hub-0.7.3.dist-info}/top_level.txt +0 -0
sdg_hub/_version.py CHANGED
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '0.7.2'
32
- __version_tuple__ = version_tuple = (0, 7, 2)
31
+ __version__ = version = '0.7.3'
32
+ __version_tuple__ = version_tuple = (0, 7, 3)
33
33
 
34
34
  __commit_id__ = commit_id = None
@@ -6,7 +6,13 @@ This package provides various block implementations for data generation, process
6
6
  # Local
7
7
  from .base import BaseBlock
8
8
  from .filtering import ColumnValueFilterBlock
9
- from .llm import LLMChatBlock, LLMParserBlock, PromptBuilderBlock, TextParserBlock
9
+ from .llm import (
10
+ LLMChatBlock,
11
+ LLMParserBlock,
12
+ LLMResponseExtractorBlock,
13
+ PromptBuilderBlock,
14
+ TextParserBlock,
15
+ )
10
16
  from .registry import BlockRegistry
11
17
  from .transform import (
12
18
  DuplicateColumnsBlock,
@@ -28,7 +34,8 @@ __all__ = [
28
34
  "TextConcatBlock",
29
35
  "UniformColumnValueSetter",
30
36
  "LLMChatBlock",
31
- "LLMParserBlock",
37
+ "LLMParserBlock", # Deprecated alias for LLMResponseExtractorBlock
38
+ "LLMResponseExtractorBlock",
32
39
  "TextParserBlock",
33
40
  "PromptBuilderBlock",
34
41
  ]
@@ -49,6 +49,9 @@ class BaseBlock(BaseModel, ABC):
49
49
  block_name: str = Field(
50
50
  ..., description="Unique identifier for this block instance"
51
51
  )
52
+ block_type: Optional[str] = Field(
53
+ None, description="Block type (e.g., 'llm', 'transform', 'parser', 'filtering')"
54
+ )
52
55
  input_cols: Union[str, list[str], dict[str, Any], None] = Field(
53
56
  None, description="Input columns: str, list, or dict"
54
57
  )
@@ -366,5 +369,5 @@ class BaseBlock(BaseModel, ABC):
366
369
  Dict[str, Any]
367
370
  """
368
371
  config = self.get_config()
369
- config["block_type"] = self.__class__.__name__
372
+ config["block_class"] = self.__class__.__name__
370
373
  return config
@@ -46,6 +46,8 @@ DTYPE_MAP = {
46
46
  "Filters datasets based on column values using various comparison operations",
47
47
  )
48
48
  class ColumnValueFilterBlock(BaseBlock):
49
+ block_type: str = "filtering"
50
+
49
51
  """A block for filtering datasets based on column values.
50
52
 
51
53
  This block allows filtering of datasets using various operations (e.g., equals, contains)
@@ -9,7 +9,7 @@ local models (vLLM, Ollama), and more.
9
9
  # Local
10
10
  from .error_handler import ErrorCategory, LLMErrorHandler
11
11
  from .llm_chat_block import LLMChatBlock
12
- from .llm_parser_block import LLMParserBlock
12
+ from .llm_response_extractor_block import LLMParserBlock, LLMResponseExtractorBlock
13
13
  from .prompt_builder_block import PromptBuilderBlock
14
14
  from .text_parser_block import TextParserBlock
15
15
 
@@ -17,7 +17,8 @@ __all__ = [
17
17
  "LLMErrorHandler",
18
18
  "ErrorCategory",
19
19
  "LLMChatBlock",
20
- "LLMParserBlock",
20
+ "LLMParserBlock", # Deprecated alias for LLMResponseExtractorBlock
21
+ "LLMResponseExtractorBlock",
21
22
  "PromptBuilderBlock",
22
23
  "TextParserBlock",
23
24
  ]
@@ -32,6 +32,8 @@ logger = setup_logger(__name__)
32
32
  class LLMChatBlock(BaseBlock):
33
33
  model_config = ConfigDict(extra="allow")
34
34
 
35
+ block_type: str = "llm"
36
+
35
37
  """Unified LLM chat block supporting all providers via LiteLLM.
36
38
 
37
39
  This block provides a minimal wrapper around LiteLLM's completion API,
@@ -1,7 +1,7 @@
1
1
  # SPDX-License-Identifier: Apache-2.0
2
- """LLM parser block for extracting fields from LLM response objects.
2
+ """LLM response extractor block for extracting fields from LLM response objects.
3
3
 
4
- This module provides the LLMParserBlock for extracting specific fields
4
+ This module provides the LLMResponseExtractorBlock for extracting specific fields
5
5
  (content, reasoning_content, tool_calls) from chat completion response objects.
6
6
  """
7
7
 
@@ -22,13 +22,15 @@ logger = setup_logger(__name__)
22
22
 
23
23
 
24
24
  @BlockRegistry.register(
25
- "LLMParserBlock",
25
+ "LLMResponseExtractorBlock",
26
26
  "llm",
27
27
  "Extracts specified fields from LLM response objects",
28
28
  )
29
- class LLMParserBlock(BaseBlock):
29
+ class LLMResponseExtractorBlock(BaseBlock):
30
30
  _flow_requires_jsonl_tmp: bool = True
31
31
 
32
+ block_type: str = "llm_util"
33
+
32
34
  """Block for extracting fields from LLM response objects.
33
35
 
34
36
  This block extracts specified fields from chat completion response objects.
@@ -88,7 +90,7 @@ class LLMParserBlock(BaseBlock):
88
90
  ]
89
91
  ):
90
92
  raise ValueError(
91
- "LLMParserBlock requires at least one extraction field to be enabled: "
93
+ "LLMResponseExtractorBlock requires at least one extraction field to be enabled: "
92
94
  "extract_content, extract_reasoning_content, or extract_tool_calls"
93
95
  )
94
96
 
@@ -106,7 +108,7 @@ class LLMParserBlock(BaseBlock):
106
108
  return self
107
109
 
108
110
  def _validate_custom(self, dataset: pd.DataFrame) -> None:
109
- """Validate LLMParserBlock specific requirements.
111
+ """Validate LLMResponseExtractorBlock specific requirements.
110
112
 
111
113
  Parameters
112
114
  ----------
@@ -116,14 +118,16 @@ class LLMParserBlock(BaseBlock):
116
118
  Raises
117
119
  ------
118
120
  ValueError
119
- If LLMParserBlock requirements are not met.
121
+ If LLMResponseExtractorBlock requirements are not met.
120
122
  """
121
123
  # Validate that we have exactly one input column
122
124
  if len(self.input_cols) == 0:
123
- raise ValueError("LLMParserBlock expects at least one input column")
125
+ raise ValueError(
126
+ "LLMResponseExtractorBlock expects at least one input column"
127
+ )
124
128
  if len(self.input_cols) > 1:
125
129
  logger.warning(
126
- f"LLMParserBlock expects exactly one input column, but got {len(self.input_cols)}. "
130
+ f"LLMResponseExtractorBlock expects exactly one input column, but got {len(self.input_cols)}. "
127
131
  f"Using the first column: {self.input_cols[0]}"
128
132
  )
129
133
 
@@ -324,3 +328,22 @@ class LLMParserBlock(BaseBlock):
324
328
  new_data.extend(self._generate(sample))
325
329
 
326
330
  return pd.DataFrame(new_data)
331
+
332
+
333
+ # Backwards compatibility alias (deprecated)
334
+ # Register deprecated alias in BlockRegistry so old YAML flows still work
335
+ @BlockRegistry.register(
336
+ "LLMParserBlock",
337
+ "llm",
338
+ "Deprecated: Use LLMResponseExtractorBlock instead",
339
+ deprecated=True,
340
+ replacement="LLMResponseExtractorBlock",
341
+ )
342
+ class LLMParserBlock(LLMResponseExtractorBlock):
343
+ """Deprecated alias for LLMResponseExtractorBlock.
344
+
345
+ This class exists for backwards compatibility with existing code and YAML flows.
346
+ Use LLMResponseExtractorBlock instead.
347
+ """
348
+
349
+ pass
@@ -222,6 +222,8 @@ class PromptRenderer:
222
222
  "Formats prompts into structured chat messages or plain text using Jinja templates",
223
223
  )
224
224
  class PromptBuilderBlock(BaseBlock):
225
+ block_type: str = "llm_util"
226
+
225
227
  """Block for formatting prompts into structured chat messages or plain text.
226
228
 
227
229
  This block takes input from dataset columns, applies Jinja templates from a YAML config
@@ -30,6 +30,8 @@ logger = setup_logger(__name__)
30
30
  class TextParserBlock(BaseBlock):
31
31
  _flow_requires_jsonl_tmp: bool = True
32
32
 
33
+ block_type: str = "parser"
34
+
33
35
  """Block for parsing and post-processing text content.
34
36
 
35
37
  This block handles text parsing using start/end tags, custom regex patterns,
@@ -27,6 +27,8 @@ logger = setup_logger(__name__)
27
27
  "Duplicates existing columns with new names according to a mapping specification",
28
28
  )
29
29
  class DuplicateColumnsBlock(BaseBlock):
30
+ block_type: str = "transform"
31
+
30
32
  """Block for duplicating existing columns with new names.
31
33
 
32
34
  This block creates copies of existing columns with new names according to a mapping specification.
@@ -28,6 +28,8 @@ logger = setup_logger(__name__)
28
28
  "Maps values from source columns to output columns based on choice columns using shared mapping",
29
29
  )
30
30
  class IndexBasedMapperBlock(BaseBlock):
31
+ block_type: str = "transform"
32
+
31
33
  """Block for mapping values from source columns to output columns based on choice columns.
32
34
 
33
35
  This block uses a shared mapping dictionary to select values from source columns and
@@ -28,6 +28,8 @@ logger = setup_logger(__name__)
28
28
  "Combines multiple columns into a single column containing a structured JSON object",
29
29
  )
30
30
  class JSONStructureBlock(BaseBlock):
31
+ block_type: str = "transform"
32
+
31
33
  """Block for combining multiple columns into a structured JSON object.
32
34
 
33
35
  This block takes values from multiple input columns and combines them into a single
@@ -28,6 +28,8 @@ logger = setup_logger(__name__)
28
28
  "Transforms wide dataset format into long format by melting columns into rows",
29
29
  )
30
30
  class MeltColumnsBlock(BaseBlock):
31
+ block_type: str = "transform"
32
+
31
33
  """Block for flattening multiple columns into a long format.
32
34
 
33
35
  This block transforms a wide dataset format into a long format by melting
@@ -27,6 +27,8 @@ logger = setup_logger(__name__)
27
27
  "Renames columns in a dataset according to a mapping specification",
28
28
  )
29
29
  class RenameColumnsBlock(BaseBlock):
30
+ block_type: str = "transform"
31
+
30
32
  """Block for renaming columns in a dataset.
31
33
 
32
34
  This block renames columns in a dataset according to a mapping specification.
@@ -27,6 +27,8 @@ logger = setup_logger(__name__)
27
27
  "Combines multiple columns into a single column using a specified separator",
28
28
  )
29
29
  class TextConcatBlock(BaseBlock):
30
+ block_type: str = "transform"
31
+
30
32
  """Block for combining multiple columns into a single column.
31
33
 
32
34
  This block concatenates values from multiple columns into a single output column,
@@ -28,6 +28,8 @@ logger = setup_logger(__name__)
28
28
  "Replaces all values in a column with a single summary statistic (e.g., mode, mean, median)",
29
29
  )
30
30
  class UniformColumnValueSetter(BaseBlock):
31
+ block_type: str = "transform"
32
+
31
33
  """Block that replaces all values in a column with a single aggregate value.
32
34
 
33
35
  Supported strategies include: mode, min, max, mean, median.
sdg_hub/core/flow/base.py CHANGED
@@ -679,7 +679,7 @@ class Flow(BaseModel):
679
679
  self._block_metrics.append(
680
680
  {
681
681
  "block_name": block.block_name,
682
- "block_type": block.__class__.__name__,
682
+ "block_class": block.__class__.__name__,
683
683
  "execution_time": execution_time,
684
684
  "input_rows": input_rows,
685
685
  "output_rows": output_rows,
@@ -701,7 +701,7 @@ class Flow(BaseModel):
701
701
  self._block_metrics.append(
702
702
  {
703
703
  "block_name": block.block_name,
704
- "block_type": block.__class__.__name__,
704
+ "block_class": block.__class__.__name__,
705
705
  "execution_time": execution_time,
706
706
  "input_rows": input_rows,
707
707
  "output_rows": 0,
@@ -882,38 +882,14 @@ class Flow(BaseModel):
882
882
  )
883
883
 
884
884
  def _detect_llm_blocks(self) -> list[str]:
885
- """Detect LLM blocks in the flow by checking for model-related attribute existence.
886
-
887
- LLM blocks are identified by having model, api_base, or api_key attributes,
888
- regardless of their values (they may be None until set_model_config() is called).
885
+ """Detect blocks with block_type='llm'.
889
886
 
890
887
  Returns
891
888
  -------
892
889
  List[str]
893
- List of block names that have LLM-related attributes.
890
+ List of block names that are LLM blocks.
894
891
  """
895
- llm_blocks = []
896
-
897
- for block in self.blocks:
898
- block_type = block.__class__.__name__
899
- block_name = block.block_name
900
-
901
- # Check by attribute existence (not value) - LLM blocks have these attributes even if None
902
- has_model_attr = hasattr(block, "model")
903
- has_api_base_attr = hasattr(block, "api_base")
904
- has_api_key_attr = hasattr(block, "api_key")
905
-
906
- # A block is considered an LLM block if it has any LLM-related attributes
907
- is_llm_block = has_model_attr or has_api_base_attr or has_api_key_attr
908
-
909
- if is_llm_block:
910
- llm_blocks.append(block_name)
911
- logger.debug(
912
- f"Detected LLM block '{block_name}' ({block_type}): "
913
- f"has_model_attr={has_model_attr}, has_api_base_attr={has_api_base_attr}, has_api_key_attr={has_api_key_attr}"
914
- )
915
-
916
- return llm_blocks
892
+ return [block.block_name for block in self.blocks if block.block_type == "llm"]
917
893
 
918
894
  def is_model_config_required(self) -> bool:
919
895
  """Check if model configuration is required for this flow.
@@ -1152,7 +1128,7 @@ class Flow(BaseModel):
1152
1128
  # Record block execution info
1153
1129
  block_info = {
1154
1130
  "block_name": block.block_name,
1155
- "block_type": block.__class__.__name__,
1131
+ "block_class": block.__class__.__name__,
1156
1132
  "execution_time_seconds": block_execution_time,
1157
1133
  "input_rows": input_rows,
1158
1134
  "output_rows": len(current_dataset),
@@ -1341,7 +1317,7 @@ class Flow(BaseModel):
1341
1317
  "metadata": self.metadata.model_dump(),
1342
1318
  "blocks": [
1343
1319
  {
1344
- "block_type": block.__class__.__name__,
1320
+ "block_class": block.__class__.__name__,
1345
1321
  "block_name": block.block_name,
1346
1322
  "input_cols": getattr(block, "input_cols", None),
1347
1323
  "output_cols": getattr(block, "output_cols", None),
@@ -31,12 +31,12 @@ def aggregate_block_metrics(entries: list[dict[str, Any]]) -> list[dict[str, Any
31
31
  """
32
32
  agg: dict[tuple[str, str], dict[str, Any]] = {}
33
33
  for m in entries:
34
- key = (m.get("block_name"), m.get("block_type"))
34
+ key = (m.get("block_name"), m.get("block_class"))
35
35
  a = agg.setdefault(
36
36
  key,
37
37
  {
38
38
  "block_name": key[0],
39
- "block_type": key[1],
39
+ "block_class": key[1],
40
40
  "execution_time": 0.0,
41
41
  "input_rows": 0,
42
42
  "output_rows": 0,
@@ -138,7 +138,7 @@ def display_metrics_summary(
138
138
 
139
139
  table.add_row(
140
140
  metrics["block_name"],
141
- metrics["block_type"],
141
+ metrics["block_class"],
142
142
  duration,
143
143
  row_change,
144
144
  col_change,
@@ -41,7 +41,7 @@ blocks:
41
41
  max_tokens: 2048
42
42
  temperature: 0.7
43
43
 
44
- - block_type: LLMParserBlock
44
+ - block_type: LLMResponseExtractorBlock
45
45
  block_config:
46
46
  block_name: parse_topic
47
47
  input_cols: topic_response
@@ -73,7 +73,7 @@ blocks:
73
73
  max_tokens: 2048
74
74
  temperature: 0.7
75
75
 
76
- - block_type: LLMParserBlock
76
+ - block_type: LLMResponseExtractorBlock
77
77
  block_config:
78
78
  block_name: parse_question
79
79
  input_cols: question_response
@@ -97,7 +97,7 @@ blocks:
97
97
  max_tokens: 4096
98
98
  temperature: 0.7
99
99
 
100
- - block_type: LLMParserBlock
100
+ - block_type: LLMResponseExtractorBlock
101
101
  block_config:
102
102
  block_name: parse_evolved_question
103
103
  input_cols: evolution_response
@@ -123,7 +123,7 @@ blocks:
123
123
  max_tokens: 4096
124
124
  temperature: 0.2
125
125
 
126
- - block_type: LLMParserBlock
126
+ - block_type: LLMResponseExtractorBlock
127
127
  block_config:
128
128
  block_name: parse_answer
129
129
  input_cols: answer_response
@@ -150,7 +150,7 @@ blocks:
150
150
  max_tokens: 512
151
151
  temperature: 0.0
152
152
 
153
- - block_type: LLMParserBlock
153
+ - block_type: LLMResponseExtractorBlock
154
154
  block_config:
155
155
  block_name: parse_critic_score
156
156
  input_cols: critic_response
@@ -185,7 +185,7 @@ blocks:
185
185
  max_tokens: 4096
186
186
  temperature: 0.0
187
187
 
188
- - block_type: LLMParserBlock
188
+ - block_type: LLMResponseExtractorBlock
189
189
  block_config:
190
190
  block_name: parse_extracted_context
191
191
  input_cols: extraction_response
@@ -60,7 +60,7 @@ blocks:
60
60
  temperature: 0.7
61
61
  n: 50
62
62
  async_mode: true
63
- - block_type: LLMParserBlock
63
+ - block_type: LLMResponseExtractorBlock
64
64
  block_config:
65
65
  block_name: extract_detailed_summary
66
66
  input_cols: raw_summary
@@ -108,7 +108,7 @@ blocks:
108
108
  temperature: 0.7
109
109
  n: 1
110
110
  async_mode: true
111
- - block_type: LLMParserBlock
111
+ - block_type: LLMResponseExtractorBlock
112
112
  block_config:
113
113
  block_name: extract_questions
114
114
  input_cols: question_list
@@ -142,7 +142,7 @@ blocks:
142
142
  temperature: 0.7
143
143
  n: 1
144
144
  async_mode: true
145
- - block_type: LLMParserBlock
145
+ - block_type: LLMResponseExtractorBlock
146
146
  block_config:
147
147
  block_name: extract_answers
148
148
  input_cols: response_dict
@@ -174,7 +174,7 @@ blocks:
174
174
  output_cols: eval_faithful_response_dict
175
175
  n: 1
176
176
  async_mode: true
177
- - block_type: LLMParserBlock
177
+ - block_type: LLMResponseExtractorBlock
178
178
  block_config:
179
179
  block_name: extract_eval_faithful
180
180
  input_cols: eval_faithful_response_dict
@@ -64,7 +64,7 @@ blocks:
64
64
  temperature: 1.0
65
65
  n: 1
66
66
  async_mode: true
67
- - block_type: LLMParserBlock
67
+ - block_type: LLMResponseExtractorBlock
68
68
  block_config:
69
69
  block_name: extract_questions
70
70
  input_cols: question_list
@@ -98,7 +98,7 @@ blocks:
98
98
  temperature: 1.0
99
99
  n: 1
100
100
  async_mode: true
101
- - block_type: LLMParserBlock
101
+ - block_type: LLMResponseExtractorBlock
102
102
  block_config:
103
103
  block_name: extract_answer
104
104
  input_cols: response_dict
@@ -130,7 +130,7 @@ blocks:
130
130
  output_cols: eval_faithful_response_dict
131
131
  n: 1
132
132
  async_mode: true
133
- - block_type: LLMParserBlock
133
+ - block_type: LLMResponseExtractorBlock
134
134
  block_config:
135
135
  block_name: extract_eval_faithful
136
136
  input_cols: eval_faithful_response_dict
@@ -62,7 +62,7 @@ blocks:
62
62
  temperature: 0.7
63
63
  n: 50
64
64
  async_mode: true
65
- - block_type: LLMParserBlock
65
+ - block_type: LLMResponseExtractorBlock
66
66
  block_config:
67
67
  block_name: extract_extractive_summary
68
68
  input_cols: raw_summary
@@ -110,7 +110,7 @@ blocks:
110
110
  temperature: 0.7
111
111
  n: 1
112
112
  async_mode: true
113
- - block_type: LLMParserBlock
113
+ - block_type: LLMResponseExtractorBlock
114
114
  block_config:
115
115
  block_name: extract_questions
116
116
  input_cols: question_list
@@ -144,7 +144,7 @@ blocks:
144
144
  temperature: 0.7
145
145
  n: 1
146
146
  async_mode: true
147
- - block_type: LLMParserBlock
147
+ - block_type: LLMResponseExtractorBlock
148
148
  block_config:
149
149
  block_name: extract_answers
150
150
  input_cols: response_dict
@@ -176,7 +176,7 @@ blocks:
176
176
  output_cols: eval_faithful_response_dict
177
177
  n: 1
178
178
  async_mode: true
179
- - block_type: LLMParserBlock
179
+ - block_type: LLMResponseExtractorBlock
180
180
  block_config:
181
181
  block_name: extract_eval_faithful
182
182
  input_cols: eval_faithful_response_dict
@@ -49,7 +49,7 @@ blocks:
49
49
  temperature: 0.7
50
50
  n: 1
51
51
  async_mode: true
52
- - block_type: LLMParserBlock
52
+ - block_type: LLMResponseExtractorBlock
53
53
  block_config:
54
54
  block_name: extract_atomic_facts
55
55
  input_cols: raw_summary
@@ -98,7 +98,7 @@ blocks:
98
98
  temperature: 0.7
99
99
  n: 1
100
100
  async_mode: true
101
- - block_type: LLMParserBlock
101
+ - block_type: LLMResponseExtractorBlock
102
102
  block_config:
103
103
  block_name: extract_key_fact_qa
104
104
  input_cols: raw_key_fact_qa
@@ -55,7 +55,7 @@ blocks:
55
55
  async_mode: true
56
56
  n: 2
57
57
 
58
- - block_type: LLMParserBlock
58
+ - block_type: LLMResponseExtractorBlock
59
59
  block_config:
60
60
  block_name: detailed_summary
61
61
  input_cols: raw_summary_detailed
@@ -85,7 +85,7 @@ blocks:
85
85
  max_tokens: 2048
86
86
  async_mode: true
87
87
 
88
- - block_type: LLMParserBlock
88
+ - block_type: LLMResponseExtractorBlock
89
89
  block_config:
90
90
  block_name: atomic_facts
91
91
  input_cols: raw_atomic_facts
@@ -114,7 +114,7 @@ blocks:
114
114
  max_tokens: 2048
115
115
  async_mode: true
116
116
 
117
- - block_type: LLMParserBlock
117
+ - block_type: LLMResponseExtractorBlock
118
118
  block_config:
119
119
  block_name: extractive_summary
120
120
  input_cols: raw_summary_extractive
@@ -160,7 +160,7 @@ blocks:
160
160
  max_tokens: 2048
161
161
  async_mode: true
162
162
 
163
- - block_type: LLMParserBlock
163
+ - block_type: LLMResponseExtractorBlock
164
164
  block_config:
165
165
  block_name: get_knowledge_generation
166
166
  input_cols: raw_knowledge_generation
@@ -191,7 +191,7 @@ blocks:
191
191
  n: 1
192
192
  async_mode: true
193
193
 
194
- - block_type: LLMParserBlock
194
+ - block_type: LLMResponseExtractorBlock
195
195
  block_config:
196
196
  block_name: extract_eval_faithful
197
197
  input_cols: eval_faithful_response_dict
@@ -236,7 +236,7 @@ blocks:
236
236
  max_tokens: 2048
237
237
  n: 1
238
238
  async_mode: true
239
- - block_type: LLMParserBlock
239
+ - block_type: LLMResponseExtractorBlock
240
240
  block_config:
241
241
  block_name: extract_eval_relevancy
242
242
  input_cols: eval_relevancy_response_dict
@@ -280,7 +280,7 @@ blocks:
280
280
  max_tokens: 2048
281
281
  n: 1
282
282
  async_mode: true
283
- - block_type: LLMParserBlock
283
+ - block_type: LLMResponseExtractorBlock
284
284
  block_config:
285
285
  block_name: extract_verify_question
286
286
  input_cols: verify_question_response_dict
@@ -57,7 +57,7 @@ blocks:
57
57
  async_mode: true
58
58
  # n: 2
59
59
 
60
- - block_type: LLMParserBlock
60
+ - block_type: LLMResponseExtractorBlock
61
61
  block_config:
62
62
  block_name: detailed_summary
63
63
  input_cols: raw_summary_detailed
@@ -87,7 +87,7 @@ blocks:
87
87
  max_tokens: 2048
88
88
  async_mode: true
89
89
 
90
- - block_type: LLMParserBlock
90
+ - block_type: LLMResponseExtractorBlock
91
91
  block_config:
92
92
  block_name: atomic_facts
93
93
  input_cols: raw_atomic_facts
@@ -116,7 +116,7 @@ blocks:
116
116
  max_tokens: 2048
117
117
  async_mode: true
118
118
 
119
- - block_type: LLMParserBlock
119
+ - block_type: LLMResponseExtractorBlock
120
120
  block_config:
121
121
  block_name: extractive_summary
122
122
  input_cols: raw_summary_extractive
@@ -161,7 +161,7 @@ blocks:
161
161
  max_tokens: 2048
162
162
  async_mode: true
163
163
 
164
- - block_type: LLMParserBlock
164
+ - block_type: LLMResponseExtractorBlock
165
165
  block_config:
166
166
  block_name: get_knowledge_generation
167
167
  input_cols: raw_knowledge_generation
@@ -192,7 +192,7 @@ blocks:
192
192
  n: 1
193
193
  async_mode: true
194
194
 
195
- - block_type: LLMParserBlock
195
+ - block_type: LLMResponseExtractorBlock
196
196
  block_config:
197
197
  block_name: extract_eval_faithful
198
198
  input_cols: eval_faithful_response_dict
@@ -237,7 +237,7 @@ blocks:
237
237
  max_tokens: 2048
238
238
  n: 1
239
239
  async_mode: true
240
- - block_type: LLMParserBlock
240
+ - block_type: LLMResponseExtractorBlock
241
241
  block_config:
242
242
  block_name: extract_eval_relevancy
243
243
  input_cols: eval_relevancy_response_dict
@@ -281,7 +281,7 @@ blocks:
281
281
  max_tokens: 2048
282
282
  n: 1
283
283
  async_mode: true
284
- - block_type: LLMParserBlock
284
+ - block_type: LLMResponseExtractorBlock
285
285
  block_config:
286
286
  block_name: extract_verify_question
287
287
  input_cols: verify_question_response_dict
@@ -49,7 +49,7 @@ blocks:
49
49
  max_tokens: 1024
50
50
  temperature: 0.3
51
51
  async_mode: true
52
- - block_type: "LLMParserBlock"
52
+ - block_type: "LLMResponseExtractorBlock"
53
53
  block_config:
54
54
  block_name: "extract_summary"
55
55
  input_cols: "raw_summary"
@@ -81,7 +81,7 @@ blocks:
81
81
  max_tokens: 512
82
82
  temperature: 0.3
83
83
  async_mode: true
84
- - block_type: "LLMParserBlock"
84
+ - block_type: "LLMResponseExtractorBlock"
85
85
  block_config:
86
86
  block_name: "extract_keywords"
87
87
  input_cols: "raw_keywords"
@@ -113,7 +113,7 @@ blocks:
113
113
  max_tokens: 1024
114
114
  temperature: 0.3
115
115
  async_mode: true
116
- - block_type: "LLMParserBlock"
116
+ - block_type: "LLMResponseExtractorBlock"
117
117
  block_config:
118
118
  block_name: "extract_entities"
119
119
  input_cols: "raw_entities"
@@ -145,7 +145,7 @@ blocks:
145
145
  max_tokens: 256
146
146
  temperature: 0.1
147
147
  async_mode: true
148
- - block_type: "LLMParserBlock"
148
+ - block_type: "LLMResponseExtractorBlock"
149
149
  block_config:
150
150
  block_name: "extract_sentiment"
151
151
  input_cols: "raw_sentiment"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sdg_hub
3
- Version: 0.7.2
3
+ Version: 0.7.3
4
4
  Summary: Synthetic Data Generation
5
5
  Author-email: Red Hat AI Innovation <abhandwa@redhat.com>
6
6
  License: Apache-2.0
@@ -26,7 +26,7 @@ Requires-Dist: click<9.0.0,>=8.1.7
26
26
  Requires-Dist: datasets>=4.0.0
27
27
  Requires-Dist: httpx<1.0.0,>=0.25.0
28
28
  Requires-Dist: jinja2
29
- Requires-Dist: litellm<1.75.0,>=1.73.0
29
+ Requires-Dist: litellm<2.0.0,>=1.73.0
30
30
  Requires-Dist: rich
31
31
  Requires-Dist: pandas
32
32
  Requires-Dist: pydantic<3.0.0,>=2.0.0
@@ -1,28 +1,28 @@
1
1
  sdg_hub/__init__.py,sha256=TlkZT40-70urdcWLqv3kupaJj8s-SVgd2QyvlSFwb4A,510
2
- sdg_hub/_version.py,sha256=69rtUS5MR_8CGRaNqkaDM6V4ZDI_8FTMw2vDLxrWg0Q,704
2
+ sdg_hub/_version.py,sha256=gWqiHfJwvZSzPQMjJVXuWX-SvdgzetfD6jyorihjahc,704
3
3
  sdg_hub/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  sdg_hub/core/__init__.py,sha256=e3BoejbqjYhasf9t__L4qE52lkD9EBjx4o--2kqKdro,460
5
- sdg_hub/core/blocks/__init__.py,sha256=8Rn1SglH8V3jGmTD_cG-h7qk9ktAab2eaBdyk7RN_hY,865
6
- sdg_hub/core/blocks/base.py,sha256=EpHvqXySIdx0f672c-csGKKs7N57ablC8pad_SiB1s8,13066
5
+ sdg_hub/core/blocks/__init__.py,sha256=TztBerg_7Ta8AHX9YM6RwzeoiO42nTHx2rekvMZSRf4,1000
6
+ sdg_hub/core/blocks/base.py,sha256=LgRGvlMqZrxQYUcS_-9HBN_8FZFY1I3O4SBzh0iOCQc,13201
7
7
  sdg_hub/core/blocks/registry.py,sha256=FuEN_pnq-nSH1LguY3_oCubT6Kz3SuJjk3TcUpLT-lw,10695
8
8
  sdg_hub/core/blocks/filtering/__init__.py,sha256=isxSVSvDqkMjG8dQSl3Q2M4g5c1t9fTjBSA21icf-yA,275
9
- sdg_hub/core/blocks/filtering/column_value_filter.py,sha256=tHNykB-Q_ItbjDzvlpnjt0Z46mR67O6ZY29ed2ecOwo,6493
10
- sdg_hub/core/blocks/llm/__init__.py,sha256=1Oo2nv2uXJ2AzRlrQcqDi7gW1FNh9Fid84L89dvy4qM,683
9
+ sdg_hub/core/blocks/filtering/column_value_filter.py,sha256=nT4vBFvi0Q8KoNvh2LkVWRGRp7HkiiLBcPPOGNZF6ig,6528
10
+ sdg_hub/core/blocks/llm/__init__.py,sha256=GTyXZHNYoiyaajx600ouKIrwAg7aS8QjcgkDlThzbag,805
11
11
  sdg_hub/core/blocks/llm/error_handler.py,sha256=7T-019ZFB9qgZoX1ybIiXyaLjPzrF96qcKmUu6vmO6g,12178
12
- sdg_hub/core/blocks/llm/llm_chat_block.py,sha256=0J6oz3EHB8AXB8dicnt6XKvbKCKMvSAEbnLadNORFhs,22946
13
- sdg_hub/core/blocks/llm/llm_parser_block.py,sha256=NFk8xXceK_F1Pzn9dFNX65ynavuoQiH2ltDLLY_6SXQ,12136
14
- sdg_hub/core/blocks/llm/prompt_builder_block.py,sha256=zI8DFz34abGnH2Mk0KQe4Mkkb5ophwV7brn4axNsZ2I,14146
15
- sdg_hub/core/blocks/llm/text_parser_block.py,sha256=CoyfgKcJL9JpokzMcKk4bYeEBr6xnN0XYk45hJANnBQ,12763
12
+ sdg_hub/core/blocks/llm/llm_chat_block.py,sha256=z_vLPrB2e1F4tficBJlTN9vxxnRmBOyOPK6bVFI1SkU,22975
13
+ sdg_hub/core/blocks/llm/llm_response_extractor_block.py,sha256=FiSvAIahi0Tsfy91uMgTd7G2xlDGlOk3EJvQEWGwzu0,12855
14
+ sdg_hub/core/blocks/llm/prompt_builder_block.py,sha256=oJSP5dSxJeva3JML6Yw5WLHxgHuIgw-_ZvFRC4FY5RA,14180
15
+ sdg_hub/core/blocks/llm/text_parser_block.py,sha256=eDND255K3M2JNpAXmXKf4nZZhbypdfHIsnvBinGe8fo,12795
16
16
  sdg_hub/core/blocks/transform/__init__.py,sha256=lF9InjOzA6p_mjiwV-a2Kwstq9kqRiQ-dEwbsmR9yQs,825
17
- sdg_hub/core/blocks/transform/duplicate_columns.py,sha256=dYTxgkWq6X2B37pemJdmAVi56A29NF25YTwUUyN9xHs,2837
18
- sdg_hub/core/blocks/transform/index_based_mapper.py,sha256=W9ezZNgLUGbLk2U1UJCi2KFbSRPM0Q4vHnP5HGlhsoQ,8908
19
- sdg_hub/core/blocks/transform/json_structure_block.py,sha256=w7Ex2F3gvpG7uUnM2JM1a7D5xUKGE6HRKwyJpnfLPzc,5069
20
- sdg_hub/core/blocks/transform/melt_columns.py,sha256=zH3d3C0EO2DVRZqmhyr_g51xz1ZmuBRinrngUCiZkrM,4383
21
- sdg_hub/core/blocks/transform/rename_columns.py,sha256=EafchUDXvfXxqwRvNIcy92I1Zy6U8lsibtSqWaYdMPU,3150
22
- sdg_hub/core/blocks/transform/text_concat.py,sha256=Oo6VKGdmeiUmH3B0PDL1y_ot-bYmkT2jbGj7g7C84gg,3089
23
- sdg_hub/core/blocks/transform/uniform_col_val_setter.py,sha256=Osbz-jciBx5jFfzUbtbCBh_ET4CySG2h0IGWChESHi4,3239
17
+ sdg_hub/core/blocks/transform/duplicate_columns.py,sha256=vK853XsNh62TAcanK8ioVtkWzmBupF4_v1EQUgfGT10,2872
18
+ sdg_hub/core/blocks/transform/index_based_mapper.py,sha256=yN0i7kxv9Wn5VGWa1INMry6US3K9FS-jrYrb2GP1-BI,8943
19
+ sdg_hub/core/blocks/transform/json_structure_block.py,sha256=vVnKCdE_Qs6bFoLG5mPp6LFXZf0UhucwGj_6r79nhFM,5104
20
+ sdg_hub/core/blocks/transform/melt_columns.py,sha256=a6UjTKizsBP2CX8Opp0FmuembGXUJ8b0NGi5lZjmPm8,4418
21
+ sdg_hub/core/blocks/transform/rename_columns.py,sha256=QCPD2vK7Xp6WD_tJrupAFtkMcn98xUK7Rt3trPqmTtE,3185
22
+ sdg_hub/core/blocks/transform/text_concat.py,sha256=E4DoRDeIUgWuF-0a1vE8DpxPpBhQGgXW7wDWAKLSKdg,3124
23
+ sdg_hub/core/blocks/transform/uniform_col_val_setter.py,sha256=mqDG5h0p2qfzWFLlxzOCkDQzYgVUVgKW4PLxKtuon3Q,3274
24
24
  sdg_hub/core/flow/__init__.py,sha256=0_m_htuZfPxk8xQ9IKfp0Pz-JRE4O7lYMUFrKyLNoLA,409
25
- sdg_hub/core/flow/base.py,sha256=0b2AQJ-OpqSQlt_c0tG84V_BdokZcFlkBKNbBLjGVTY,59368
25
+ sdg_hub/core/flow/base.py,sha256=o7OBBH4LkMdJrvYbf3kX6NSAb6U8jQFoRXHKSFHjTEs,58278
26
26
  sdg_hub/core/flow/checkpointer.py,sha256=MJay3Q5cfRgJDetk82DaMKJ3ZZUYRHxQabEQTxhGukk,11850
27
27
  sdg_hub/core/flow/metadata.py,sha256=cFrpJjWOaK87aCuRFyC3Pdf83oYU93mrmZEMdUnhsN8,10540
28
28
  sdg_hub/core/flow/registry.py,sha256=N6KfX-L7QRkooznIFxDuhRZYuDA5g3N5zC-KRm2jVhk,12109
@@ -32,7 +32,7 @@ sdg_hub/core/utils/datautils.py,sha256=7YzG_IpMHj04zHl-r7mswOd3IzTQKJJdfmMBgm7VX
32
32
  sdg_hub/core/utils/error_handling.py,sha256=yku8cGj_nKCyXDsnb-mHCpgukkkAMucJ4iAUrIzqysc,5510
33
33
  sdg_hub/core/utils/flow_id_words.yaml,sha256=5QHpQdP7zwahRuooyAlJIwBY7WcDR7vtbJXxVJqujbg,2317
34
34
  sdg_hub/core/utils/flow_identifier.py,sha256=aAHfK_G9AwEtMglLRMdMpi_AI1dciub5UqBGm4yb2HE,2841
35
- sdg_hub/core/utils/flow_metrics.py,sha256=84ihZHOwbxhqPTdnUXclytf5Tva-IoA1oKIruIXv0Eo,12650
35
+ sdg_hub/core/utils/flow_metrics.py,sha256=6D1o9wWRUcPkYBkrRUesXVXZ0Vf0lMw6D6rSe0_Unl0,12653
36
36
  sdg_hub/core/utils/logger_config.py,sha256=6_cnsIHtSAdq1iTTZ7Q7nAJ1dmldlxSZ0AB49yLiQ20,2034
37
37
  sdg_hub/core/utils/path_resolution.py,sha256=yWof4kGNpQ5dKcrVHg0h9KfOKLZ6ROjdfsLAZsQT5rM,2000
38
38
  sdg_hub/core/utils/time_estimator.py,sha256=rM3_R-Ka5DEtvOtlJoA_5pXSyQ6tT6t4h6qh3_5BCZo,12639
@@ -41,7 +41,7 @@ sdg_hub/flows/evaluation/rag/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
41
41
  sdg_hub/flows/evaluation/rag/answer_generation.yaml,sha256=dxsHIPyEs14e9fH6JeEJgnrLIV-nLqXmnynj0XF_4os,624
42
42
  sdg_hub/flows/evaluation/rag/conceptual_qa_generation.yaml,sha256=cvU8P3EUj9-Cr19Y3ASxkxEBh9ll_NYMC3s6-x1Monc,847
43
43
  sdg_hub/flows/evaluation/rag/context_extraction.yaml,sha256=StAAU8yCTzaeGFKieJKFIDRfe21aqk7VIekMH1oEuxA,724
44
- sdg_hub/flows/evaluation/rag/flow.yaml,sha256=ZDkCrQaN9WfvwWaMjgfA2qUrTVz7pCw-PiHzOyzXKio,5276
44
+ sdg_hub/flows/evaluation/rag/flow.yaml,sha256=3HAZaedHPmjn_JWoLzXxHLXurAm9JXxj8pfHB3LNv-4,5342
45
45
  sdg_hub/flows/evaluation/rag/groundedness_critic.yaml,sha256=r5zqetGnNvg4UxCuENTzdWhCFbG6TnkY-seDMVRBBko,782
46
46
  sdg_hub/flows/evaluation/rag/question_evolution.yaml,sha256=d3G11dQ3Wkgz0JBNyqTi-6QMGIdODOVcGNw1x9OnTEE,649
47
47
  sdg_hub/flows/evaluation/rag/topic_generation.yaml,sha256=DhY_Wt7NzzjfirYlQQqABrXn73vMQj9W2XLZZEaofKc,303
@@ -51,14 +51,14 @@ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/gener
51
51
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/generate_question_list.yaml,sha256=qHOgUNrQz2vjUjJiEHNGWxDDXwjJlP1kofTxeGgLyPI,1461
52
52
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
53
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/detailed_summary.yaml,sha256=Ik6gAml0O-jPq8jpXBAkURzYkQuFOnDZb4LDwjmfAiE,381
54
- sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/flow.yaml,sha256=cxNpPh60mcvzxfczMH8hw66Ql3S8O-cWCCDeauO736c,5649
54
+ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/flow.yaml,sha256=mBdgcG2wipY8uWO6IA-p1kstgzAhroS0Yc2Xou9vSL0,5693
55
55
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
- sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/flow.yaml,sha256=smPWVUZRCt58EagWDmJVmTBQj8qMcjpzh-Q3GSuFrz0,4413
56
+ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/flow.yaml,sha256=7f423gfJ7qGQHYBo43D4mw0fVs7iAxJYSpuPb0QhYCU,4446
57
57
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
58
58
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/extractive_summary.yaml,sha256=SeapWoOx3fhN5SvWYuHss_9prLE8xSkOic7JkbDHSR0,4081
59
- sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/flow.yaml,sha256=7dVc0_g7Ex5SfdX57pqtk9gmH_lC6Cdm3HC-lg8OiXQ,5817
59
+ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/flow.yaml,sha256=tzUnZsI5iW8nxT5xRJIKQocUp8wUucQuUOrnh4vJRBM,5861
60
60
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
- sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/flow.yaml,sha256=7X4N19TcyHUo7pNo3C6Zv3w6br7hjzEfgv06XUVDaQo,3330
61
+ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/flow.yaml,sha256=wuj_aZhW52PyrejIDucWXu8SEel4okMN8wFnol0_Bkc,3352
62
62
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/key_facts_summary.yaml,sha256=YKMX_CuvcThG_bdNCAIXdVBkMvB72I89RGq2ltSSgc8,3298
63
63
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/README.md,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
64
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -68,24 +68,24 @@ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/ev
68
68
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/evaluate_question.yaml,sha256=zwzklXup6khRkR88avgrJTcjaMcV1wnbeYaML5oPuNs,1767
69
69
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/evaluate_relevancy.yaml,sha256=cA8igo7jMrRXaWW6k0of6KOp7YnxLtPj0fP4DbrmZNQ,3647
70
70
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/extractive_summary.yaml,sha256=fcMV7LaCFZo4D29nwhGJXqFFuZMYVLo9XYjv8zcU6zs,364
71
- sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/flow.yaml,sha256=km0ggcmFsZJGc2TfyYLkzPTrHGmcOB-jBAHInqySisk,9176
71
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/flow.yaml,sha256=BcNO79qG4L4A0BLtiV0bwn9mFkapRtZD3PjIHCf44yI,9253
72
72
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/generate_questions_responses.yaml,sha256=yX8aLY8dJSDML9ZJhnj9RzPbN8tH2xfcM4Gc6xZuwqQ,2596
73
73
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/README.md,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
74
74
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
75
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/atomic_facts_ja.yaml,sha256=OjPZaSCOSLxEWgW3pmNwF7mmLhGhFGTmKL_3rKdqeW4,2488
76
76
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/detailed_summary_ja.yaml,sha256=nEy_RcotHGiiENrmUANpKkbIFsrARAeSwECrBeHi2so,391
77
77
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/extractive_summary_ja.yaml,sha256=V90W0IeJQZTFThA8v0UOs3DtZbtU3BI9jkpChw1BULo,402
78
- sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/flow.yaml,sha256=U9DBWSKkYGGtwWQ39o8l7g-mLb93505APTEFePyzqIc,9312
78
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/flow.yaml,sha256=u9rNPWlTjH7qDvq7FO9fjgNLkOAV9_WNVHKpjKbl-ao,9389
79
79
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/generate_questions_responses_ja.yaml,sha256=96SQqXG7fmb-50SdX85sgVtrFcQ-oNKe_0BoQdZmY5g,2638
80
80
  sdg_hub/flows/text_analysis/__init__.py,sha256=WStks4eM_KHNTVsHglcj8vFghmI0PH9P1hUrijBLbwc,125
81
81
  sdg_hub/flows/text_analysis/structured_insights/__init__.py,sha256=_DT4NR05JD9CZoSWROPr2lC6se0VjSqQPZJJlEV79mk,274
82
82
  sdg_hub/flows/text_analysis/structured_insights/analyze_sentiment.yaml,sha256=1YGPypFJYS8qfYFj2J6ERTgodKJvMF4YHNGt_vOF5qc,1000
83
83
  sdg_hub/flows/text_analysis/structured_insights/extract_entities.yaml,sha256=Q_SDy14Zu-qS2sbKfUBmGlYj3k7CUg6HzzXlFCXRKuU,1169
84
84
  sdg_hub/flows/text_analysis/structured_insights/extract_keywords.yaml,sha256=_nPPMdHnxag_lYbhYUjGJGo-CvRwWvwdGX7cQhdZ1S0,847
85
- sdg_hub/flows/text_analysis/structured_insights/flow.yaml,sha256=BBV18SdvuVTAESjwkJ7V1jbb-cSTBvNl3SCycd0oEQ4,4934
85
+ sdg_hub/flows/text_analysis/structured_insights/flow.yaml,sha256=E9bx5QvmIwm69KITVwZFgwlwe33nhYbVRPRwrMrD8Xw,4978
86
86
  sdg_hub/flows/text_analysis/structured_insights/summarize.yaml,sha256=WXwQak1pF8e1OwnOoI1EHu8QB6iUNW89rfkTdi1Oq54,687
87
- sdg_hub-0.7.2.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
88
- sdg_hub-0.7.2.dist-info/METADATA,sha256=V0DFJlc77tCFAiZY3AuAGXlbXo6hkeMTMm3YPhKiuZs,9615
89
- sdg_hub-0.7.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
90
- sdg_hub-0.7.2.dist-info/top_level.txt,sha256=TqI7d-HE1n6zkXFkU0nF3A1Ct0P0pBaqI675uFokhx4,8
91
- sdg_hub-0.7.2.dist-info/RECORD,,
87
+ sdg_hub-0.7.3.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
88
+ sdg_hub-0.7.3.dist-info/METADATA,sha256=8Pk7CkXl9klRjqpxMGHZp9gt7CuNozv2hV3gGPkRqow,9614
89
+ sdg_hub-0.7.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
90
+ sdg_hub-0.7.3.dist-info/top_level.txt,sha256=TqI7d-HE1n6zkXFkU0nF3A1Ct0P0pBaqI675uFokhx4,8
91
+ sdg_hub-0.7.3.dist-info/RECORD,,