scribble-annotation-generator 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
File without changes
@@ -0,0 +1,195 @@
1
+ import argparse
2
+ import os
3
+ from typing import Dict, Tuple
4
+
5
+ from scribble_annotation_generator.crop_field import (
6
+ NUM_SAMPLES_TO_GENERATE,
7
+ generate_crop_field_dataset,
8
+ )
9
+ from scribble_annotation_generator.nn import train_and_infer
10
+
11
+
12
+ def parse_colour_map(value: str) -> Dict[Tuple[int, int, int], int]:
13
+ """Parse a colour map from an inline string or a file path."""
14
+
15
+ def _validate_rgb(rgb: Tuple[int, int, int]) -> Tuple[int, int, int]:
16
+ r, g, b = rgb
17
+ for channel in (r, g, b):
18
+ if channel < 0 or channel > 255:
19
+ raise ValueError("RGB values must be between 0 and 255")
20
+ return rgb
21
+
22
+ mapping: Dict[Tuple[int, int, int], int] = {}
23
+
24
+ if os.path.isfile(value):
25
+ with open(value, "r", encoding="utf-8") as handle:
26
+ for idx, line in enumerate(handle):
27
+ stripped = line.strip()
28
+ if not stripped:
29
+ continue
30
+ parts = [part.strip() for part in stripped.split(",") if part.strip()]
31
+ if len(parts) == 4:
32
+ r, g, b, cls = parts
33
+ elif len(parts) == 3:
34
+ r, g, b = parts
35
+ cls = idx
36
+ else:
37
+ raise ValueError(
38
+ "Each line in the colour map file must have 3 (RGB) or 4 (RGB,class) comma-separated values"
39
+ )
40
+ rgb = _validate_rgb((int(r), int(g), int(b)))
41
+ mapping[rgb] = int(cls)
42
+ else:
43
+ entries = [entry.strip() for entry in value.split(";") if entry.strip()]
44
+ for entry in entries:
45
+ if "=" in entry:
46
+ colour_part, class_part = entry.split("=", 1)
47
+ elif ":" in entry:
48
+ colour_part, class_part = entry.split(":", 1)
49
+ else:
50
+ raise ValueError(
51
+ "Inline colour map entries must separate colour and class with '=' or ':'"
52
+ )
53
+ rgb_parts = [part.strip() for part in colour_part.split(",") if part.strip()]
54
+ if len(rgb_parts) != 3:
55
+ raise ValueError("Colours must be provided as R,G,B")
56
+ rgb = _validate_rgb((int(rgb_parts[0]), int(rgb_parts[1]), int(rgb_parts[2])))
57
+ mapping[rgb] = int(class_part.strip())
58
+
59
+ if not mapping:
60
+ raise ValueError("No colours were parsed for the colour map")
61
+
62
+ return mapping
63
+
64
+
65
+ def build_parser() -> argparse.ArgumentParser:
66
+ parser = argparse.ArgumentParser(
67
+ description="Scribble Annotation Generator CLI",
68
+ )
69
+ subparsers = parser.add_subparsers(dest="command", required=True)
70
+
71
+ crop_parser = subparsers.add_parser(
72
+ "crop-field", help="Generate synthetic crop field scribble images."
73
+ )
74
+ crop_parser.add_argument(
75
+ "--output-dir",
76
+ default="./local/crop_field",
77
+ help="Directory to write generated crop field images.",
78
+ )
79
+ crop_parser.add_argument(
80
+ "--num-samples",
81
+ type=int,
82
+ default=NUM_SAMPLES_TO_GENERATE,
83
+ help="Number of images to generate.",
84
+ )
85
+ crop_parser.add_argument(
86
+ "--min-rows",
87
+ type=int,
88
+ default=4,
89
+ help="Minimum number of crop rows per sample.",
90
+ )
91
+ crop_parser.add_argument(
92
+ "--max-rows",
93
+ type=int,
94
+ default=6,
95
+ help="Maximum number of crop rows per sample.",
96
+ )
97
+ crop_parser.add_argument(
98
+ "--colour-map",
99
+ required=True,
100
+ help=(
101
+ "Colour map specified inline as 'R,G,B=class;...' or a path to a file "
102
+ "with one 'R,G,B,class' entry per line."
103
+ ),
104
+ )
105
+
106
+ train_parser = subparsers.add_parser(
107
+ "train-nn", help="Train the scribble object generator and run inference."
108
+ )
109
+ train_parser.add_argument(
110
+ "--train-dir",
111
+ required=True,
112
+ help="Path to the training dataset directory.",
113
+ )
114
+ train_parser.add_argument(
115
+ "--val-dir",
116
+ required=True,
117
+ help="Path to the validation dataset directory.",
118
+ )
119
+ train_parser.add_argument(
120
+ "--checkpoint-dir",
121
+ default="./local/nn-checkpoints",
122
+ help="Directory to save model checkpoints.",
123
+ )
124
+ train_parser.add_argument(
125
+ "--inference-dir",
126
+ default="./local/nn-inference",
127
+ help="Directory to save inference visualisations.",
128
+ )
129
+ train_parser.add_argument(
130
+ "--batch-size",
131
+ type=int,
132
+ default=8,
133
+ help="Batch size for training.",
134
+ )
135
+ train_parser.add_argument(
136
+ "--num-workers",
137
+ type=int,
138
+ default=4,
139
+ help="Number of worker processes for data loading.",
140
+ )
141
+ train_parser.add_argument(
142
+ "--max-epochs",
143
+ type=int,
144
+ default=50,
145
+ help="Maximum number of training epochs.",
146
+ )
147
+ train_parser.add_argument(
148
+ "--num-classes",
149
+ type=int,
150
+ default=None,
151
+ help="Override the number of classes; defaults to the number of unique class IDs in the colour map.",
152
+ )
153
+ train_parser.add_argument(
154
+ "--colour-map",
155
+ required=True,
156
+ help=(
157
+ "Colour map specified inline as 'R,G,B=class;...' or a path to a file "
158
+ "with one 'R,G,B,class' entry per line."
159
+ ),
160
+ )
161
+
162
+ return parser
163
+
164
+
165
+ def main(argv=None):
166
+ parser = build_parser()
167
+ args = parser.parse_args(argv)
168
+ colour_map = parse_colour_map(args.colour_map)
169
+
170
+ if args.command == "crop-field":
171
+ generate_crop_field_dataset(
172
+ output_dir=args.output_dir,
173
+ colour_map=colour_map,
174
+ num_samples=args.num_samples,
175
+ min_rows=args.min_rows,
176
+ max_rows=args.max_rows,
177
+ )
178
+ elif args.command == "train-nn":
179
+ train_and_infer(
180
+ train_dir=args.train_dir,
181
+ val_dir=args.val_dir,
182
+ colour_map=colour_map,
183
+ checkpoint_dir=args.checkpoint_dir,
184
+ inference_dir=args.inference_dir,
185
+ batch_size=args.batch_size,
186
+ num_workers=args.num_workers,
187
+ max_epochs=args.max_epochs,
188
+ num_classes=args.num_classes,
189
+ )
190
+ else:
191
+ parser.error("A subcommand is required.")
192
+
193
+
194
+ if __name__ == "__main__":
195
+ main()
@@ -0,0 +1,366 @@
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os
5
+ import random
6
+
7
+ from scribble_annotation_generator.utils import generate_multiclass_scribble
8
+
9
+
10
+ NUM_SAMPLES_TO_GENERATE = 200
11
+ ROW_STD = 0.02
12
+ ROW_CURVATURE_MEAN = -0.8
13
+ ROW_CURVATURE_STD = 0.05
14
+ ROW_MIN_LENGTH = 0.1
15
+ ROW_SPARSITY_DISTANCE_MEAN = 0.4
16
+ ROW_SPARSITY_DISTANCE_STD = 0.2
17
+ WEED_MAX_LENGTH = 0.5
18
+ WEED_MIN_LENGTH = 0.001
19
+ WEED_DIRECTIONAL_STD = math.pi / 6
20
+ WEED_CURVATURE_SHIFT_FACTOR = 0.3
21
+ WEED_CURVATURE_SCALE_CONSTANT = 0.2
22
+ WEED_CURVATURE_MIN_STD = 0.4
23
+
24
+
25
+ class Point:
26
+ def __init__(self, x, y):
27
+ self.x = x
28
+ self.y = y
29
+
30
+
31
+ def ccw(A, B, C):
32
+ return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x)
33
+
34
+
35
+ # Return true if line segments AB and CD intersect
36
+ def intersect(A, B, C, D):
37
+ return ccw(A, C, D) != ccw(B, C, D) and ccw(A, B, C) != ccw(A, B, D)
38
+
39
+
40
+ def x_at_y(p1, p2, y):
41
+ x1, y1 = p1
42
+ x2, y2 = p2
43
+
44
+ t = (y - y1) / (y2 - y1)
45
+ return x1 + t * (x2 - x1)
46
+
47
+
48
+ def split_row(row_object, sparsity):
49
+ num_splits = np.random.poisson(lam=((1 - sparsity) ** 2) * 5)
50
+ if num_splits == 0:
51
+ return [row_object]
52
+
53
+ distance_between_splits = np.random.normal(
54
+ loc=ROW_SPARSITY_DISTANCE_MEAN,
55
+ scale=ROW_SPARSITY_DISTANCE_STD,
56
+ size=num_splits,
57
+ )
58
+
59
+ distance_between_splits = list(np.clip(distance_between_splits, 0.05, None))
60
+
61
+ # Split the line into num_splits + 1 segments
62
+ split_ys = np.random.uniform(
63
+ row_object["start_y"], row_object["end_y"], size=num_splits
64
+ )
65
+ split_ys = list(np.sort(split_ys))
66
+
67
+ # If split points are too close to each other or to the boundary, remove one
68
+ i = 1
69
+ while i < len(split_ys):
70
+ if (
71
+ split_ys[i - 1] - (distance_between_splits[i - 1] / 2.0)
72
+ < row_object["start_y"]
73
+ ):
74
+ split_ys.pop(i - 1)
75
+ distance_between_splits.pop(i - 1)
76
+ elif split_ys[i] + (distance_between_splits[i] / 2.0) > row_object["end_y"]:
77
+ split_ys.pop(i)
78
+ distance_between_splits.pop(i)
79
+ elif split_ys[i] - split_ys[i - 1] < distance_between_splits[i - 1]:
80
+ split_ys.pop(i)
81
+ distance_between_splits.pop(i)
82
+ else:
83
+ i += 1
84
+
85
+ line_segment_ys = []
86
+ for i in range(len(split_ys) + 1):
87
+ if i == 0:
88
+ segment_start_y = row_object["start_y"]
89
+ else:
90
+ segment_start_y = split_ys[i - 1] + (distance_between_splits[i - 1] / 2.0)
91
+
92
+ if i == len(split_ys):
93
+ segment_end_y = row_object["end_y"]
94
+ else:
95
+ segment_end_y = split_ys[i] - (distance_between_splits[i] / 2.0)
96
+
97
+ line_segment_ys.append((segment_start_y, segment_end_y))
98
+
99
+ line_segment_xs = [
100
+ (
101
+ x_at_y(
102
+ (row_object["start_x"], row_object["start_y"]),
103
+ (row_object["end_x"], row_object["end_y"]),
104
+ y[0],
105
+ ),
106
+ x_at_y(
107
+ (row_object["start_x"], row_object["start_y"]),
108
+ (row_object["end_x"], row_object["end_y"]),
109
+ y[1],
110
+ ),
111
+ )
112
+ for y in line_segment_ys
113
+ ]
114
+
115
+ objects = []
116
+ for i in range(len(line_segment_ys)):
117
+ split_row_object = {
118
+ "start_x": line_segment_xs[i][0],
119
+ "start_y": line_segment_ys[i][0],
120
+ "end_x": line_segment_xs[i][1],
121
+ "end_y": line_segment_ys[i][1],
122
+ "num_spurs": row_object["num_spurs"],
123
+ "curvature": row_object["curvature"],
124
+ "cos_angle": row_object["cos_angle"],
125
+ "sin_angle": row_object["sin_angle"],
126
+ }
127
+ objects.append(split_row_object)
128
+
129
+ return objects
130
+
131
+
132
+ def generate_row_object(
133
+ row_starting_x: float,
134
+ row_class: int,
135
+ row_sparsity: float = 1.0,
136
+ ):
137
+ row_x0 = np.clip(
138
+ np.random.normal(loc=row_starting_x, scale=ROW_STD),
139
+ -1.0,
140
+ 1.0,
141
+ )
142
+ row_x1 = np.clip(
143
+ np.random.normal(loc=row_starting_x, scale=ROW_STD),
144
+ -1.0,
145
+ 1.0,
146
+ )
147
+
148
+ row_y0 = np.clip(
149
+ np.random.normal(loc=-1.0, scale=ROW_STD),
150
+ -1.0,
151
+ 1.0,
152
+ )
153
+ row_y1 = np.clip(
154
+ np.random.normal(loc=1.0, scale=ROW_STD),
155
+ -1.0,
156
+ 1.0,
157
+ )
158
+
159
+ curvature = np.clip(
160
+ np.random.normal(
161
+ loc=ROW_CURVATURE_MEAN,
162
+ scale=ROW_CURVATURE_STD,
163
+ ),
164
+ -1.0,
165
+ 1.0,
166
+ )
167
+ num_spurs = 0
168
+
169
+ angle = math.atan2(row_y1 - row_y0, row_x1 - row_x0)
170
+ cos_angle = math.cos(angle)
171
+ sin_angle = math.sin(angle)
172
+
173
+ row_object = {
174
+ "start_x": row_x0,
175
+ "start_y": row_y0,
176
+ "end_x": row_x1,
177
+ "end_y": row_y1,
178
+ "num_spurs": num_spurs,
179
+ "curvature": curvature,
180
+ "cos_angle": cos_angle,
181
+ "sin_angle": sin_angle,
182
+ }
183
+
184
+ if row_sparsity < 1.0:
185
+ objects = split_row(row_object, row_sparsity)
186
+ classes = [row_class] * len(objects)
187
+ else:
188
+ objects = [row_object]
189
+ classes = [row_class]
190
+
191
+ return objects, classes
192
+
193
+
194
+ def generate_weed_object():
195
+ weed_x0 = random.uniform(-1.0, 1.0)
196
+ weed_y0 = random.uniform(-1.0, 1.0)
197
+
198
+ weed_length = random.uniform(WEED_MIN_LENGTH, WEED_MAX_LENGTH)
199
+ weed_angle = np.random.normal(
200
+ loc=3 * math.pi / 2,
201
+ scale=WEED_DIRECTIONAL_STD,
202
+ )
203
+
204
+ weed_x1 = np.clip(weed_x0 + weed_length * math.cos(weed_angle), -1.0, 1.0)
205
+ weed_y1 = np.clip(weed_y0 + weed_length * math.sin(weed_angle), -1.0, 1.0)
206
+
207
+ num_spurs = 0
208
+ weed_length_factor = (weed_length - WEED_MIN_LENGTH + 1e-6) / (
209
+ WEED_MAX_LENGTH - WEED_MIN_LENGTH
210
+ )
211
+ curvature = np.clip(
212
+ np.random.normal(
213
+ loc=((((1 - weed_length_factor) * 2) - 1))
214
+ * (1 - WEED_CURVATURE_SHIFT_FACTOR)
215
+ - WEED_CURVATURE_SHIFT_FACTOR,
216
+ scale=max(
217
+ (1 - weed_length_factor) * WEED_CURVATURE_SCALE_CONSTANT,
218
+ WEED_CURVATURE_MIN_STD,
219
+ ),
220
+ ),
221
+ -1.0,
222
+ 1.0,
223
+ )
224
+
225
+ return {
226
+ "start_x": weed_x0,
227
+ "start_y": weed_y0,
228
+ "end_x": weed_x1,
229
+ "end_y": weed_y1,
230
+ "num_spurs": num_spurs,
231
+ "curvature": curvature,
232
+ "cos_angle": math.cos(weed_angle),
233
+ "sin_angle": math.sin(weed_angle),
234
+ }
235
+
236
+
237
+ def generate_sample(
238
+ colour_map: dict[tuple[int, int, int], int],
239
+ num_rows: int = 5,
240
+ row_class: int = 1,
241
+ interspersed: bool = False,
242
+ interspersed_num_rows: int = 0,
243
+ interspersed_class: int = 2,
244
+ row_sparsity: float = 1.0,
245
+ num_weeds: dict[int, int] = {},
246
+ ):
247
+ objects = []
248
+ classes = []
249
+
250
+ row_offset = 2.0 / (num_rows + 1)
251
+ initial_row_starting_x = random.uniform(-1.0, -1.0 + row_offset)
252
+ row_starting_x = initial_row_starting_x
253
+ for _ in range(num_rows):
254
+ row_objects, row_classes = generate_row_object(
255
+ row_starting_x=row_starting_x,
256
+ row_class=row_class,
257
+ row_sparsity=row_sparsity,
258
+ )
259
+
260
+ objects.extend(row_objects)
261
+ classes.extend(row_classes)
262
+
263
+ row_starting_x += row_offset
264
+
265
+ if interspersed:
266
+ interspersed_row_starting_x = initial_row_starting_x - (row_offset / 2.0)
267
+
268
+ # Ensure interspersed row at index 0 is within bounds
269
+ if interspersed_row_starting_x < -1.0:
270
+ interspersed_row_starting_x += row_offset
271
+
272
+ # Get maximum number of interspersed rows that fit
273
+ num_interspersed_row_positions = num_rows
274
+ half_offset = row_offset / 2.0
275
+ if initial_row_starting_x - half_offset > -1.0:
276
+ num_interspersed_row_positions += 1
277
+ if initial_row_starting_x + (num_rows * row_offset) + half_offset < 1.0:
278
+ num_interspersed_row_positions += 1
279
+
280
+ # Select the starting position for interspersed rows
281
+ interspersed_row_starting_index = random.randint(
282
+ 0, max(num_interspersed_row_positions - num_interspersed_row_positions, 0)
283
+ )
284
+ interspersed_row_starting_x += interspersed_row_starting_index * row_offset
285
+
286
+ for _ in range(interspersed_num_rows):
287
+ row_objects, row_classes = generate_row_object(
288
+ row_starting_x=interspersed_row_starting_x,
289
+ row_class=interspersed_class,
290
+ row_sparsity=row_sparsity,
291
+ )
292
+
293
+ objects.extend(row_objects)
294
+ classes.extend(row_classes)
295
+
296
+ interspersed_row_starting_x += row_offset
297
+
298
+ for weed_class, num_weed in num_weeds.items():
299
+
300
+ for _ in range(num_weed):
301
+ intersects = True
302
+ while intersects:
303
+ intersects = False
304
+
305
+ weed_object = generate_weed_object()
306
+ weed_start = Point(weed_object["start_x"], weed_object["start_y"])
307
+ weed_end = Point(weed_object["end_x"], weed_object["end_y"])
308
+
309
+ for obj in objects:
310
+ obj_start = Point(obj["start_x"], obj["start_y"])
311
+ obj_end = Point(obj["end_x"], obj["end_y"])
312
+ if intersect(weed_start, weed_end, obj_start, obj_end):
313
+ intersects = True
314
+ break
315
+
316
+ objects.append(weed_object)
317
+ classes.append(weed_class)
318
+
319
+ synthetic = generate_multiclass_scribble(
320
+ image_shape=(512, 512),
321
+ objects=objects,
322
+ classes=classes,
323
+ colour_map=colour_map,
324
+ )
325
+
326
+ return synthetic
327
+
328
+
329
+ def generate_crop_field_dataset(
330
+ output_dir: str,
331
+ colour_map: dict,
332
+ num_samples: int = NUM_SAMPLES_TO_GENERATE,
333
+ min_rows: int = 4,
334
+ max_rows: int = 6,
335
+ ):
336
+ os.makedirs(output_dir, exist_ok=True)
337
+
338
+ for i in range(num_samples):
339
+ num_rows = random.randint(min_rows, max_rows)
340
+ row_class = random.randint(1, 3)
341
+ interspersed = random.choice([True, False])
342
+ interspersed_num_rows = random.randint(1, num_rows + 1)
343
+ interspersed_class = random.choice([c for c in [1, 2, 3] if c != row_class])
344
+ row_sparsity = random.uniform(0.1, 1.0)
345
+ num_weeds = {
346
+ 2: random.randint(0, 5),
347
+ 3: random.randint(0, 10),
348
+ 4: random.randint(0, 10),
349
+ }
350
+
351
+ sample = generate_sample(
352
+ colour_map=colour_map,
353
+ num_rows=num_rows,
354
+ row_class=row_class,
355
+ interspersed=interspersed,
356
+ interspersed_num_rows=interspersed_num_rows,
357
+ interspersed_class=interspersed_class,
358
+ row_sparsity=row_sparsity,
359
+ num_weeds=num_weeds,
360
+ )
361
+
362
+ if random.random() < 0.5:
363
+ sample = cv2.flip(sample, 1)
364
+
365
+ output_path = os.path.join(output_dir, f"synthetic_{i:04d}.png")
366
+ cv2.imwrite(output_path, cv2.cvtColor(sample, cv2.COLOR_RGB2BGR))
@@ -0,0 +1,96 @@
1
+ import os
2
+ import random
3
+
4
+ import cv2
5
+ import torch
6
+ import torch.nn.functional as F
7
+
8
+ from scribble_annotation_generator.utils import (
9
+ extract_class_masks,
10
+ extract_object_features,
11
+ get_objects,
12
+ rgb_to_indexed,
13
+ )
14
+
15
+
16
+ class ScribbleDataset(torch.utils.data.Dataset):
17
+ def __init__(
18
+ self, num_classes, data_dir, colour_map=None, max_objects=50, late_shift=False
19
+ ):
20
+ self.data_dir = data_dir
21
+ self.filenames = sorted(os.listdir(data_dir))
22
+ self.num_classes = num_classes
23
+ self.colour_map = colour_map
24
+ self.max_objects = max_objects
25
+ self.late_shift = late_shift
26
+
27
+ if len(self.filenames) == 0:
28
+ raise ValueError(f"No files found in {data_dir}")
29
+
30
+ # Auto-detect format from first image
31
+ first_image_path = os.path.join(self.data_dir, self.filenames[0])
32
+ first_img = cv2.imread(first_image_path, cv2.IMREAD_UNCHANGED)
33
+ if first_img is not None:
34
+ self.is_rgb = len(first_img.shape) == 3 and first_img.shape[2] >= 3
35
+ else:
36
+ raise IOError(f"Could not read {first_image_path}")
37
+
38
+ def __len__(self):
39
+ return len(self.filenames)
40
+
41
+ def __getitem__(self, idx):
42
+ filepath = os.path.join(self.data_dir, self.filenames[idx])
43
+
44
+ if self.is_rgb:
45
+ if self.colour_map is None:
46
+ raise ValueError("colour_map must be provided for RGB annotations")
47
+
48
+ mask = cv2.imread(str(filepath), cv2.IMREAD_COLOR)
49
+ mask = cv2.cvtColor(mask, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
50
+ mask = rgb_to_indexed(mask, self.colour_map)
51
+ else:
52
+ mask = cv2.imread(str(filepath), cv2.IMREAD_GRAYSCALE)
53
+
54
+ objects = []
55
+ classes = []
56
+ class_masks = extract_class_masks(mask)
57
+
58
+ for class_id, class_mask in class_masks.items():
59
+ class_objects = get_objects(class_mask)
60
+ objects.extend(class_objects)
61
+ classes.extend([class_id] * len(class_objects))
62
+
63
+ objects = [extract_object_features(obj) for obj in objects]
64
+
65
+ permutation = list(range(len(objects)))
66
+ random.shuffle(permutation)
67
+
68
+ objects = torch.stack([objects[i] for i in permutation])
69
+ classes = torch.tensor([classes[i] for i in permutation])
70
+
71
+ # Mask everything after a random point
72
+ if self.late_shift:
73
+ mask_start = random.randint((len(objects) // 4) * 3, len(objects) - 1)
74
+ else:
75
+ mask_start = random.randint(1, len(objects) - 1)
76
+ mask = torch.ones(len(objects))
77
+ mask[mask_start:] = 0
78
+
79
+ query_cls = classes[mask_start]
80
+ targets = objects[classes == query_cls, :]
81
+
82
+ objects = F.pad(objects, (0, 0, 0, self.max_objects - len(objects)), value=0)
83
+ classes = F.pad(classes, (0, self.max_objects - len(classes)), value=0)
84
+ mask = F.pad(mask, (0, self.max_objects - len(mask)), value=0)
85
+ targets = F.pad(
86
+ targets, (0, 0, 0, self.max_objects - targets.size(0)), value=1e7
87
+ )
88
+
89
+ return {
90
+ "objects": objects,
91
+ "classes": classes,
92
+ "mask": mask,
93
+ "query_cls": query_cls,
94
+ "targets": targets,
95
+ "counts": torch.bincount(classes, minlength=self.num_classes),
96
+ }
@@ -0,0 +1,43 @@
1
+ import cv2
2
+
3
+ from scribble_annotation_generator.nn.nn import ScribbleDataset
4
+ from scribble_annotation_generator.nn.utils import (
5
+ generate_multiclass_scribble,
6
+ unpack_feature_vector,
7
+ )
8
+
9
+
10
+ def parameterize_and_unparameterize():
11
+ colour_map = {
12
+ (0, 0, 0): 0,
13
+ (0, 128, 255): 1,
14
+ (124, 255, 121): 2,
15
+ (127, 0, 0): 3,
16
+ (255, 148, 0): 4,
17
+ (0, 0, 127): 5,
18
+ }
19
+ dataset = ScribbleDataset(
20
+ num_classes=3, data_dir="./local/soybean1", colour_map=colour_map
21
+ )
22
+
23
+ for i in range(len(dataset)):
24
+ sample = dataset[i]
25
+
26
+ objects = sample["objects"]
27
+ classes = sample["classes"]
28
+
29
+ objects = [unpack_feature_vector(obj) for obj in objects.numpy()]
30
+
31
+ synthetic = generate_multiclass_scribble(
32
+ image_shape=(512, 512),
33
+ objects=objects,
34
+ classes=classes,
35
+ colour_map=colour_map,
36
+ )
37
+
38
+ # Save the synthetic scribble
39
+ output_path = f"./local/nn-out/synthetic_{i:04d}.png"
40
+
41
+ # Convert RGB to BGR for saving with OpenCV
42
+ synthetic_bgr = cv2.cvtColor(synthetic, cv2.COLOR_RGB2BGR)
43
+ cv2.imwrite(str(output_path), synthetic_bgr)