sdf-xarray 0.2.6__cp311-cp311-win_amd64.whl → 0.3.2__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lib/SDFC_14.4.7/sdfc.lib +0 -0
- sdf_xarray/__init__.py +149 -25
- sdf_xarray/_version.py +3 -3
- sdf_xarray/dataset_accessor.py +73 -0
- sdf_xarray/sdf_interface.cp311-win_amd64.pyd +0 -0
- {sdf_xarray-0.2.6.dist-info → sdf_xarray-0.3.2.dist-info}/METADATA +5 -2
- {sdf_xarray-0.2.6.dist-info → sdf_xarray-0.3.2.dist-info}/RECORD +10 -9
- {sdf_xarray-0.2.6.dist-info → sdf_xarray-0.3.2.dist-info}/WHEEL +1 -1
- {sdf_xarray-0.2.6.dist-info → sdf_xarray-0.3.2.dist-info}/entry_points.txt +0 -0
- {sdf_xarray-0.2.6.dist-info → sdf_xarray-0.3.2.dist-info}/licenses/LICENCE +0 -0
lib/SDFC_14.4.7/sdfc.lib
CHANGED
|
Binary file
|
sdf_xarray/__init__.py
CHANGED
|
@@ -1,13 +1,17 @@
|
|
|
1
|
+
import contextlib
|
|
1
2
|
import os
|
|
2
3
|
import re
|
|
3
4
|
from collections import Counter, defaultdict
|
|
4
5
|
from collections.abc import Callable, Iterable
|
|
6
|
+
from importlib.metadata import version
|
|
5
7
|
from itertools import product
|
|
8
|
+
from os import PathLike as os_PathLike
|
|
6
9
|
from pathlib import Path
|
|
7
10
|
from typing import ClassVar
|
|
8
11
|
|
|
9
12
|
import numpy as np
|
|
10
13
|
import xarray as xr
|
|
14
|
+
from packaging.version import Version
|
|
11
15
|
from xarray.backends import AbstractDataStore, BackendArray, BackendEntrypoint
|
|
12
16
|
from xarray.backends.file_manager import CachingFileManager
|
|
13
17
|
from xarray.backends.locks import ensure_lock
|
|
@@ -15,12 +19,24 @@ from xarray.core import indexing
|
|
|
15
19
|
from xarray.core.utils import close_on_error, try_read_magic_number_from_path
|
|
16
20
|
from xarray.core.variable import Variable
|
|
17
21
|
|
|
18
|
-
# NOTE: Do not delete
|
|
19
|
-
# imported when the user imports sdf_xarray
|
|
22
|
+
# NOTE: Do not delete these lines, otherwise the "epoch" dataset and dataarray
|
|
23
|
+
# accessors will not be imported when the user imports sdf_xarray
|
|
24
|
+
import sdf_xarray.dataset_accessor
|
|
20
25
|
import sdf_xarray.plotting # noqa: F401
|
|
21
26
|
|
|
27
|
+
# NOTE: This attempts to initialise with the "pint" accessor if the user
|
|
28
|
+
# has installed the package
|
|
29
|
+
with contextlib.suppress(ImportError):
|
|
30
|
+
import pint_xarray # noqa: F401
|
|
31
|
+
|
|
22
32
|
from .sdf_interface import Constant, SDFFile # type: ignore # noqa: PGH003
|
|
23
33
|
|
|
34
|
+
# TODO Remove this once the new kwarg options are fully implemented
|
|
35
|
+
if Version(version("xarray")) >= Version("2025.8.0"):
|
|
36
|
+
xr.set_options(use_new_combine_kwarg_defaults=True)
|
|
37
|
+
|
|
38
|
+
PathLike = str | os_PathLike
|
|
39
|
+
|
|
24
40
|
|
|
25
41
|
def _rename_with_underscore(name: str) -> str:
|
|
26
42
|
"""A lot of the variable names have spaces, forward slashes and dashes in them, which
|
|
@@ -51,14 +67,69 @@ def _process_latex_name(variable_name: str) -> str:
|
|
|
51
67
|
return variable_name
|
|
52
68
|
|
|
53
69
|
|
|
54
|
-
def
|
|
55
|
-
"""
|
|
70
|
+
def _resolve_glob(path_glob: PathLike | Iterable[PathLike]):
|
|
71
|
+
"""
|
|
72
|
+
Normalise input path_glob into a sorted list of absolute, resolved Path objects.
|
|
73
|
+
"""
|
|
74
|
+
|
|
75
|
+
try:
|
|
76
|
+
p = Path(path_glob)
|
|
77
|
+
paths = list(p.parent.glob(p.name)) if p.name == "*.sdf" else list(p)
|
|
78
|
+
except TypeError:
|
|
79
|
+
paths = list({Path(p) for p in path_glob})
|
|
80
|
+
|
|
81
|
+
paths = sorted(p.resolve() for p in paths)
|
|
82
|
+
if not paths:
|
|
83
|
+
raise FileNotFoundError(f"No files matched pattern or input: {path_glob!r}")
|
|
84
|
+
return paths
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def purge_unselected_data_vars(ds: xr.Dataset, data_vars: list[str]) -> xr.Dataset:
|
|
88
|
+
"""
|
|
89
|
+
If the user has exclusively requested only certain variables be
|
|
90
|
+
loaded in then we purge all other variables and dimensions
|
|
91
|
+
"""
|
|
92
|
+
existing_data_vars = set(ds.data_vars.keys())
|
|
93
|
+
vars_to_keep = set(data_vars) & existing_data_vars
|
|
94
|
+
vars_to_drop = existing_data_vars - vars_to_keep
|
|
95
|
+
ds = ds.drop_vars(vars_to_drop)
|
|
96
|
+
|
|
97
|
+
existing_dims = set(ds.sizes)
|
|
98
|
+
dims_to_keep = set()
|
|
99
|
+
for var in vars_to_keep:
|
|
100
|
+
dims_to_keep.update(ds[var].coords._names)
|
|
101
|
+
dims_to_keep.update(ds[var].dims)
|
|
102
|
+
|
|
103
|
+
coords_to_drop = existing_dims - dims_to_keep
|
|
104
|
+
return ds.drop_dims(coords_to_drop)
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def combine_datasets(
|
|
108
|
+
path_glob: Iterable | str, data_vars: list[str], **kwargs
|
|
109
|
+
) -> xr.Dataset:
|
|
110
|
+
"""
|
|
111
|
+
Combine all datasets using a single time dimension, optionally extract
|
|
112
|
+
data from only the listed data_vars
|
|
113
|
+
"""
|
|
114
|
+
|
|
115
|
+
if data_vars is not None:
|
|
116
|
+
return xr.open_mfdataset(
|
|
117
|
+
path_glob,
|
|
118
|
+
join="outer",
|
|
119
|
+
coords="different",
|
|
120
|
+
compat="no_conflicts",
|
|
121
|
+
combine="nested",
|
|
122
|
+
concat_dim="time",
|
|
123
|
+
preprocess=SDFPreprocess(data_vars=data_vars),
|
|
124
|
+
**kwargs,
|
|
125
|
+
)
|
|
56
126
|
|
|
57
127
|
return xr.open_mfdataset(
|
|
58
128
|
path_glob,
|
|
59
|
-
data_vars="
|
|
60
|
-
coords="
|
|
61
|
-
compat="
|
|
129
|
+
data_vars="all",
|
|
130
|
+
coords="different",
|
|
131
|
+
compat="no_conflicts",
|
|
132
|
+
join="outer",
|
|
62
133
|
preprocess=SDFPreprocess(),
|
|
63
134
|
**kwargs,
|
|
64
135
|
)
|
|
@@ -70,6 +141,7 @@ def open_mfdataset(
|
|
|
70
141
|
separate_times: bool = False,
|
|
71
142
|
keep_particles: bool = False,
|
|
72
143
|
probe_names: list[str] | None = None,
|
|
144
|
+
data_vars: list[str] | None = None,
|
|
73
145
|
) -> xr.Dataset:
|
|
74
146
|
"""Open a set of EPOCH SDF files as one `xarray.Dataset`
|
|
75
147
|
|
|
@@ -101,25 +173,34 @@ def open_mfdataset(
|
|
|
101
173
|
If ``True``, also load particle data (this may use a lot of memory!)
|
|
102
174
|
probe_names :
|
|
103
175
|
List of EPOCH probe names
|
|
176
|
+
data_vars :
|
|
177
|
+
List of data vars to load in (If not specified loads in all variables)
|
|
104
178
|
"""
|
|
105
179
|
|
|
106
|
-
|
|
107
|
-
if isinstance(path_glob, str):
|
|
108
|
-
path_glob = Path().glob(path_glob)
|
|
109
|
-
|
|
110
|
-
# Coerce to list because we might need to use the sequence multiple times
|
|
111
|
-
path_glob = sorted(list(path_glob)) # noqa: C414
|
|
180
|
+
path_glob = _resolve_glob(path_glob)
|
|
112
181
|
|
|
113
182
|
if not separate_times:
|
|
114
183
|
return combine_datasets(
|
|
115
|
-
path_glob,
|
|
184
|
+
path_glob,
|
|
185
|
+
data_vars=data_vars,
|
|
186
|
+
keep_particles=keep_particles,
|
|
187
|
+
probe_names=probe_names,
|
|
116
188
|
)
|
|
117
189
|
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
190
|
+
_, var_times_map = make_time_dims(path_glob)
|
|
191
|
+
|
|
192
|
+
all_dfs = []
|
|
193
|
+
for f in path_glob:
|
|
194
|
+
ds = xr.open_dataset(f, keep_particles=keep_particles, probe_names=probe_names)
|
|
195
|
+
|
|
196
|
+
# If the data_vars are specified then only load them in and disregard the rest.
|
|
197
|
+
# If there are no remaining data variables then skip adding the dataset to list
|
|
198
|
+
if data_vars is not None:
|
|
199
|
+
ds = purge_unselected_data_vars(ds, data_vars)
|
|
200
|
+
if not ds.data_vars:
|
|
201
|
+
continue
|
|
202
|
+
|
|
203
|
+
all_dfs.append(ds)
|
|
123
204
|
|
|
124
205
|
for df in all_dfs:
|
|
125
206
|
for da in df:
|
|
@@ -136,7 +217,11 @@ def open_mfdataset(
|
|
|
136
217
|
)
|
|
137
218
|
|
|
138
219
|
return xr.combine_by_coords(
|
|
139
|
-
all_dfs,
|
|
220
|
+
all_dfs,
|
|
221
|
+
coords="different",
|
|
222
|
+
combine_attrs="drop_conflicts",
|
|
223
|
+
join="outer",
|
|
224
|
+
compat="no_conflicts",
|
|
140
225
|
)
|
|
141
226
|
|
|
142
227
|
|
|
@@ -490,10 +575,43 @@ class SDFEntrypoint(BackendEntrypoint):
|
|
|
490
575
|
|
|
491
576
|
|
|
492
577
|
class SDFPreprocess:
|
|
493
|
-
"""Preprocess SDF files for xarray ensuring matching job ids and sets
|
|
578
|
+
"""Preprocess SDF files for xarray ensuring matching job ids and sets
|
|
579
|
+
time dimension.
|
|
580
|
+
|
|
581
|
+
This class is used as a 'preprocess' function within ``xr.open_mfdataset``. It
|
|
582
|
+
performs three main duties on each individual file's Dataset:
|
|
583
|
+
|
|
584
|
+
1. Checks for a **matching job ID** across all files to ensure dataset consistency.
|
|
585
|
+
2. **Filters** the Dataset to keep only the variables specified in `data_vars`
|
|
586
|
+
and their required coordinates.
|
|
587
|
+
3. **Expands dimensions** to include a single 'time' coordinate, preparing the
|
|
588
|
+
Dataset for concatenation.
|
|
589
|
+
|
|
590
|
+
EPOCH can output variables at different intervals, so some SDF files
|
|
591
|
+
may not contain the requested variable. We combine this data into one
|
|
592
|
+
dataset by concatenating across the time dimension.
|
|
494
593
|
|
|
495
|
-
|
|
594
|
+
The combination is performed using ``join="outer"`` (in the calling ``open_mfdataset`` function),
|
|
595
|
+
meaning that the final combined dataset will contain the variable across the
|
|
596
|
+
entire time span, with NaNs filling the time steps where the variable was absent in
|
|
597
|
+
the individual file.
|
|
598
|
+
|
|
599
|
+
With large SDF files, this filtering method will save on memory consumption when
|
|
600
|
+
compared to loading all variables from all files before concatenation.
|
|
601
|
+
|
|
602
|
+
Parameters
|
|
603
|
+
----------
|
|
604
|
+
data_vars :
|
|
605
|
+
A list of data variables to load in (If not specified loads
|
|
606
|
+
in all variables)
|
|
607
|
+
"""
|
|
608
|
+
|
|
609
|
+
def __init__(
|
|
610
|
+
self,
|
|
611
|
+
data_vars: list[str] | None = None,
|
|
612
|
+
):
|
|
496
613
|
self.job_id: int | None = None
|
|
614
|
+
self.data_vars = data_vars
|
|
497
615
|
|
|
498
616
|
def __call__(self, ds: xr.Dataset) -> xr.Dataset:
|
|
499
617
|
if self.job_id is None:
|
|
@@ -504,17 +622,23 @@ class SDFPreprocess:
|
|
|
504
622
|
f"Mismatching job ids (got {ds.attrs['jobid1']}, expected {self.job_id})"
|
|
505
623
|
)
|
|
506
624
|
|
|
507
|
-
|
|
625
|
+
# If the user has exclusively requested only certain variables be
|
|
626
|
+
# loaded in then we purge all other variables and coordinates
|
|
627
|
+
if self.data_vars:
|
|
628
|
+
ds = purge_unselected_data_vars(ds, self.data_vars)
|
|
629
|
+
|
|
630
|
+
time_val = ds.attrs.get("time", np.nan)
|
|
631
|
+
ds = ds.expand_dims(time=[time_val])
|
|
508
632
|
ds = ds.assign_coords(
|
|
509
633
|
time=(
|
|
510
634
|
"time",
|
|
511
|
-
[
|
|
635
|
+
[time_val],
|
|
512
636
|
{"units": "s", "long_name": "Time", "full_name": "time"},
|
|
513
637
|
)
|
|
514
638
|
)
|
|
515
639
|
# Particles' spartial coordinates also evolve in time
|
|
516
640
|
for coord, value in ds.coords.items():
|
|
517
641
|
if value.attrs.get("point_data", False):
|
|
518
|
-
ds.coords[coord] = value.expand_dims(time=[
|
|
642
|
+
ds.coords[coord] = value.expand_dims(time=[time_val])
|
|
519
643
|
|
|
520
644
|
return ds
|
sdf_xarray/_version.py
CHANGED
|
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
|
|
|
28
28
|
commit_id: COMMIT_ID
|
|
29
29
|
__commit_id__: COMMIT_ID
|
|
30
30
|
|
|
31
|
-
__version__ = version = '0.2
|
|
32
|
-
__version_tuple__ = version_tuple = (0,
|
|
31
|
+
__version__ = version = '0.3.2'
|
|
32
|
+
__version_tuple__ = version_tuple = (0, 3, 2)
|
|
33
33
|
|
|
34
|
-
__commit_id__ = commit_id = '
|
|
34
|
+
__commit_id__ = commit_id = 'g331520e50'
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
from typing import Union
|
|
2
|
+
|
|
3
|
+
import xarray as xr
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@xr.register_dataset_accessor("epoch")
|
|
7
|
+
class EpochAccessor:
|
|
8
|
+
def __init__(self, xarray_obj: xr.Dataset):
|
|
9
|
+
# The xarray object is the Dataset, which we store as self._ds
|
|
10
|
+
self._ds = xarray_obj
|
|
11
|
+
|
|
12
|
+
def rescale_coords(
|
|
13
|
+
self,
|
|
14
|
+
multiplier: float,
|
|
15
|
+
unit_label: str,
|
|
16
|
+
coord_names: Union[str, list[str]],
|
|
17
|
+
) -> xr.Dataset:
|
|
18
|
+
"""
|
|
19
|
+
Rescales specified X and Y coordinates in the Dataset by a given multiplier
|
|
20
|
+
and updates the unit label attribute.
|
|
21
|
+
|
|
22
|
+
Parameters
|
|
23
|
+
----------
|
|
24
|
+
multiplier : float
|
|
25
|
+
The factor by which to multiply the coordinate values (e.g., 1e6 for meters to microns).
|
|
26
|
+
unit_label : str
|
|
27
|
+
The new unit label for the coordinates (e.g., "µm").
|
|
28
|
+
coord_names : str or list of str
|
|
29
|
+
The name(s) of the coordinate variable(s) to rescale.
|
|
30
|
+
If a string, only that coordinate is rescaled.
|
|
31
|
+
If a list, all listed coordinates are rescaled.
|
|
32
|
+
|
|
33
|
+
Returns
|
|
34
|
+
-------
|
|
35
|
+
xr.Dataset
|
|
36
|
+
A new Dataset with the updated and rescaled coordinates.
|
|
37
|
+
|
|
38
|
+
Examples
|
|
39
|
+
--------
|
|
40
|
+
# Convert X, Y, and Z from meters to microns
|
|
41
|
+
>>> ds_in_microns = ds.epoch.rescale_coords(1e6, "µm", coord_names=["X_Grid", "Y_Grid", "Z_Grid"])
|
|
42
|
+
|
|
43
|
+
# Convert only X to millimeters
|
|
44
|
+
>>> ds_in_mm = ds.epoch.rescale_coords(1000, "mm", coord_names="X_Grid")
|
|
45
|
+
"""
|
|
46
|
+
|
|
47
|
+
ds = self._ds
|
|
48
|
+
new_coords = {}
|
|
49
|
+
|
|
50
|
+
if isinstance(coord_names, str):
|
|
51
|
+
# Convert single string to a list
|
|
52
|
+
coords_to_process = [coord_names]
|
|
53
|
+
elif isinstance(coord_names, list):
|
|
54
|
+
# Use the provided list
|
|
55
|
+
coords_to_process = coord_names
|
|
56
|
+
else:
|
|
57
|
+
coords_to_process = list(coord_names)
|
|
58
|
+
|
|
59
|
+
for coord_name in coords_to_process:
|
|
60
|
+
if coord_name not in ds.coords:
|
|
61
|
+
raise ValueError(
|
|
62
|
+
f"Coordinate '{coord_name}' not found in the Dataset. Cannot rescale."
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
coord_original = ds[coord_name]
|
|
66
|
+
|
|
67
|
+
coord_rescaled = coord_original * multiplier
|
|
68
|
+
coord_rescaled.attrs = coord_original.attrs.copy()
|
|
69
|
+
coord_rescaled.attrs["units"] = unit_label
|
|
70
|
+
|
|
71
|
+
new_coords[coord_name] = coord_rescaled
|
|
72
|
+
|
|
73
|
+
return ds.assign_coords(new_coords)
|
|
Binary file
|
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: sdf-xarray
|
|
3
|
-
Version: 0.2
|
|
3
|
+
Version: 0.3.2
|
|
4
4
|
Summary: Provides a backend for xarray to read SDF files as created by the EPOCH plasma PIC code.
|
|
5
|
-
Author-Email: Peter Hill <peter.hill@york.ac.uk>, Joel Adams <joel.adams@york.ac.uk>, Shaun Doherty <shaun.doherty@york.ac.uk>
|
|
5
|
+
Author-Email: Peter Hill <peter.hill@york.ac.uk>, Joel Adams <joel.adams@york.ac.uk>, Shaun Doherty <shaun.doherty@york.ac.uk>, Chris Herdman <chris.herdman@york.ac.uk>
|
|
6
6
|
License-Expression: BSD-3-Clause
|
|
7
7
|
Classifier: Development Status :: 5 - Production/Stable
|
|
8
8
|
Classifier: Intended Audience :: Science/Research
|
|
@@ -61,6 +61,9 @@ sdf-xarray provides a backend for [xarray](https://xarray.dev) to read SDF files
|
|
|
61
61
|
[EPOCH](https://epochpic.github.io) using the [SDF-C](https://github.com/epochpic/SDF_C) library.
|
|
62
62
|
Part of [BEAM](#broad-epoch-analysis-modules-beam) (Broad EPOCH Analysis Modules).
|
|
63
63
|
|
|
64
|
+
> [!IMPORTANT]
|
|
65
|
+
> To install this package make sure you are using one of the Python versions listed above.
|
|
66
|
+
|
|
64
67
|
## Installation
|
|
65
68
|
|
|
66
69
|
Install from PyPI with:
|
|
@@ -6,19 +6,20 @@ include/SDFC_14.4.7/sdf_list_type.h,sha256=Quu8v0-SEsQuJpGtEZnm09tAyXqWNitx0sXl5
|
|
|
6
6
|
include/SDFC_14.4.7/sdf_vector_type.h,sha256=dbKjhzRRsvhzrnTwVjtVlvnuisEnRMKY-vvdm94ok_Q,1595
|
|
7
7
|
include/SDFC_14.4.7/stack_allocator.h,sha256=L7U9vmGiVSw3VQLIv9EzTaVq7JbFxs9aNonKStTkUSg,1335
|
|
8
8
|
include/SDFC_14.4.7/uthash.h,sha256=rIyy_-ylY6S_7WaZCCC3VtvXaC9q37rFyA0f1U9xc4w,63030
|
|
9
|
-
lib/SDFC_14.4.7/sdfc.lib,sha256=
|
|
9
|
+
lib/SDFC_14.4.7/sdfc.lib,sha256=2X2DUE3jjnJGQOI2wQFQLidt_6vFdzEizuQHMEFoMqc,350158
|
|
10
10
|
lib/SDFC_14.4.7/SDFCConfig.cmake,sha256=IOA1eusC-KvUK4LNTEiOAmEdaPH1ZvNvbYPgiG1oZio,802
|
|
11
11
|
lib/SDFC_14.4.7/SDFCConfigVersion.cmake,sha256=pN7Qqyf04s3izw7PYQ0XK6imvmhaVegSdR_nEl3Ok_o,2830
|
|
12
12
|
lib/SDFC_14.4.7/SDFCTargets-release.cmake,sha256=G4zdx5PyjePigeD_a6rmZAxbk7L8Nf0klUnV78Lm2fI,828
|
|
13
13
|
lib/SDFC_14.4.7/SDFCTargets.cmake,sha256=OVt1Gm8n7Ew4fiTmA9yHoef3vIIGwsXUZfqeG9p9Bys,4152
|
|
14
|
-
sdf_xarray/__init__.py,sha256
|
|
15
|
-
sdf_xarray/_version.py,sha256=
|
|
14
|
+
sdf_xarray/__init__.py,sha256=obgAD4Aecvvpd8GkxLIAiIagSaY0bFVP2Q397N48_5g,24201
|
|
15
|
+
sdf_xarray/_version.py,sha256=bmLiJYnZTISDv_NDGANk6QDMSY0XTk0CwXXKhbOvW3Y,746
|
|
16
16
|
sdf_xarray/csdf.pxd,sha256=ADPjAuHsodAvdOz96Z_XlFF7VL3KmVaXcTifWDP3rK0,4205
|
|
17
|
+
sdf_xarray/dataset_accessor.py,sha256=TvnVMBefnT1d94Bkllhd-__O3ittzpaVjZKfze-3WQ4,2484
|
|
17
18
|
sdf_xarray/plotting.py,sha256=PnbEspR4XkA5SHkpoFKA2G7BYj5J3mVgR1TEeGol6Vw,7041
|
|
18
|
-
sdf_xarray/sdf_interface.cp311-win_amd64.pyd,sha256=
|
|
19
|
+
sdf_xarray/sdf_interface.cp311-win_amd64.pyd,sha256=_nUbBNxen8g_lr9nLGmHxtq51QN3oGfDh_E2DRO7KZ4,356864
|
|
19
20
|
sdf_xarray/sdf_interface.pyx,sha256=PFC6upg14OZBqiGInLgBoxztIIKBk-HOh3WC9Ro4YUw,11975
|
|
20
|
-
sdf_xarray-0.2.
|
|
21
|
-
sdf_xarray-0.2.
|
|
22
|
-
sdf_xarray-0.2.
|
|
23
|
-
sdf_xarray-0.2.
|
|
24
|
-
sdf_xarray-0.2.
|
|
21
|
+
sdf_xarray-0.3.2.dist-info/METADATA,sha256=xvADFsOdsd5EzaZbVYGOUgmEMe4RzrTDF9IbyijadqE,7624
|
|
22
|
+
sdf_xarray-0.3.2.dist-info/WHEEL,sha256=oXhHG6ewLm-FNdEna2zwgy-K0KEl4claZ1ztR4VTx0I,106
|
|
23
|
+
sdf_xarray-0.3.2.dist-info/entry_points.txt,sha256=gP7BIQpXNg6vIf7S7p-Rw_EJZTC1X50BsVTkK7dA7g0,57
|
|
24
|
+
sdf_xarray-0.3.2.dist-info/licenses/LICENCE,sha256=aHWuyELjtzIL1jTXFHTbI3tr9vyVyhnw3I9_QYPdEX8,1515
|
|
25
|
+
sdf_xarray-0.3.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|