sdf-xarray 0.5.0__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- include/SDFC_14.4.7/sdf.h +804 -0
- include/SDFC_14.4.7/sdf_derived.h +34 -0
- include/SDFC_14.4.7/sdf_extension.h +36 -0
- include/SDFC_14.4.7/sdf_helper.h +46 -0
- include/SDFC_14.4.7/sdf_list_type.h +68 -0
- include/SDFC_14.4.7/sdf_vector_type.h +68 -0
- include/SDFC_14.4.7/stack_allocator.h +49 -0
- include/SDFC_14.4.7/uthash.h +963 -0
- lib/SDFC_14.4.7/SDFCConfig.cmake +18 -0
- lib/SDFC_14.4.7/SDFCConfigVersion.cmake +65 -0
- lib/SDFC_14.4.7/SDFCTargets-release.cmake +19 -0
- lib/SDFC_14.4.7/SDFCTargets.cmake +105 -0
- lib/SDFC_14.4.7/sdfc.lib +0 -0
- sdf_xarray/__init__.py +905 -0
- sdf_xarray/_version.py +34 -0
- sdf_xarray/csdf.pxd +127 -0
- sdf_xarray/dataset_accessor.py +124 -0
- sdf_xarray/download.py +88 -0
- sdf_xarray/plotting.py +567 -0
- sdf_xarray/sdf_interface.cp314t-win_amd64.pyd +0 -0
- sdf_xarray/sdf_interface.pyx +342 -0
- sdf_xarray-0.5.0.dist-info/METADATA +150 -0
- sdf_xarray-0.5.0.dist-info/RECORD +26 -0
- sdf_xarray-0.5.0.dist-info/WHEEL +5 -0
- sdf_xarray-0.5.0.dist-info/entry_points.txt +6 -0
- sdf_xarray-0.5.0.dist-info/licenses/LICENCE +28 -0
sdf_xarray/__init__.py
ADDED
|
@@ -0,0 +1,905 @@
|
|
|
1
|
+
import contextlib
|
|
2
|
+
import os
|
|
3
|
+
import re
|
|
4
|
+
from collections import Counter, defaultdict
|
|
5
|
+
from collections.abc import Callable, Iterable
|
|
6
|
+
from importlib.metadata import version
|
|
7
|
+
from itertools import product
|
|
8
|
+
from os import PathLike as os_PathLike
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
from typing import ClassVar
|
|
11
|
+
|
|
12
|
+
import numpy as np
|
|
13
|
+
import xarray as xr
|
|
14
|
+
from packaging.version import Version
|
|
15
|
+
from xarray.backends import AbstractDataStore, BackendArray, BackendEntrypoint
|
|
16
|
+
from xarray.backends.file_manager import CachingFileManager
|
|
17
|
+
from xarray.backends.locks import ensure_lock
|
|
18
|
+
from xarray.core import indexing
|
|
19
|
+
from xarray.core.types import T_Chunks
|
|
20
|
+
from xarray.core.utils import close_on_error, try_read_magic_number_from_path
|
|
21
|
+
from xarray.core.variable import Variable
|
|
22
|
+
|
|
23
|
+
# NOTE: Do not delete these lines, otherwise the "epoch" dataset and dataarray
|
|
24
|
+
# accessors will not be imported when the user imports sdf_xarray
|
|
25
|
+
import sdf_xarray.dataset_accessor
|
|
26
|
+
import sdf_xarray.download
|
|
27
|
+
import sdf_xarray.plotting # noqa: F401
|
|
28
|
+
|
|
29
|
+
# NOTE: This attempts to initialise with the "pint" accessor if the user
|
|
30
|
+
# has installed the package
|
|
31
|
+
with contextlib.suppress(ImportError):
|
|
32
|
+
import pint_xarray # noqa: F401
|
|
33
|
+
|
|
34
|
+
from .sdf_interface import Constant, SDFFile # type: ignore # noqa: PGH003
|
|
35
|
+
|
|
36
|
+
# TODO Remove this once the new kwarg options are fully implemented
|
|
37
|
+
if Version(version("xarray")) >= Version("2025.8.0"):
|
|
38
|
+
xr.set_options(use_new_combine_kwarg_defaults=True)
|
|
39
|
+
|
|
40
|
+
PathLike = str | os_PathLike
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def _rename_with_underscore(name: str) -> str:
|
|
44
|
+
"""A lot of the variable names have spaces, forward slashes and dashes in them, which
|
|
45
|
+
are not valid in netCDF names so we replace them with underscores."""
|
|
46
|
+
return name.replace("/", "_").replace(" ", "_").replace("-", "_")
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def _process_latex_name(variable_name: str) -> str:
|
|
50
|
+
"""Converts variable names to LaTeX format where possible
|
|
51
|
+
using the following rules:
|
|
52
|
+
- E -> $E_x$
|
|
53
|
+
- E -> $E_y$
|
|
54
|
+
- E -> $E_z$
|
|
55
|
+
|
|
56
|
+
This repeats for B, J and P. It only changes the variable
|
|
57
|
+
name if there are spaces around the affix (prefix + suffix)
|
|
58
|
+
or if there is no trailing space. This is to avoid changing variable
|
|
59
|
+
names that may contain these affixes as part of the variable name itself.
|
|
60
|
+
"""
|
|
61
|
+
prefixes = ["E", "B", "J", "P"]
|
|
62
|
+
suffixes = ["x", "y", "z"]
|
|
63
|
+
for prefix, suffix in product(prefixes, suffixes):
|
|
64
|
+
# Match affix with preceding space and trailing space or end of string
|
|
65
|
+
affix_pattern = rf"\b{prefix}{suffix}\b"
|
|
66
|
+
# Insert LaTeX format while preserving spaces
|
|
67
|
+
replacement = rf"${prefix}_{suffix}$"
|
|
68
|
+
variable_name = re.sub(affix_pattern, replacement, variable_name)
|
|
69
|
+
return variable_name
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def _resolve_glob(path_glob: PathLike | Iterable[PathLike]):
|
|
73
|
+
"""
|
|
74
|
+
Normalise input path_glob into a sorted list of absolute, resolved Path objects.
|
|
75
|
+
"""
|
|
76
|
+
|
|
77
|
+
try:
|
|
78
|
+
p = Path(path_glob)
|
|
79
|
+
paths = list(p.parent.glob(p.name)) if p.name == "*.sdf" else list(p)
|
|
80
|
+
except TypeError:
|
|
81
|
+
paths = list({Path(p) for p in path_glob})
|
|
82
|
+
|
|
83
|
+
paths = sorted(p.resolve() for p in paths)
|
|
84
|
+
if not paths:
|
|
85
|
+
raise FileNotFoundError(f"No files matched pattern or input: {path_glob!r}")
|
|
86
|
+
return paths
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def _build_datatree_from_dataset(
|
|
90
|
+
ds: xr.Dataset,
|
|
91
|
+
) -> xr.DataTree:
|
|
92
|
+
"""
|
|
93
|
+
An `xarray.DataTree` is constructed utilising the original names in the SDF
|
|
94
|
+
file. This is due to the fact that these names include slashes which `xarray`
|
|
95
|
+
can use to automatically build up a datatree. We do additionally replace
|
|
96
|
+
spaces with underscores to be more pythonic. You can find the
|
|
97
|
+
`xarray.Dataset` name under the ``attrs["flat_structure_name"]`` for referencing.
|
|
98
|
+
|
|
99
|
+
In some cases the user may output the ``always + species`` dumpmask which
|
|
100
|
+
means that SDF variable will have species data plus a general one. When
|
|
101
|
+
defining a `xarray.DataTree` you cannot have a node of that tree contain both
|
|
102
|
+
variable information and have leaves with variables so we move the node
|
|
103
|
+
information to a leaf named ``node/All`` (see example of
|
|
104
|
+
``Dervied/Number_Density/All`` in below table)
|
|
105
|
+
|
|
106
|
+
Below are some examples of how variable names are translated from the
|
|
107
|
+
regular `xarray.open_dataset` result into their more traditional names.
|
|
108
|
+
|
|
109
|
+
=================================== ===================================
|
|
110
|
+
Dataset variable name DataTree variable name
|
|
111
|
+
=================================== ===================================
|
|
112
|
+
``Derived_Number_Density`` ``Derived/Number_Density/All``
|
|
113
|
+
``Derived_Number_Density_Electron`` ``Derived/Number_Density/Electron``
|
|
114
|
+
``Derived_Number_Density_Ion`` ``Derived/Number_Density/Ion``
|
|
115
|
+
``Derived_Number_Density_Photon`` ``Derived/Number_Density/Photon``
|
|
116
|
+
``Derived_Average_Particle_Energy`` ``Derived/Average_Particle_Energy``
|
|
117
|
+
=================================== ===================================
|
|
118
|
+
|
|
119
|
+
Parameters
|
|
120
|
+
----------
|
|
121
|
+
ds
|
|
122
|
+
Incoming `xarray.Dataset` to convert to a `xarray.DataTree`
|
|
123
|
+
"""
|
|
124
|
+
renames = {}
|
|
125
|
+
for name, var in ds.data_vars.items():
|
|
126
|
+
# Append the current variable name to the attributes
|
|
127
|
+
var.attrs["flat_structure_name"] = name
|
|
128
|
+
renames.update({name: var.attrs["full_name"].replace(" ", "_")})
|
|
129
|
+
|
|
130
|
+
new_names = renames.values()
|
|
131
|
+
|
|
132
|
+
final_renames = {
|
|
133
|
+
key: (
|
|
134
|
+
f"{path}/All"
|
|
135
|
+
if any(other.startswith(f"{path}/") for other in new_names)
|
|
136
|
+
else path
|
|
137
|
+
)
|
|
138
|
+
for key, path in renames.items()
|
|
139
|
+
}
|
|
140
|
+
|
|
141
|
+
ds = ds.rename_vars(final_renames)
|
|
142
|
+
dt = xr.DataTree.from_dict(ds)
|
|
143
|
+
dt.attrs = ds.attrs
|
|
144
|
+
return dt
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
def purge_unselected_data_vars(ds: xr.Dataset, data_vars: list[str]) -> xr.Dataset:
|
|
148
|
+
"""
|
|
149
|
+
If the user has exclusively requested only certain variables be
|
|
150
|
+
loaded in then we purge all other variables and dimensions
|
|
151
|
+
"""
|
|
152
|
+
existing_data_vars = set(ds.data_vars.keys())
|
|
153
|
+
vars_to_keep = set(data_vars) & existing_data_vars
|
|
154
|
+
vars_to_drop = existing_data_vars - vars_to_keep
|
|
155
|
+
ds = ds.drop_vars(vars_to_drop)
|
|
156
|
+
|
|
157
|
+
existing_dims = set(ds.sizes)
|
|
158
|
+
dims_to_keep = set()
|
|
159
|
+
for var in vars_to_keep:
|
|
160
|
+
dims_to_keep.update(ds[var].coords._names)
|
|
161
|
+
dims_to_keep.update(ds[var].dims)
|
|
162
|
+
|
|
163
|
+
coords_to_drop = existing_dims - dims_to_keep
|
|
164
|
+
return ds.drop_dims(coords_to_drop)
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
def combine_datasets(
|
|
168
|
+
path_glob: Iterable | str, data_vars: list[str], **kwargs
|
|
169
|
+
) -> xr.Dataset:
|
|
170
|
+
"""
|
|
171
|
+
Combine all datasets using a single time dimension, optionally extract
|
|
172
|
+
data from only the listed data_vars
|
|
173
|
+
"""
|
|
174
|
+
|
|
175
|
+
if data_vars is not None:
|
|
176
|
+
return xr.open_mfdataset(
|
|
177
|
+
path_glob,
|
|
178
|
+
join="outer",
|
|
179
|
+
coords="different",
|
|
180
|
+
compat="no_conflicts",
|
|
181
|
+
combine="nested",
|
|
182
|
+
concat_dim="time",
|
|
183
|
+
preprocess=SDFPreprocess(data_vars=data_vars),
|
|
184
|
+
**kwargs,
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
return xr.open_mfdataset(
|
|
188
|
+
path_glob,
|
|
189
|
+
data_vars="all",
|
|
190
|
+
coords="different",
|
|
191
|
+
compat="no_conflicts",
|
|
192
|
+
join="outer",
|
|
193
|
+
preprocess=SDFPreprocess(),
|
|
194
|
+
**kwargs,
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def open_mfdataset(
|
|
199
|
+
path_glob: Iterable | str | Path | Callable[..., Iterable[Path]],
|
|
200
|
+
*,
|
|
201
|
+
separate_times: bool = False,
|
|
202
|
+
keep_particles: bool = False,
|
|
203
|
+
probe_names: list[str] | None = None,
|
|
204
|
+
data_vars: list[str] | None = None,
|
|
205
|
+
chunks: T_Chunks = "auto",
|
|
206
|
+
) -> xr.Dataset:
|
|
207
|
+
"""Open a set of EPOCH SDF files as one `xarray.Dataset`
|
|
208
|
+
|
|
209
|
+
EPOCH can output variables at different periods, so each individal
|
|
210
|
+
SDF file from one EPOCH run may have different variables in it. In
|
|
211
|
+
order to combine all files into one `xarray.Dataset`, we need to
|
|
212
|
+
concatenate variables across their time dimension.
|
|
213
|
+
|
|
214
|
+
We have two choices:
|
|
215
|
+
|
|
216
|
+
1. One time dimension where some variables may not be defined at all time
|
|
217
|
+
points, and so will be filled with NaNs at missing points; or
|
|
218
|
+
2. Multiple time dimensions, one for each output frequency
|
|
219
|
+
|
|
220
|
+
The second option is better for memory consumption, as the missing data with
|
|
221
|
+
the first option still takes up space. However, proper lazy-loading may
|
|
222
|
+
mitigate this.
|
|
223
|
+
|
|
224
|
+
The ``separate_times`` argument can be used to switch between these choices.
|
|
225
|
+
|
|
226
|
+
Parameters
|
|
227
|
+
----------
|
|
228
|
+
path_glob :
|
|
229
|
+
List of filenames or string glob pattern
|
|
230
|
+
separate_times :
|
|
231
|
+
If ``True``, create separate time dimensions for variables defined at
|
|
232
|
+
different output frequencies
|
|
233
|
+
keep_particles :
|
|
234
|
+
If ``True``, also load particle data (this may use a lot of memory!)
|
|
235
|
+
probe_names :
|
|
236
|
+
List of EPOCH probe names
|
|
237
|
+
data_vars :
|
|
238
|
+
List of data vars to load in (If not specified loads in all variables)
|
|
239
|
+
chunks :
|
|
240
|
+
Dictionary with keys given by dimension names and values given by chunk sizes.
|
|
241
|
+
In general, these should divide the dimensions of each dataset. By default
|
|
242
|
+
chunks are automatically set so that they are the same size as the dimensions
|
|
243
|
+
stored in each of the SDF files. See `Xarray chunking-and-performance
|
|
244
|
+
<https://docs.xarray.dev/en/stable/user-guide/dask.html#chunking-and-performance>`_
|
|
245
|
+
for details on why this is useful for large datasets. The default behaviour is
|
|
246
|
+
to do this automatically and can be disabled by ``chunks=None``.
|
|
247
|
+
"""
|
|
248
|
+
|
|
249
|
+
path_glob = _resolve_glob(path_glob)
|
|
250
|
+
|
|
251
|
+
if not separate_times:
|
|
252
|
+
return combine_datasets(
|
|
253
|
+
path_glob,
|
|
254
|
+
data_vars=data_vars,
|
|
255
|
+
keep_particles=keep_particles,
|
|
256
|
+
probe_names=probe_names,
|
|
257
|
+
chunks=chunks,
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
_, var_times_map = make_time_dims(path_glob)
|
|
261
|
+
|
|
262
|
+
all_dfs = []
|
|
263
|
+
for f in path_glob:
|
|
264
|
+
ds = xr.open_dataset(
|
|
265
|
+
f, keep_particles=keep_particles, probe_names=probe_names, chunks=chunks
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
# If the data_vars are specified then only load them in and disregard the rest.
|
|
269
|
+
# If there are no remaining data variables then skip adding the dataset to list
|
|
270
|
+
if data_vars is not None:
|
|
271
|
+
ds = purge_unselected_data_vars(ds, data_vars)
|
|
272
|
+
if not ds.data_vars:
|
|
273
|
+
continue
|
|
274
|
+
|
|
275
|
+
all_dfs.append(ds)
|
|
276
|
+
|
|
277
|
+
for df in all_dfs:
|
|
278
|
+
for da in df:
|
|
279
|
+
df[da] = df[da].expand_dims(
|
|
280
|
+
dim={var_times_map[str(da)]: [df.attrs["time"]]}
|
|
281
|
+
)
|
|
282
|
+
for coord in df.coords:
|
|
283
|
+
if df.coords[coord].attrs.get("point_data", False):
|
|
284
|
+
# We need to undo our renaming of the coordinates
|
|
285
|
+
base_name = coord.split("_", maxsplit=1)[-1]
|
|
286
|
+
sdf_coord_name = f"Grid_{base_name}"
|
|
287
|
+
df.coords[coord] = df.coords[coord].expand_dims(
|
|
288
|
+
dim={var_times_map[sdf_coord_name]: [df.attrs["time"]]}
|
|
289
|
+
)
|
|
290
|
+
|
|
291
|
+
return xr.combine_by_coords(
|
|
292
|
+
all_dfs,
|
|
293
|
+
coords="different",
|
|
294
|
+
combine_attrs="drop_conflicts",
|
|
295
|
+
join="outer",
|
|
296
|
+
compat="no_conflicts",
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
def open_datatree(
|
|
301
|
+
path: PathLike,
|
|
302
|
+
*,
|
|
303
|
+
keep_particles: bool = False,
|
|
304
|
+
probe_names: list[str] | None = None,
|
|
305
|
+
) -> xr.DataTree:
|
|
306
|
+
"""
|
|
307
|
+
An `xarray.DataTree` is constructed utilising the original names in the SDF
|
|
308
|
+
file. This is due to the fact that these names include slashes which `xarray`
|
|
309
|
+
can use to automatically build up a datatree. We do additionally replace
|
|
310
|
+
spaces with underscores to be more pythonic. You can find the
|
|
311
|
+
`xarray.Dataset` name under the ``attrs["flat_structure_name"]`` for referencing.
|
|
312
|
+
|
|
313
|
+
In some cases the user may output the ``always + species`` dumpmask which
|
|
314
|
+
means that SDF variable will have species data plus a general one. When
|
|
315
|
+
defining a `xarray.DataTree` you cannot have a node of that tree contain both
|
|
316
|
+
variable information and have leaves with variables so we move the node
|
|
317
|
+
information to a leaf named ``node/All`` (see example of
|
|
318
|
+
``Dervied/Number_Density/All`` in below table)
|
|
319
|
+
|
|
320
|
+
Below are some examples of how variable names are translated from the
|
|
321
|
+
regular `xarray.open_dataset` result into their more traditional names.
|
|
322
|
+
|
|
323
|
+
=================================== ===================================
|
|
324
|
+
Dataset variable name DataTree variable name
|
|
325
|
+
=================================== ===================================
|
|
326
|
+
``Derived_Number_Density`` ``Derived/Number_Density/All``
|
|
327
|
+
``Derived_Number_Density_Electron`` ``Derived/Number_Density/Electron``
|
|
328
|
+
``Derived_Number_Density_Ion`` ``Derived/Number_Density/Ion``
|
|
329
|
+
``Derived_Number_Density_Photon`` ``Derived/Number_Density/Photon``
|
|
330
|
+
``Derived_Average_Particle_Energy`` ``Derived/Average_Particle_Energy``
|
|
331
|
+
=================================== ===================================
|
|
332
|
+
|
|
333
|
+
Parameters
|
|
334
|
+
----------
|
|
335
|
+
path
|
|
336
|
+
The path to the SDF file
|
|
337
|
+
keep_particles
|
|
338
|
+
If ``True``, also load particle data (this may use a lot of memory!)
|
|
339
|
+
probe_names
|
|
340
|
+
List of EPOCH probe names
|
|
341
|
+
|
|
342
|
+
Examples
|
|
343
|
+
--------
|
|
344
|
+
>>> dt = open_datatree("0000.sdf")
|
|
345
|
+
>>> dt["Electric_Field"]["Ex"].values # Access all Electric_Field_Ex data
|
|
346
|
+
"""
|
|
347
|
+
|
|
348
|
+
return xr.open_datatree(
|
|
349
|
+
path, keep_particles=keep_particles, probe_names=probe_names
|
|
350
|
+
)
|
|
351
|
+
|
|
352
|
+
|
|
353
|
+
def open_mfdatatree(
|
|
354
|
+
path_glob: Iterable | str | Path | Callable[..., Iterable[Path]],
|
|
355
|
+
*,
|
|
356
|
+
separate_times: bool = False,
|
|
357
|
+
keep_particles: bool = False,
|
|
358
|
+
probe_names: list[str] | None = None,
|
|
359
|
+
data_vars: list[str] | None = None,
|
|
360
|
+
) -> xr.DataTree:
|
|
361
|
+
"""Open a set of EPOCH SDF files as one `xarray.DataTree`
|
|
362
|
+
|
|
363
|
+
EPOCH can output variables at different periods, so each individal
|
|
364
|
+
SDF file from one EPOCH run may have different variables in it. In
|
|
365
|
+
order to combine all files into one `xarray.Dataset`, we need to
|
|
366
|
+
concatenate variables across their time dimension.
|
|
367
|
+
|
|
368
|
+
We have two choices:
|
|
369
|
+
|
|
370
|
+
1. One time dimension where some variables may not be defined at all time
|
|
371
|
+
points, and so will be filled with NaNs at missing points; or
|
|
372
|
+
2. Multiple time dimensions, one for each output frequency
|
|
373
|
+
|
|
374
|
+
The second option is better for memory consumption, as the missing data with
|
|
375
|
+
the first option still takes up space. However, proper lazy-loading may
|
|
376
|
+
mitigate this.
|
|
377
|
+
|
|
378
|
+
The ``separate_times`` argument can be used to switch between these choices.
|
|
379
|
+
|
|
380
|
+
An `xarray.DataTree` is constructed utilising the original names in the SDF
|
|
381
|
+
file. This is due to the fact that these names include slashes which `xarray`
|
|
382
|
+
can use to automatically build up a datatree. We do additionally replace
|
|
383
|
+
spaces with underscores to be more pythonic. You can find the
|
|
384
|
+
`xarray.Dataset` name under the ``attrs["flat_structure_name"]`` for referencing.
|
|
385
|
+
|
|
386
|
+
This function combines multiple SDF files into a single `xarray.DataTree` with a
|
|
387
|
+
unified time dimension and hierarchical organization of variables.
|
|
388
|
+
|
|
389
|
+
In some cases the user may output the ``always + species`` dumpmask which
|
|
390
|
+
means that SDF variable will have species data plus a general one. When
|
|
391
|
+
defining a `xarray.DataTree` you cannot have a node of that tree contain both
|
|
392
|
+
variable information and have leaves with variables so we move the node
|
|
393
|
+
information to a leaf named ``node/All`` (see example of
|
|
394
|
+
``Dervied/Number_Density/All`` in below table)
|
|
395
|
+
|
|
396
|
+
Below are some examples of how variable names are translated from the
|
|
397
|
+
regular `xarray.open_dataset` result into their more traditional names.
|
|
398
|
+
|
|
399
|
+
=================================== ===================================
|
|
400
|
+
Dataset variable name DataTree variable name
|
|
401
|
+
=================================== ===================================
|
|
402
|
+
``Derived_Number_Density`` ``Derived/Number_Density/All``
|
|
403
|
+
``Derived_Number_Density_Electron`` ``Derived/Number_Density/Electron``
|
|
404
|
+
``Derived_Number_Density_Ion`` ``Derived/Number_Density/Ion``
|
|
405
|
+
``Derived_Number_Density_Photon`` ``Derived/Number_Density/Photon``
|
|
406
|
+
``Derived_Average_Particle_Energy`` ``Derived/Average_Particle_Energy``
|
|
407
|
+
=================================== ===================================
|
|
408
|
+
|
|
409
|
+
Parameters
|
|
410
|
+
----------
|
|
411
|
+
path_glob
|
|
412
|
+
List of filenames or string glob pattern
|
|
413
|
+
separate_times
|
|
414
|
+
If ``True``, create separate time dimensions for variables defined at
|
|
415
|
+
different output frequencies
|
|
416
|
+
keep_particles
|
|
417
|
+
If ``True``, also load particle data (this may use a lot of memory!)
|
|
418
|
+
probe_names
|
|
419
|
+
List of EPOCH probe names
|
|
420
|
+
data_vars
|
|
421
|
+
List of data vars to load in (If not specified loads in all variables)
|
|
422
|
+
|
|
423
|
+
Examples
|
|
424
|
+
--------
|
|
425
|
+
>>> dt = open_mfdatatree("*.sdf")
|
|
426
|
+
>>> dt["Electric_Field"]["Ex"].values # Access all Electric_Field_Ex data
|
|
427
|
+
>>> dt.coords["time"].values # Access combined time dimension
|
|
428
|
+
"""
|
|
429
|
+
# First, combine the datasets as usual
|
|
430
|
+
combined_ds = open_mfdataset(
|
|
431
|
+
path_glob,
|
|
432
|
+
separate_times=separate_times,
|
|
433
|
+
keep_particles=keep_particles,
|
|
434
|
+
probe_names=probe_names,
|
|
435
|
+
data_vars=data_vars,
|
|
436
|
+
)
|
|
437
|
+
|
|
438
|
+
return _build_datatree_from_dataset(combined_ds)
|
|
439
|
+
|
|
440
|
+
|
|
441
|
+
def make_time_dims(path_glob):
|
|
442
|
+
"""Extract the distinct set of time arrays from a collection of
|
|
443
|
+
SDF files, along with a mapping from variable names to their time
|
|
444
|
+
dimension.
|
|
445
|
+
"""
|
|
446
|
+
# Map variable names to list of times
|
|
447
|
+
vars_count = defaultdict(list)
|
|
448
|
+
for f in path_glob:
|
|
449
|
+
with SDFFile(str(f)) as sdf_file:
|
|
450
|
+
for key in sdf_file.variables:
|
|
451
|
+
vars_count[_rename_with_underscore(key)].append(sdf_file.header["time"])
|
|
452
|
+
for grid in sdf_file.grids.values():
|
|
453
|
+
vars_count[_rename_with_underscore(grid.name)].append(
|
|
454
|
+
sdf_file.header["time"]
|
|
455
|
+
)
|
|
456
|
+
|
|
457
|
+
# Count the unique set of lists of times
|
|
458
|
+
times_count = Counter(tuple(v) for v in vars_count.values())
|
|
459
|
+
|
|
460
|
+
# Give each set of times a unique name
|
|
461
|
+
time_dims = {}
|
|
462
|
+
for count, t in enumerate(times_count):
|
|
463
|
+
time_dims[f"time{count}"] = t
|
|
464
|
+
|
|
465
|
+
# Map each variable to the name of its time dimension
|
|
466
|
+
var_times_map = {}
|
|
467
|
+
for key, value in vars_count.items():
|
|
468
|
+
v_tuple = tuple(value)
|
|
469
|
+
for time_name, time_dim in time_dims.items():
|
|
470
|
+
if v_tuple == time_dim:
|
|
471
|
+
var_times_map[key] = time_name
|
|
472
|
+
break
|
|
473
|
+
else:
|
|
474
|
+
raise ValueError(f"Didn't find time dim for {key!r} with {v_tuple}")
|
|
475
|
+
|
|
476
|
+
return time_dims, var_times_map
|
|
477
|
+
|
|
478
|
+
|
|
479
|
+
class SDFBackendArray(BackendArray):
|
|
480
|
+
"""Adapater class required for lazy loading"""
|
|
481
|
+
|
|
482
|
+
__slots__ = ("datastore", "dtype", "shape", "variable_name")
|
|
483
|
+
|
|
484
|
+
def __init__(self, variable_name, datastore, shape, dtype):
|
|
485
|
+
self.datastore = datastore
|
|
486
|
+
self.variable_name = variable_name
|
|
487
|
+
self.shape = shape
|
|
488
|
+
self.dtype = dtype
|
|
489
|
+
|
|
490
|
+
def get_array(self, needs_lock=True):
|
|
491
|
+
with self.datastore.acquire_context(needs_lock) as ds:
|
|
492
|
+
return ds.variables[self.variable_name]
|
|
493
|
+
|
|
494
|
+
def __getitem__(self, key: indexing.ExplicitIndexer) -> np.typing.ArrayLike:
|
|
495
|
+
return indexing.explicit_indexing_adapter(
|
|
496
|
+
key,
|
|
497
|
+
self.shape,
|
|
498
|
+
indexing.IndexingSupport.OUTER,
|
|
499
|
+
self._raw_indexing_method,
|
|
500
|
+
)
|
|
501
|
+
|
|
502
|
+
def _raw_indexing_method(self, key: tuple) -> np.typing.ArrayLike:
|
|
503
|
+
# thread safe method that access to data on disk
|
|
504
|
+
with self.datastore.acquire_context():
|
|
505
|
+
original_array = self.get_array(needs_lock=False)
|
|
506
|
+
return original_array.data[key]
|
|
507
|
+
|
|
508
|
+
|
|
509
|
+
class SDFDataStore(AbstractDataStore):
|
|
510
|
+
"""Store for reading and writing data via the SDF library."""
|
|
511
|
+
|
|
512
|
+
__slots__ = (
|
|
513
|
+
"_filename",
|
|
514
|
+
"_manager",
|
|
515
|
+
"drop_variables",
|
|
516
|
+
"keep_particles",
|
|
517
|
+
"lock",
|
|
518
|
+
"probe_names",
|
|
519
|
+
)
|
|
520
|
+
|
|
521
|
+
def __init__(
|
|
522
|
+
self,
|
|
523
|
+
manager,
|
|
524
|
+
drop_variables=None,
|
|
525
|
+
keep_particles=False,
|
|
526
|
+
lock=None,
|
|
527
|
+
probe_names=None,
|
|
528
|
+
):
|
|
529
|
+
self._manager = manager
|
|
530
|
+
self._filename = self.ds.filename
|
|
531
|
+
self.drop_variables = drop_variables
|
|
532
|
+
self.keep_particles = keep_particles
|
|
533
|
+
self.lock = ensure_lock(lock)
|
|
534
|
+
self.probe_names = probe_names
|
|
535
|
+
|
|
536
|
+
@classmethod
|
|
537
|
+
def open(
|
|
538
|
+
cls,
|
|
539
|
+
filename,
|
|
540
|
+
lock=None,
|
|
541
|
+
drop_variables=None,
|
|
542
|
+
keep_particles=False,
|
|
543
|
+
probe_names=None,
|
|
544
|
+
):
|
|
545
|
+
if isinstance(filename, os.PathLike):
|
|
546
|
+
filename = os.fspath(filename)
|
|
547
|
+
|
|
548
|
+
manager = CachingFileManager(SDFFile, filename, lock=lock)
|
|
549
|
+
return cls(
|
|
550
|
+
manager,
|
|
551
|
+
lock=lock,
|
|
552
|
+
drop_variables=drop_variables,
|
|
553
|
+
keep_particles=keep_particles,
|
|
554
|
+
probe_names=probe_names,
|
|
555
|
+
)
|
|
556
|
+
|
|
557
|
+
def _acquire(self, needs_lock=True):
|
|
558
|
+
with self._manager.acquire_context(needs_lock) as ds:
|
|
559
|
+
return ds
|
|
560
|
+
|
|
561
|
+
@property
|
|
562
|
+
def ds(self):
|
|
563
|
+
return self._acquire()
|
|
564
|
+
|
|
565
|
+
def acquire_context(self, needs_lock=True):
|
|
566
|
+
return self._manager.acquire_context(needs_lock)
|
|
567
|
+
|
|
568
|
+
def load(self): # noqa: PLR0912, PLR0915
|
|
569
|
+
# Drop any requested variables
|
|
570
|
+
if self.drop_variables:
|
|
571
|
+
# Build a mapping from underscored names to real variable names
|
|
572
|
+
name_map = {_rename_with_underscore(var): var for var in self.ds.variables}
|
|
573
|
+
|
|
574
|
+
for variable in self.drop_variables:
|
|
575
|
+
key = _rename_with_underscore(variable)
|
|
576
|
+
original_name = name_map.get(key)
|
|
577
|
+
|
|
578
|
+
if original_name is None:
|
|
579
|
+
raise KeyError(
|
|
580
|
+
f"Variable '{variable}' not found (interpreted as '{key}')."
|
|
581
|
+
)
|
|
582
|
+
self.ds.variables.pop(original_name)
|
|
583
|
+
|
|
584
|
+
# These two dicts are global metadata about the run or file
|
|
585
|
+
attrs = {**self.ds.header, **self.ds.run_info}
|
|
586
|
+
|
|
587
|
+
data_vars = {}
|
|
588
|
+
coords = {}
|
|
589
|
+
|
|
590
|
+
def _norm_grid_name(grid_name: str) -> str:
|
|
591
|
+
"""There may be multiple grids all with the same coordinate names, so
|
|
592
|
+
drop the "Grid/" from the start, and append the rest to the
|
|
593
|
+
dimension name. This lets us disambiguate them all. Probably"""
|
|
594
|
+
return grid_name.split("/", maxsplit=1)[-1]
|
|
595
|
+
|
|
596
|
+
def _grid_species_name(grid_name: str) -> str:
|
|
597
|
+
return grid_name.split("/")[-1]
|
|
598
|
+
|
|
599
|
+
def _process_grid_name(grid_name: str, transform_func) -> str:
|
|
600
|
+
"""Apply the given transformation function and then rename with underscores."""
|
|
601
|
+
transformed_name = transform_func(grid_name)
|
|
602
|
+
return _rename_with_underscore(transformed_name)
|
|
603
|
+
|
|
604
|
+
for key, value in self.ds.grids.items():
|
|
605
|
+
if "cpu" in key.lower():
|
|
606
|
+
# Had some problems with these variables, so just ignore them for now
|
|
607
|
+
continue
|
|
608
|
+
|
|
609
|
+
if not self.keep_particles and value.is_point_data:
|
|
610
|
+
continue
|
|
611
|
+
|
|
612
|
+
base_name = _process_grid_name(value.name, _norm_grid_name)
|
|
613
|
+
|
|
614
|
+
for label, coord, unit in zip(value.labels, value.data, value.units):
|
|
615
|
+
full_name = f"{label}_{base_name}"
|
|
616
|
+
dim_name = (
|
|
617
|
+
f"ID_{_process_grid_name(key, _grid_species_name)}"
|
|
618
|
+
if value.is_point_data
|
|
619
|
+
else full_name
|
|
620
|
+
)
|
|
621
|
+
coords[full_name] = (
|
|
622
|
+
dim_name,
|
|
623
|
+
coord,
|
|
624
|
+
{
|
|
625
|
+
"long_name": label.replace("_", " "),
|
|
626
|
+
"units": unit,
|
|
627
|
+
"point_data": value.is_point_data,
|
|
628
|
+
"full_name": value.name,
|
|
629
|
+
},
|
|
630
|
+
)
|
|
631
|
+
|
|
632
|
+
# Read and convert SDF variables and meshes to xarray DataArrays and Coordinates
|
|
633
|
+
for key, value in self.ds.variables.items():
|
|
634
|
+
# Had some problems with these variables, so just ignore them for now
|
|
635
|
+
if "cpu" in key.lower():
|
|
636
|
+
continue
|
|
637
|
+
if "boundary" in key.lower():
|
|
638
|
+
continue
|
|
639
|
+
if "output file" in key.lower():
|
|
640
|
+
continue
|
|
641
|
+
|
|
642
|
+
if not self.keep_particles and value.is_point_data:
|
|
643
|
+
continue
|
|
644
|
+
|
|
645
|
+
if isinstance(value, Constant) or value.grid is None:
|
|
646
|
+
# We don't have a grid, either because it's just a
|
|
647
|
+
# scalar, or because it's an array over something
|
|
648
|
+
# else. We have no more information, so just make up
|
|
649
|
+
# some (hopefully) unique dimension names
|
|
650
|
+
shape = getattr(value.data, "shape", ())
|
|
651
|
+
dims = [f"dim_{key}_{n}" for n, _ in enumerate(shape)]
|
|
652
|
+
base_name = _rename_with_underscore(key)
|
|
653
|
+
|
|
654
|
+
data_attrs = {}
|
|
655
|
+
data_attrs["full_name"] = key
|
|
656
|
+
data_attrs["long_name"] = base_name.replace("_", " ")
|
|
657
|
+
if value.units is not None:
|
|
658
|
+
data_attrs["units"] = value.units
|
|
659
|
+
|
|
660
|
+
var = Variable(dims, value.data, attrs=data_attrs)
|
|
661
|
+
|
|
662
|
+
# Provide preferred_chunks for constants so dask aligns to natural shapes
|
|
663
|
+
var.encoding["preferred_chunks"] = dict(zip(dims, shape))
|
|
664
|
+
|
|
665
|
+
data_vars[base_name] = var
|
|
666
|
+
continue
|
|
667
|
+
|
|
668
|
+
if value.is_point_data:
|
|
669
|
+
# Point (particle) variables are 1D
|
|
670
|
+
|
|
671
|
+
# Particle data does not maintain a fixed dimension size
|
|
672
|
+
# throughout the simulation. An example of a particle name comes
|
|
673
|
+
# in the form of `Particles/Px/Ion_H` which is then modified
|
|
674
|
+
# using `_process_grid_name()` into `Ion_H`. This is fine as the
|
|
675
|
+
# other components of the momentum (`Py`, `Pz`) will have the same
|
|
676
|
+
# size as they represent the same bunch of particles.
|
|
677
|
+
|
|
678
|
+
# Probes however have names in the form of `Electron_Front_Probe/Px`
|
|
679
|
+
# which are changed to just `Px`; this is fine when there is only one
|
|
680
|
+
# probe in the system but when there are multiple they will have
|
|
681
|
+
# conflicting sizes so we can't keep the names as simply `Px` so we
|
|
682
|
+
# instead set their dimension as the full name `Electron_Front_Probe_Px`.
|
|
683
|
+
is_probe_name_match = self.probe_names is not None and any(
|
|
684
|
+
name in key for name in self.probe_names
|
|
685
|
+
)
|
|
686
|
+
name_processor = (
|
|
687
|
+
_rename_with_underscore
|
|
688
|
+
if is_probe_name_match
|
|
689
|
+
else _grid_species_name
|
|
690
|
+
)
|
|
691
|
+
var_coords = (f"ID_{_process_grid_name(key, name_processor)}",)
|
|
692
|
+
else:
|
|
693
|
+
# These are DataArrays
|
|
694
|
+
|
|
695
|
+
# SDF makes matching up the coordinates a bit convoluted. Each
|
|
696
|
+
# dimension on a variable can be defined either on "grid" or
|
|
697
|
+
# "grid_mid", and the only way to tell which one is to compare the
|
|
698
|
+
# variable's dimension sizes for each grid. We do this by making a
|
|
699
|
+
# nested dict that looks something like:
|
|
700
|
+
#
|
|
701
|
+
# {"X": {129: "X_Grid", 129: "X_Grid_mid"}}
|
|
702
|
+
#
|
|
703
|
+
# Then we can look up the dimension label and size to get *our* name
|
|
704
|
+
# for the corresponding coordinate
|
|
705
|
+
dim_size_lookup = defaultdict(dict)
|
|
706
|
+
grid = self.ds.grids[value.grid]
|
|
707
|
+
grid_base_name = _process_grid_name(grid.name, _norm_grid_name)
|
|
708
|
+
for dim_size, dim_name in zip(grid.shape, grid.labels):
|
|
709
|
+
dim_size_lookup[dim_name][dim_size] = f"{dim_name}_{grid_base_name}"
|
|
710
|
+
|
|
711
|
+
grid_mid = self.ds.grids[value.grid_mid]
|
|
712
|
+
grid_mid_base_name = _process_grid_name(grid_mid.name, _norm_grid_name)
|
|
713
|
+
for dim_size, dim_name in zip(grid_mid.shape, grid_mid.labels):
|
|
714
|
+
dim_size_lookup[dim_name][dim_size] = (
|
|
715
|
+
f"{dim_name}_{grid_mid_base_name}"
|
|
716
|
+
)
|
|
717
|
+
|
|
718
|
+
var_coords = [
|
|
719
|
+
dim_size_lookup[dim_name][dim_size]
|
|
720
|
+
for dim_name, dim_size in zip(grid.labels, value.shape)
|
|
721
|
+
]
|
|
722
|
+
|
|
723
|
+
# TODO: error handling here? other attributes?
|
|
724
|
+
base_name = _rename_with_underscore(key)
|
|
725
|
+
long_name = _process_latex_name(base_name.replace("_", " "))
|
|
726
|
+
data_attrs = {
|
|
727
|
+
"units": value.units,
|
|
728
|
+
"point_data": value.is_point_data,
|
|
729
|
+
"full_name": key,
|
|
730
|
+
"long_name": long_name,
|
|
731
|
+
}
|
|
732
|
+
lazy_data = indexing.LazilyIndexedArray(
|
|
733
|
+
SDFBackendArray(key, self, shape=value.shape, dtype=value.data.dtype)
|
|
734
|
+
)
|
|
735
|
+
var = Variable(var_coords, lazy_data, data_attrs)
|
|
736
|
+
# Set preferred chunks to match on-disk layout
|
|
737
|
+
# For point data (1D): full dimension
|
|
738
|
+
# For grid data (N-D): individual grid chunk sizes
|
|
739
|
+
if value.is_point_data:
|
|
740
|
+
var.encoding["preferred_chunks"] = {var_coords[0]: len(value.data)}
|
|
741
|
+
else:
|
|
742
|
+
# Align with on-disk grid structure
|
|
743
|
+
chunk_dict = {}
|
|
744
|
+
for dim_name, size in zip(var_coords, value.shape):
|
|
745
|
+
# Use natural on-disk boundaries
|
|
746
|
+
chunk_dict[dim_name] = size
|
|
747
|
+
var.encoding["preferred_chunks"] = chunk_dict
|
|
748
|
+
|
|
749
|
+
data_vars[base_name] = var
|
|
750
|
+
|
|
751
|
+
# TODO: might need to decode if mult is set?
|
|
752
|
+
|
|
753
|
+
# # see also conventions.decode_cf_variables
|
|
754
|
+
# vars, attrs, coords = my_decode_variables(
|
|
755
|
+
# vars, attrs, decode_times, decode_timedelta, decode_coords
|
|
756
|
+
# )
|
|
757
|
+
|
|
758
|
+
ds = xr.Dataset(data_vars, attrs=attrs, coords=coords)
|
|
759
|
+
ds.set_close(self.ds.close)
|
|
760
|
+
|
|
761
|
+
return ds
|
|
762
|
+
|
|
763
|
+
def close(self, **kwargs):
|
|
764
|
+
self._manager.close(**kwargs)
|
|
765
|
+
|
|
766
|
+
|
|
767
|
+
class SDFEntrypoint(BackendEntrypoint):
|
|
768
|
+
supports_groups = True
|
|
769
|
+
open_dataset_parameters: ClassVar[list[str]] = [
|
|
770
|
+
"filename_or_obj",
|
|
771
|
+
"drop_variables",
|
|
772
|
+
"keep_particles",
|
|
773
|
+
"probe_names",
|
|
774
|
+
]
|
|
775
|
+
|
|
776
|
+
def open_dataset(
|
|
777
|
+
self,
|
|
778
|
+
filename_or_obj,
|
|
779
|
+
*,
|
|
780
|
+
drop_variables=None,
|
|
781
|
+
keep_particles=False,
|
|
782
|
+
probe_names=None,
|
|
783
|
+
):
|
|
784
|
+
if isinstance(filename_or_obj, Path):
|
|
785
|
+
# sdf library takes a filename only
|
|
786
|
+
# TODO: work out if we need to deal with file handles
|
|
787
|
+
filename_or_obj = str(filename_or_obj)
|
|
788
|
+
|
|
789
|
+
store = SDFDataStore.open(
|
|
790
|
+
filename_or_obj,
|
|
791
|
+
drop_variables=drop_variables,
|
|
792
|
+
keep_particles=keep_particles,
|
|
793
|
+
probe_names=probe_names,
|
|
794
|
+
)
|
|
795
|
+
with close_on_error(store):
|
|
796
|
+
return store.load()
|
|
797
|
+
|
|
798
|
+
open_datatree_parameters: ClassVar[list[str]] = [
|
|
799
|
+
"filename_or_obj",
|
|
800
|
+
"drop_variables",
|
|
801
|
+
"keep_particles",
|
|
802
|
+
"probe_names",
|
|
803
|
+
]
|
|
804
|
+
|
|
805
|
+
def open_datatree(
|
|
806
|
+
self,
|
|
807
|
+
filename_or_obj,
|
|
808
|
+
*,
|
|
809
|
+
drop_variables=None,
|
|
810
|
+
keep_particles=False,
|
|
811
|
+
probe_names=None,
|
|
812
|
+
):
|
|
813
|
+
ds = self.open_dataset(
|
|
814
|
+
filename_or_obj,
|
|
815
|
+
drop_variables=drop_variables,
|
|
816
|
+
keep_particles=keep_particles,
|
|
817
|
+
probe_names=probe_names,
|
|
818
|
+
)
|
|
819
|
+
return _build_datatree_from_dataset(ds)
|
|
820
|
+
|
|
821
|
+
def guess_can_open(self, filename_or_obj):
|
|
822
|
+
magic_number = try_read_magic_number_from_path(filename_or_obj)
|
|
823
|
+
if magic_number is not None:
|
|
824
|
+
return magic_number.startswith(b"SDF1")
|
|
825
|
+
|
|
826
|
+
return Path(filename_or_obj).suffix in {".sdf", ".SDF"}
|
|
827
|
+
|
|
828
|
+
description = "Use .sdf files in Xarray"
|
|
829
|
+
|
|
830
|
+
url = "https://epochpic.github.io/documentation/visualising_output/python_beam.html"
|
|
831
|
+
|
|
832
|
+
|
|
833
|
+
class XrTUIEntrpoint:
|
|
834
|
+
def open_mfdatatree(self, paths: list[Path]) -> xr.DataTree:
|
|
835
|
+
return open_mfdatatree(paths)
|
|
836
|
+
|
|
837
|
+
|
|
838
|
+
class SDFPreprocess:
|
|
839
|
+
"""Preprocess SDF files for xarray ensuring matching job ids and sets
|
|
840
|
+
time dimension.
|
|
841
|
+
|
|
842
|
+
This class is used as a 'preprocess' function within ``xr.open_mfdataset``. It
|
|
843
|
+
performs three main duties on each individual file's Dataset:
|
|
844
|
+
|
|
845
|
+
1. Checks for a **matching job ID** across all files to ensure dataset consistency.
|
|
846
|
+
2. **Filters** the Dataset to keep only the variables specified in `data_vars`
|
|
847
|
+
and their required coordinates.
|
|
848
|
+
3. **Expands dimensions** to include a single 'time' coordinate, preparing the
|
|
849
|
+
Dataset for concatenation.
|
|
850
|
+
|
|
851
|
+
EPOCH can output variables at different intervals, so some SDF files
|
|
852
|
+
may not contain the requested variable. We combine this data into one
|
|
853
|
+
dataset by concatenating across the time dimension.
|
|
854
|
+
|
|
855
|
+
The combination is performed using ``join="outer"`` (in the calling ``open_mfdataset`` function),
|
|
856
|
+
meaning that the final combined dataset will contain the variable across the
|
|
857
|
+
entire time span, with NaNs filling the time steps where the variable was absent in
|
|
858
|
+
the individual file.
|
|
859
|
+
|
|
860
|
+
With large SDF files, this filtering method will save on memory consumption when
|
|
861
|
+
compared to loading all variables from all files before concatenation.
|
|
862
|
+
|
|
863
|
+
Parameters
|
|
864
|
+
----------
|
|
865
|
+
data_vars :
|
|
866
|
+
A list of data variables to load in (If not specified loads
|
|
867
|
+
in all variables)
|
|
868
|
+
"""
|
|
869
|
+
|
|
870
|
+
def __init__(
|
|
871
|
+
self,
|
|
872
|
+
data_vars: list[str] | None = None,
|
|
873
|
+
):
|
|
874
|
+
self.job_id: int | None = None
|
|
875
|
+
self.data_vars = data_vars
|
|
876
|
+
|
|
877
|
+
def __call__(self, ds: xr.Dataset) -> xr.Dataset:
|
|
878
|
+
if self.job_id is None:
|
|
879
|
+
self.job_id = ds.attrs["jobid1"]
|
|
880
|
+
|
|
881
|
+
if self.job_id != ds.attrs["jobid1"]:
|
|
882
|
+
raise ValueError(
|
|
883
|
+
f"Mismatching job ids (got {ds.attrs['jobid1']}, expected {self.job_id})"
|
|
884
|
+
)
|
|
885
|
+
|
|
886
|
+
# If the user has exclusively requested only certain variables be
|
|
887
|
+
# loaded in then we purge all other variables and coordinates
|
|
888
|
+
if self.data_vars:
|
|
889
|
+
ds = purge_unselected_data_vars(ds, self.data_vars)
|
|
890
|
+
|
|
891
|
+
time_val = ds.attrs.get("time", np.nan)
|
|
892
|
+
ds = ds.expand_dims(time=[time_val])
|
|
893
|
+
ds = ds.assign_coords(
|
|
894
|
+
time=(
|
|
895
|
+
"time",
|
|
896
|
+
[time_val],
|
|
897
|
+
{"units": "s", "long_name": "Time", "full_name": "time"},
|
|
898
|
+
)
|
|
899
|
+
)
|
|
900
|
+
# Particles' spartial coordinates also evolve in time
|
|
901
|
+
for coord, value in ds.coords.items():
|
|
902
|
+
if value.attrs.get("point_data", False):
|
|
903
|
+
ds.coords[coord] = value.expand_dims(time=[time_val])
|
|
904
|
+
|
|
905
|
+
return ds
|