sdg-hub 0.3.1__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. sdg_hub/_version.py +2 -2
  2. sdg_hub/core/blocks/__init__.py +2 -4
  3. sdg_hub/core/blocks/base.py +61 -6
  4. sdg_hub/core/blocks/filtering/column_value_filter.py +3 -2
  5. sdg_hub/core/blocks/llm/__init__.py +2 -4
  6. sdg_hub/core/blocks/llm/llm_chat_block.py +251 -265
  7. sdg_hub/core/blocks/llm/llm_chat_with_parsing_retry_block.py +216 -98
  8. sdg_hub/core/blocks/llm/llm_parser_block.py +320 -0
  9. sdg_hub/core/blocks/llm/text_parser_block.py +53 -152
  10. sdg_hub/core/flow/base.py +7 -4
  11. sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/flow.yaml +51 -11
  12. sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/__init__.py +0 -0
  13. sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/flow.yaml +159 -0
  14. sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/flow.yaml +51 -11
  15. sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/flow.yaml +14 -2
  16. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/flow.yaml +146 -26
  17. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/README.md +0 -0
  18. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/__init__.py +0 -0
  19. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/atomic_facts_ja.yaml +41 -0
  20. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/detailed_summary_ja.yaml +14 -0
  21. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/extractive_summary_ja.yaml +14 -0
  22. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/flow.yaml +304 -0
  23. sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/generate_questions_responses_ja.yaml +55 -0
  24. sdg_hub/flows/text_analysis/structured_insights/flow.yaml +28 -4
  25. {sdg_hub-0.3.1.dist-info → sdg_hub-0.4.0.dist-info}/METADATA +1 -1
  26. {sdg_hub-0.3.1.dist-info → sdg_hub-0.4.0.dist-info}/RECORD +29 -25
  27. sdg_hub/core/blocks/evaluation/__init__.py +0 -9
  28. sdg_hub/core/blocks/evaluation/evaluate_faithfulness_block.py +0 -323
  29. sdg_hub/core/blocks/evaluation/evaluate_relevancy_block.py +0 -323
  30. sdg_hub/core/blocks/evaluation/verify_question_block.py +0 -329
  31. sdg_hub/core/blocks/llm/client_manager.py +0 -472
  32. sdg_hub/core/blocks/llm/config.py +0 -337
  33. {sdg_hub-0.3.1.dist-info → sdg_hub-0.4.0.dist-info}/WHEEL +0 -0
  34. {sdg_hub-0.3.1.dist-info → sdg_hub-0.4.0.dist-info}/licenses/LICENSE +0 -0
  35. {sdg_hub-0.3.1.dist-info → sdg_hub-0.4.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,14 @@
1
+ - role: system
2
+ content: You are an AI assistant that is expert at summarizing text.
3
+
4
+ - role: user
5
+ content: |
6
+ Give me detailed extractive summary for below document, making sure all key points are covered.
7
+
8
+ Do not add any new information.
9
+ Do not miss any key points from the provided document.
10
+ Output the response in Japanese.
11
+
12
+ Document:
13
+ {{document_outline}}
14
+ {{document}}
@@ -0,0 +1,304 @@
1
+ metadata:
2
+ id: clean-shadow-397
3
+ name: "Advanced Japanese Document Grounded Question-Answer Generation Flow for Knowledge Tuning"
4
+ description: "A comprehensive flow that generates high-quality question-answer pairs from Japanese input documents using multiple LLM blocks for question generation, answer synthesis, and quality evaluation."
5
+ version: "1.0.0"
6
+ author: "SDG Hub Contributors"
7
+
8
+ recommended_models:
9
+ default: "microsoft/phi-4"
10
+ compatible: ["meta-llama/Llama-3.3-70B-Instruct", "mistralai/Mixtral-8x7B-Instruct-v0.1"]
11
+ experimental: []
12
+
13
+ tags:
14
+ - "question-generation"
15
+ - "knowledge-extraction"
16
+ - "qa-pairs"
17
+ - "document-processing"
18
+ - "educational"
19
+ - "japanese"
20
+
21
+ license: "Apache-2.0"
22
+ min_sdg_hub_version: "0.2.0"
23
+
24
+ dataset_requirements:
25
+ required_columns:
26
+ - "document"
27
+ - "document_outline"
28
+ - "domain"
29
+ - "icl_document"
30
+ - "icl_query_1"
31
+ - "icl_response_1"
32
+ - "icl_query_2"
33
+ - "icl_response_2"
34
+ - "icl_query_3"
35
+ - "icl_response_3"
36
+ description: "Input dataset should contain documents with Japanese text content and domain classification. Each document should be substantial enough for meaningful question generation (minimum 100 words recommended)."
37
+
38
+ blocks:
39
+ - block_type: DuplicateColumnsBlock
40
+ block_config:
41
+ block_name: duplicate_document_col
42
+ input_cols: {document: base_document}
43
+
44
+ - block_type: PromptBuilderBlock
45
+ block_config:
46
+ block_name: detailed_summary_prompt
47
+ input_cols: [document, document_outline]
48
+ output_cols: summary_prompt
49
+ prompt_config_path: detailed_summary_ja.yaml
50
+
51
+ - block_type: LLMChatBlock
52
+ block_config:
53
+ block_name: gen_detailed_summary
54
+ input_cols: summary_prompt
55
+ output_cols: raw_summary_detailed
56
+ max_tokens: 2048
57
+ async_mode: true
58
+
59
+ - block_type: LLMParserBlock
60
+ block_config:
61
+ block_name: extract_detailed_summary
62
+ input_cols: raw_summary_detailed
63
+ extract_content: true
64
+
65
+ - block_type: TextParserBlock
66
+ block_config:
67
+ block_name: parse_detailed_summary
68
+ input_cols: extract_detailed_summary_content
69
+ output_cols: summary_detailed
70
+ start_tags: [""]
71
+ end_tags: [""]
72
+
73
+ - block_type: PromptBuilderBlock
74
+ block_config:
75
+ block_name: atomic_facts_prompt
76
+ input_cols: [document, document_outline, domain]
77
+ output_cols: atomic_facts_prompt
78
+ prompt_config_path: atomic_facts_ja.yaml
79
+
80
+ - block_type: LLMChatBlock
81
+ block_config:
82
+ block_name: gen_atomic_facts
83
+ input_cols: atomic_facts_prompt
84
+ output_cols: raw_atomic_facts
85
+ max_tokens: 2048
86
+ async_mode: true
87
+
88
+ - block_type: LLMParserBlock
89
+ block_config:
90
+ block_name: extract_atomic_facts
91
+ input_cols: raw_atomic_facts
92
+ extract_content: true
93
+
94
+ - block_type: TextParserBlock
95
+ block_config:
96
+ block_name: parse_atomic_facts
97
+ input_cols: extract_atomic_facts_content
98
+ output_cols: summary_atomic_facts
99
+ start_tags: [""]
100
+ end_tags: [""]
101
+
102
+ - block_type: PromptBuilderBlock
103
+ block_config:
104
+ block_name: extractive_summary_prompt
105
+ input_cols: [document, document_outline]
106
+ output_cols: extractive_summary_prompt
107
+ prompt_config_path: extractive_summary_ja.yaml
108
+
109
+ - block_type: LLMChatBlock
110
+ block_config:
111
+ block_name: gen_extractive_summary
112
+ input_cols: extractive_summary_prompt
113
+ output_cols: raw_summary_extractive
114
+ max_tokens: 2048
115
+ async_mode: true
116
+
117
+ - block_type: LLMParserBlock
118
+ block_config:
119
+ block_name: extract_extractive_summary
120
+ input_cols: raw_summary_extractive
121
+ extract_content: true
122
+
123
+ - block_type: TextParserBlock
124
+ block_config:
125
+ block_name: parse_extractive_summary
126
+ input_cols: extract_extractive_summary_content
127
+ output_cols: summary_extractive
128
+ start_tags: [""]
129
+ end_tags: [""]
130
+
131
+ - block_type: MeltColumnsBlock
132
+ block_config:
133
+ block_name: melt_summary_columns
134
+ input_cols: [summary_detailed, summary_extractive, summary_atomic_facts, base_document]
135
+ output_cols: [summary, dataset_type]
136
+
137
+ - block_type: RenameColumnsBlock
138
+ block_config:
139
+ block_name: rename_to_document_column
140
+ input_cols: {document: raw_document, summary: document}
141
+
142
+ - block_type: PromptBuilderBlock
143
+ block_config:
144
+ block_name: knowledge_generation_prompt
145
+ input_cols: [domain, document, document_outline, icl_document, icl_query_1, icl_response_1, icl_query_2, icl_response_2, icl_query_3, icl_response_3]
146
+ output_cols: knowledge_generation_prompt
147
+ prompt_config_path: generate_questions_responses_ja.yaml
148
+
149
+ - block_type: LLMChatBlock
150
+ block_config:
151
+ block_name: knowledge_generation
152
+ input_cols: knowledge_generation_prompt
153
+ output_cols: raw_knowledge_generation
154
+ temperature: 0.0
155
+ max_tokens: 2048
156
+ async_mode: true
157
+
158
+ - block_type: LLMParserBlock
159
+ block_config:
160
+ block_name: extract_knowledge_generation
161
+ input_cols: raw_knowledge_generation
162
+ extract_content: true
163
+
164
+ - block_type: TextParserBlock
165
+ block_config:
166
+ block_name: parse_knowledge_generation
167
+ input_cols: extract_knowledge_generation_content
168
+ output_cols: [question, response]
169
+ parsing_pattern: "\\[(?:Question|QUESTION)\\]\\s*(.*?)\\s*\\[(?:Answer|ANSWER)\\]\\s*(.*?)\\s*(?=\\[(?:Question|QUESTION)\\]|$)"
170
+ parser_cleanup_tags: ["[END]"]
171
+
172
+ - block_type: PromptBuilderBlock
173
+ block_config:
174
+ block_name: eval_faithful_prompt
175
+ input_cols: [document, response]
176
+ output_cols: eval_faithful_prompt
177
+ prompt_config_path: ../../instructlab/evaluate_faithfulness.yaml
178
+ format_as_messages: true
179
+
180
+ - block_type: LLMChatBlock
181
+ block_config:
182
+ block_name: eval_faithful_llm_chat
183
+ input_cols: eval_faithful_prompt
184
+ output_cols: eval_faithful_response_dict
185
+ max_tokens: 2048
186
+ n: 1
187
+ async_mode: true
188
+
189
+ - block_type: LLMParserBlock
190
+ block_config:
191
+ block_name: extract_eval_faithful
192
+ input_cols: eval_faithful_response_dict
193
+ extract_content: true
194
+
195
+ - block_type: TextParserBlock
196
+ block_config:
197
+ block_name: parse_eval_faithful
198
+ input_cols: extract_eval_faithful_content
199
+ output_cols:
200
+ - faithfulness_explanation
201
+ - faithfulness_judgment
202
+ start_tags:
203
+ - '[Start of Explanation]'
204
+ - '[Start of Answer]'
205
+ end_tags:
206
+ - '[End of Explanation]'
207
+ - '[End of Answer]'
208
+
209
+ - block_type: ColumnValueFilterBlock
210
+ block_config:
211
+ block_name: eval_faithful_filter
212
+ input_cols:
213
+ - faithfulness_judgment
214
+ filter_value: "YES"
215
+ operation: eq
216
+
217
+ - block_type: PromptBuilderBlock
218
+ block_config:
219
+ block_name: eval_relevancy_prompt
220
+ input_cols:
221
+ - question
222
+ - response
223
+ output_cols: eval_relevancy_prompt
224
+ prompt_config_path: ../../instructlab/evaluate_relevancy.yaml
225
+ format_as_messages: true
226
+ - block_type: LLMChatBlock
227
+ block_config:
228
+ block_name: eval_relevancy_llm_chat
229
+ input_cols: eval_relevancy_prompt
230
+ output_cols: eval_relevancy_response_dict
231
+ max_tokens: 2048
232
+ n: 1
233
+ async_mode: true
234
+ - block_type: LLMParserBlock
235
+ block_config:
236
+ block_name: extract_eval_relevancy
237
+ input_cols: eval_relevancy_response_dict
238
+ extract_content: true
239
+
240
+ - block_type: TextParserBlock
241
+ block_config:
242
+ block_name: parse_eval_relevancy
243
+ input_cols: extract_eval_relevancy_content
244
+ output_cols:
245
+ - relevancy_explanation
246
+ - relevancy_score
247
+ start_tags:
248
+ - '[Start of Feedback]'
249
+ - '[Start of Score]'
250
+ end_tags:
251
+ - '[End of Feedback]'
252
+ - '[End of Score]'
253
+ - block_type: ColumnValueFilterBlock
254
+ block_config:
255
+ block_name: eval_relevancy_filter
256
+ input_cols:
257
+ - relevancy_score
258
+ filter_value: 2.0
259
+ operation: eq
260
+ convert_dtype: float
261
+
262
+ - block_type: PromptBuilderBlock
263
+ block_config:
264
+ block_name: verify_question_prompt
265
+ input_cols:
266
+ - question
267
+ output_cols: verify_question_prompt
268
+ prompt_config_path: ../../instructlab/evaluate_question.yaml
269
+ format_as_messages: true
270
+ - block_type: LLMChatBlock
271
+ block_config:
272
+ block_name: verify_question_llm_chat
273
+ input_cols: verify_question_prompt
274
+ output_cols: verify_question_response_dict
275
+ max_tokens: 2048
276
+ n: 1
277
+ async_mode: true
278
+ - block_type: LLMParserBlock
279
+ block_config:
280
+ block_name: extract_verify_question
281
+ input_cols: verify_question_response_dict
282
+ extract_content: true
283
+
284
+ - block_type: TextParserBlock
285
+ block_config:
286
+ block_name: parse_verify_question
287
+ input_cols: extract_verify_question_content
288
+ output_cols:
289
+ - verification_explanation
290
+ - verification_rating
291
+ start_tags:
292
+ - '[Start of Explanation]'
293
+ - '[Start of Rating]'
294
+ end_tags:
295
+ - '[End of Explanation]'
296
+ - '[End of Rating]'
297
+ - block_type: ColumnValueFilterBlock
298
+ block_config:
299
+ block_name: verify_question_filter
300
+ input_cols:
301
+ - verification_rating
302
+ filter_value: 1.0
303
+ operation: ge
304
+ convert_dtype: float
@@ -0,0 +1,55 @@
1
+ - role: system
2
+ content: You are a very knowledgeable AI Assistant that will faithfully assist the user with their task.
3
+
4
+ - role: user
5
+ content: |
6
+ Develop a series of as many educational question and answer pairs as possible from a chapter in a {{domain}} textbook.
7
+
8
+ The questions should:
9
+ * Be self-contained, not requiring references to tables, figures, or specific sections in the text for understanding.
10
+ * Focus on teaching and reinforcing the key knowledge and concepts presented in the chapter.
11
+ * Avoid sections with minimal educational content like index pages or prefaces. In such cases, respond with [UNANSWERABLE].
12
+ * Be directly relevant to the textbook's domain. For instance, in a science textbook, questions should revolve around scientific terms, definitions, and practical applications, while in a legal textbook, they should cover legal principles, case law, and precedents.
13
+ * Be formulated to allow for independent answers, avoiding direct references to specific theorems or text sections. For example, rather than asking 'Under what conditions is the fixed point of a function unique according to Theorem 3.1.5?', ask 'How does the Fixed Point Iteration method contribute to understanding function uniqueness?'
14
+ * Span a range of difficulty levels to accommodate a diverse student audience, from basic understanding to advanced comprehension.
15
+ * Include a variety of question types such as multiple-choice for basic recall, short answer for deeper understanding, and essay or problem-solving questions to test application and analysis skills.
16
+ * Align closely with the learning objectives of the textbook or the specific chapter, ensuring that the questions test the fundamental concepts and skills that the chapter aims to impart.
17
+ * Be in Japanese.
18
+
19
+ Strictly follow this format for each question answer pair your generate while responding:
20
+
21
+ [QUESTION]
22
+ <Insert question here>
23
+ [ANSWER]
24
+ <Insert answer here>
25
+ [END]
26
+
27
+ Each question and answer pair should stand alone as a mini-lesson, encapsulating a key concept or idea from the chapter in a way that is accessible and informative without requiring the reader to refer back to the textbook.
28
+
29
+ Here are some examples of questions:
30
+
31
+ [Document]
32
+ {{icl_document}}
33
+
34
+ [QUESTION]
35
+ {{icl_query_1}}
36
+ [ANSWER]
37
+ {{icl_response_1}}
38
+ [END]
39
+
40
+ [QUESTION]
41
+ {{icl_query_2}}
42
+ [ANSWER]
43
+ {{icl_response_2}}
44
+ [END]
45
+
46
+ [QUESTION]
47
+ {{icl_query_3}}
48
+ [ANSWER]
49
+ {{icl_response_3}}
50
+ [END]
51
+
52
+ Now, here is the document:
53
+ [DOCUMENT]
54
+ {{document_outline}}
55
+ {{document}}
@@ -50,10 +50,16 @@ blocks:
50
50
  max_tokens: 1024
51
51
  temperature: 0.3
52
52
  async_mode: true
53
+ - block_type: "LLMParserBlock"
54
+ block_config:
55
+ block_name: "extract_summary"
56
+ input_cols: "raw_summary"
57
+ extract_content: true
58
+ expand_lists: true
53
59
  - block_type: "TextParserBlock"
54
60
  block_config:
55
61
  block_name: "parse_summary"
56
- input_cols: "raw_summary"
62
+ input_cols: "extract_summary_content"
57
63
  output_cols: "summary"
58
64
  start_tags:
59
65
  - "[SUMMARY]"
@@ -76,10 +82,16 @@ blocks:
76
82
  max_tokens: 512
77
83
  temperature: 0.3
78
84
  async_mode: true
85
+ - block_type: "LLMParserBlock"
86
+ block_config:
87
+ block_name: "extract_keywords"
88
+ input_cols: "raw_keywords"
89
+ extract_content: true
90
+ expand_lists: true
79
91
  - block_type: "TextParserBlock"
80
92
  block_config:
81
93
  block_name: "parse_keywords"
82
- input_cols: "raw_keywords"
94
+ input_cols: "extract_keywords_content"
83
95
  output_cols: "keywords"
84
96
  start_tags:
85
97
  - "[KEYWORDS]"
@@ -102,10 +114,16 @@ blocks:
102
114
  max_tokens: 1024
103
115
  temperature: 0.3
104
116
  async_mode: true
117
+ - block_type: "LLMParserBlock"
118
+ block_config:
119
+ block_name: "extract_entities"
120
+ input_cols: "raw_entities"
121
+ extract_content: true
122
+ expand_lists: true
105
123
  - block_type: "TextParserBlock"
106
124
  block_config:
107
125
  block_name: "parse_entities"
108
- input_cols: "raw_entities"
126
+ input_cols: "extract_entities_content"
109
127
  output_cols: "entities"
110
128
  start_tags:
111
129
  - "[ENTITIES]"
@@ -128,10 +146,16 @@ blocks:
128
146
  max_tokens: 256
129
147
  temperature: 0.1
130
148
  async_mode: true
149
+ - block_type: "LLMParserBlock"
150
+ block_config:
151
+ block_name: "extract_sentiment"
152
+ input_cols: "raw_sentiment"
153
+ extract_content: true
154
+ expand_lists: true
131
155
  - block_type: "TextParserBlock"
132
156
  block_config:
133
157
  block_name: "parse_sentiment"
134
- input_cols: "raw_sentiment"
158
+ input_cols: "extract_sentiment_content"
135
159
  output_cols: "sentiment"
136
160
  start_tags:
137
161
  - "[SENTIMENT]"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sdg_hub
3
- Version: 0.3.1
3
+ Version: 0.4.0
4
4
  Summary: Synthetic Data Generation
5
5
  Author-email: Red Hat AI Innovation <abhandwa@redhat.com>
6
6
  License: Apache-2.0
@@ -1,9 +1,9 @@
1
1
  sdg_hub/__init__.py,sha256=Tw-6R5a8_W1kJcTAsW3R9ltBDP1dy5-fe7Tvt3cSyCQ,550
2
- sdg_hub/_version.py,sha256=gGLpQUQx-ty9SEy9PYw9OgJWWzJLBnCpfJOfzL7SjlI,704
2
+ sdg_hub/_version.py,sha256=2_0GUP7yBCXRus-qiJKxQD62z172WSs1sQ6DVpPsbmM,704
3
3
  sdg_hub/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  sdg_hub/core/__init__.py,sha256=NwqB4fwhC29W50VW7QXZssLxx122YvgO9LHDLdgAnrI,496
5
- sdg_hub/core/blocks/__init__.py,sha256=9sCkCvDQzJGSedaePVlEIpbNwrkBz_K500VW_6FLhuE,1601
6
- sdg_hub/core/blocks/base.py,sha256=TrzUAkG7Tiquk0Z3SOFsb5mRnHd1IbHH6gFPVH1P7T8,10424
5
+ sdg_hub/core/blocks/__init__.py,sha256=5FsbkcO-dmBv6MqO96TPn9FKKPTQZQCv20j4wR7UvQw,1502
6
+ sdg_hub/core/blocks/base.py,sha256=-SOdBpJwtRTMsrmCEuLjUBQMRCo_PLYlHEBRrz8sF9g,13031
7
7
  sdg_hub/core/blocks/registry.py,sha256=FuEN_pnq-nSH1LguY3_oCubT6Kz3SuJjk3TcUpLT-lw,10695
8
8
  sdg_hub/core/blocks/deprecated_blocks/__init__.py,sha256=RDu3MWFStDQko-TKkx8tGoB1UTatP_RSldZK43zHDvY,889
9
9
  sdg_hub/core/blocks/deprecated_blocks/combine_columns.py,sha256=HCvpaYsAwgx1Dm0vIshcWsKoVsRT0KrmKp9j4oqtByc,2757
@@ -15,20 +15,15 @@ sdg_hub/core/blocks/deprecated_blocks/rename_columns.py,sha256=thp-mHtkRmUw_nYKp
15
15
  sdg_hub/core/blocks/deprecated_blocks/sample_populator.py,sha256=UdueMApxOmPWaxxMrw7b1v74fKJBfqqRATEBqgmVtNw,1737
16
16
  sdg_hub/core/blocks/deprecated_blocks/selector.py,sha256=nWecsVsW8DvBcqAF_LOqXmW-5MQ28uN3d1y6wkSy38c,2960
17
17
  sdg_hub/core/blocks/deprecated_blocks/set_to_majority_value.py,sha256=44TQu-rK5isia-otMVB1zHd8D-wWmu3C8CI1NLtfY5s,2729
18
- sdg_hub/core/blocks/evaluation/__init__.py,sha256=kFXee-vsVVdU2XtLio9qHgPx_a0zoB_rQr509EKBGJc,357
19
- sdg_hub/core/blocks/evaluation/evaluate_faithfulness_block.py,sha256=vFi3YIxVPNnzgdenIeAl7yUb4OOUY_uUOXS-pWLsDmw,12223
20
- sdg_hub/core/blocks/evaluation/evaluate_relevancy_block.py,sha256=NXT1lixR-JnOXNlBCbMjULcpu4kh2SthhwCWEobiBt0,12115
21
- sdg_hub/core/blocks/evaluation/verify_question_block.py,sha256=LKoIHdxUuTVO24n_M9cAliEj56uEe2kQAecKTRz65zI,12465
22
18
  sdg_hub/core/blocks/filtering/__init__.py,sha256=isxSVSvDqkMjG8dQSl3Q2M4g5c1t9fTjBSA21icf-yA,275
23
- sdg_hub/core/blocks/filtering/column_value_filter.py,sha256=H8Gif0q9Wc_d1TnVow8Zpsg7blJOFGN1EZmV6OPpkcg,5971
24
- sdg_hub/core/blocks/llm/__init__.py,sha256=N6-Prgd4X85oWbMQzhYMrq7OX-NTJm57cghowK-val0,844
25
- sdg_hub/core/blocks/llm/client_manager.py,sha256=6RNqYvFIh4SF6jopI6tTY5MA01y8Qo-tAhsE0GeHZZ0,16109
26
- sdg_hub/core/blocks/llm/config.py,sha256=gc4xp5D20MSlKMFEos0QAaKUwgbZpBtMGXmn6LsIk78,11289
19
+ sdg_hub/core/blocks/filtering/column_value_filter.py,sha256=2Z9j_CiiTn5mHZ9gfXU-itLXDmeXSh0UI0x1x7j-LQ0,6001
20
+ sdg_hub/core/blocks/llm/__init__.py,sha256=AyS0dd3pkPPXH5a9aj4mT5HsKjX2vjXfkmQc6rkFV4A,795
27
21
  sdg_hub/core/blocks/llm/error_handler.py,sha256=7T-019ZFB9qgZoX1ybIiXyaLjPzrF96qcKmUu6vmO6g,12178
28
- sdg_hub/core/blocks/llm/llm_chat_block.py,sha256=9ytjxjADM0FydkLapZPSQPfzjjrFIdFONs3EJEoKnaw,23007
29
- sdg_hub/core/blocks/llm/llm_chat_with_parsing_retry_block.py,sha256=H7LqYpEiFO1g2cxncAl4vkLhQxAYgGpV6cUyQTSG03k,27628
22
+ sdg_hub/core/blocks/llm/llm_chat_block.py,sha256=MHhI2x9i6LrfDXgvAy2_6YxgyoD7j6BpCgNGsM69xDg,22194
23
+ sdg_hub/core/blocks/llm/llm_chat_with_parsing_retry_block.py,sha256=DW4b09IqXmcshvXawFheDyaLp3rz7vpO5VBrKdUQYW8,31703
24
+ sdg_hub/core/blocks/llm/llm_parser_block.py,sha256=aoHqsDDhaIgCDfPpv7acc0DVN-zUgzFflRVB4win0aM,12012
30
25
  sdg_hub/core/blocks/llm/prompt_builder_block.py,sha256=fkJd718X1oYlMY1cjo_8WCO16Gl8Tm0bUPWR78E_uws,13935
31
- sdg_hub/core/blocks/llm/text_parser_block.py,sha256=8oRlXEkw8ULA8XVa7WtQZUojodl_ihs1omZpvbwoJQE,17165
26
+ sdg_hub/core/blocks/llm/text_parser_block.py,sha256=975HK6NfXiU9Any4UDMpBNidRpyhHmc76BXUN69SVyc,12566
32
27
  sdg_hub/core/blocks/transform/__init__.py,sha256=lF9InjOzA6p_mjiwV-a2Kwstq9kqRiQ-dEwbsmR9yQs,825
33
28
  sdg_hub/core/blocks/transform/duplicate_columns.py,sha256=SaP7rIF4ZFEFFa50aU2xGNIuddXaEZrKxdWfHjzFpVI,2833
34
29
  sdg_hub/core/blocks/transform/index_based_mapper.py,sha256=XC_a7Skbd3mu7f4ra8fGWPxMwqUMSjJkQ7Ag7vflwJA,8235
@@ -38,7 +33,7 @@ sdg_hub/core/blocks/transform/rename_columns.py,sha256=qeB5L2utqDQnutUetH1VKZSqD
38
33
  sdg_hub/core/blocks/transform/text_concat.py,sha256=_-B__Hob1WwgwkILPIZvTnsDzuwtoX1hKviyzHlnnes,3149
39
34
  sdg_hub/core/blocks/transform/uniform_col_val_setter.py,sha256=XnjiT29z3PzIPy8M-mmE2w-Miab6Ed5ahy32SaxTCTE,3263
40
35
  sdg_hub/core/flow/__init__.py,sha256=N2NZGngvd7qpT5FI_knKukUFM0IkD9K5jdTi-gDeUI4,475
41
- sdg_hub/core/flow/base.py,sha256=8Xacytg9M82Mbv8r2GLbQgNltH-hCtFS1Fa1WpfFlSw,56488
36
+ sdg_hub/core/flow/base.py,sha256=6UlQ7ymVNs03UQ4NNgD15Y6eFyKPcl5JpuWOZuY70Mo,56654
42
37
  sdg_hub/core/flow/checkpointer.py,sha256=stm5ZtjjEiLk9ZkAAnoQQn5Y8Yl_d7qCsQLZTrCXR48,11867
43
38
  sdg_hub/core/flow/metadata.py,sha256=h9jpvAzWsF5n4ztZMzwa9ZNgnzKTHmFWdn7YbyJLHCw,12977
44
39
  sdg_hub/core/flow/migration.py,sha256=6and-RBqV0t2gRipr1GiOOVnyBJdtyyjw1kO08Z--d4,7558
@@ -59,12 +54,14 @@ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/gener
59
54
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/generate_question_list.yaml,sha256=qHOgUNrQz2vjUjJiEHNGWxDDXwjJlP1kofTxeGgLyPI,1461
60
55
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
56
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/detailed_summary.yaml,sha256=Ik6gAml0O-jPq8jpXBAkURzYkQuFOnDZb4LDwjmfAiE,381
62
- sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/flow.yaml,sha256=va9ESTlEaZozy8pXTJ8OICjRg08KSP4l305YUKFuGAE,4417
57
+ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/flow.yaml,sha256=_h_EFdxen842BeJd20soaCeR4eccccxAerUV6myUefE,5567
58
+ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
59
+ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/flow.yaml,sha256=OJDlm8uGNqGPertACSG5pKKVGOKdfsQ6RMeh4UHZMJs,4442
63
60
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
61
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/extractive_summary.yaml,sha256=SeapWoOx3fhN5SvWYuHss_9prLE8xSkOic7JkbDHSR0,4081
65
- sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/flow.yaml,sha256=Iv4AlbE9PFtTn6teekgiNtrTiYio_nYWS8gyD6eFLUA,4580
62
+ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/flow.yaml,sha256=Yy6-2Vytdr4FPxC5wTQkcv7Amy-DBMA3H8vOx9tBB9U,5735
66
63
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
67
- sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/flow.yaml,sha256=Rv0c4s5vim2I5jKzQgjcUfVMdla6czzmZUU67hlTAbg,2898
64
+ sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/flow.yaml,sha256=QYN-zNl0YtqKXCTpMJBD9vbYsTf-30cap9ziiDwxKk0,3248
68
65
  sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/key_facts_summary.yaml,sha256=YKMX_CuvcThG_bdNCAIXdVBkMvB72I89RGq2ltSSgc8,3298
69
66
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/README.md,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
70
67
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -74,17 +71,24 @@ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/ev
74
71
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/evaluate_question.yaml,sha256=zwzklXup6khRkR88avgrJTcjaMcV1wnbeYaML5oPuNs,1767
75
72
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/evaluate_relevancy.yaml,sha256=cA8igo7jMrRXaWW6k0of6KOp7YnxLtPj0fP4DbrmZNQ,3647
76
73
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/extractive_summary.yaml,sha256=fcMV7LaCFZo4D29nwhGJXqFFuZMYVLo9XYjv8zcU6zs,364
77
- sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/flow.yaml,sha256=oyrLRjEnmioMa_G_sd9yQK_nBt4arwWV5fvKgzYE2ds,6090
74
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/flow.yaml,sha256=QOhucXsokNEXGdXtk38qxQnSDwiCngUciXRjBqDcnDU,9088
78
75
  sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/generate_questions_responses.yaml,sha256=yX8aLY8dJSDML9ZJhnj9RzPbN8tH2xfcM4Gc6xZuwqQ,2596
76
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/README.md,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
78
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/atomic_facts_ja.yaml,sha256=OjPZaSCOSLxEWgW3pmNwF7mmLhGhFGTmKL_3rKdqeW4,2488
79
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/detailed_summary_ja.yaml,sha256=nEy_RcotHGiiENrmUANpKkbIFsrARAeSwECrBeHi2so,391
80
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/extractive_summary_ja.yaml,sha256=V90W0IeJQZTFThA8v0UOs3DtZbtU3BI9jkpChw1BULo,402
81
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/flow.yaml,sha256=ittFo_tyvG_1eqooO_9NK4jqepafgpHFGy2fuVfjFto,9207
82
+ sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/generate_questions_responses_ja.yaml,sha256=96SQqXG7fmb-50SdX85sgVtrFcQ-oNKe_0BoQdZmY5g,2638
79
83
  sdg_hub/flows/text_analysis/__init__.py,sha256=WStks4eM_KHNTVsHglcj8vFghmI0PH9P1hUrijBLbwc,125
80
84
  sdg_hub/flows/text_analysis/structured_insights/__init__.py,sha256=_DT4NR05JD9CZoSWROPr2lC6se0VjSqQPZJJlEV79mk,274
81
85
  sdg_hub/flows/text_analysis/structured_insights/analyze_sentiment.yaml,sha256=1YGPypFJYS8qfYFj2J6ERTgodKJvMF4YHNGt_vOF5qc,1000
82
86
  sdg_hub/flows/text_analysis/structured_insights/extract_entities.yaml,sha256=Q_SDy14Zu-qS2sbKfUBmGlYj3k7CUg6HzzXlFCXRKuU,1169
83
87
  sdg_hub/flows/text_analysis/structured_insights/extract_keywords.yaml,sha256=_nPPMdHnxag_lYbhYUjGJGo-CvRwWvwdGX7cQhdZ1S0,847
84
- sdg_hub/flows/text_analysis/structured_insights/flow.yaml,sha256=2HuGTyNwYe6a8Ev-QdKZXwe29NL4wOkq4ecEV9a7NDg,4221
88
+ sdg_hub/flows/text_analysis/structured_insights/flow.yaml,sha256=Qpo9WPtl0PWhBF1stIM8OjaTvhtw3dn4eDADt-xj5cA,4965
85
89
  sdg_hub/flows/text_analysis/structured_insights/summarize.yaml,sha256=WXwQak1pF8e1OwnOoI1EHu8QB6iUNW89rfkTdi1Oq54,687
86
- sdg_hub-0.3.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
87
- sdg_hub-0.3.1.dist-info/METADATA,sha256=-dPDzTaPfnMb_n6p7Jcvkqv3Y-Ihi76psItQL7DQBX8,9735
88
- sdg_hub-0.3.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
89
- sdg_hub-0.3.1.dist-info/top_level.txt,sha256=TqI7d-HE1n6zkXFkU0nF3A1Ct0P0pBaqI675uFokhx4,8
90
- sdg_hub-0.3.1.dist-info/RECORD,,
90
+ sdg_hub-0.4.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
91
+ sdg_hub-0.4.0.dist-info/METADATA,sha256=SPjLdht-43yAyDwZzdk91SYoQn8jRbsCTr4qBkXVVlw,9735
92
+ sdg_hub-0.4.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
93
+ sdg_hub-0.4.0.dist-info/top_level.txt,sha256=TqI7d-HE1n6zkXFkU0nF3A1Ct0P0pBaqI675uFokhx4,8
94
+ sdg_hub-0.4.0.dist-info/RECORD,,
@@ -1,9 +0,0 @@
1
- # SPDX-License-Identifier: Apache-2.0
2
- """Evaluation blocks for SDG Hub."""
3
-
4
- # Local
5
- from .evaluate_faithfulness_block import EvaluateFaithfulnessBlock
6
- from .evaluate_relevancy_block import EvaluateRelevancyBlock
7
- from .verify_question_block import VerifyQuestionBlock
8
-
9
- __all__ = ["EvaluateFaithfulnessBlock", "EvaluateRelevancyBlock", "VerifyQuestionBlock"]