scorebook 0.0.14__py3-none-any.whl → 0.0.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. scorebook/__init__.py +2 -0
  2. scorebook/dashboard/credentials.py +34 -4
  3. scorebook/eval_datasets/eval_dataset.py +2 -2
  4. scorebook/evaluate/_async/evaluate_async.py +27 -11
  5. scorebook/evaluate/_sync/evaluate.py +27 -11
  6. scorebook/metrics/README.md +121 -0
  7. scorebook/metrics/__init__.py +8 -0
  8. scorebook/metrics/accuracy.py +2 -6
  9. scorebook/metrics/bertscore.py +50 -0
  10. scorebook/metrics/bleu.py +82 -0
  11. scorebook/metrics/core/__init__.py +1 -0
  12. scorebook/metrics/{metric_base.py → core/metric_base.py} +1 -2
  13. scorebook/metrics/core/metric_registry.py +195 -0
  14. scorebook/metrics/exactmatch.py +95 -0
  15. scorebook/metrics/f1.py +96 -0
  16. scorebook/metrics/precision.py +84 -9
  17. scorebook/metrics/recall.py +94 -0
  18. scorebook/metrics/rouge.py +85 -0
  19. scorebook/score/score_helpers.py +28 -11
  20. scorebook/types.py +2 -2
  21. scorebook/utils/progress_bars.py +58 -786
  22. {scorebook-0.0.14.dist-info → scorebook-0.0.16.dist-info}/METADATA +32 -24
  23. scorebook-0.0.16.dist-info/RECORD +110 -0
  24. {scorebook-0.0.14.dist-info → scorebook-0.0.16.dist-info}/WHEEL +1 -1
  25. tutorials/README.md +147 -0
  26. tutorials/__init__.py +5 -0
  27. tutorials/examples/1-score/1-scoring_model_accuracy.py +47 -0
  28. tutorials/examples/1-score/2-scoring_model_bleu.py +46 -0
  29. tutorials/examples/1-score/3-scoring_model_f1.py +64 -0
  30. tutorials/examples/1-score/4-scoring_model_rouge.py +64 -0
  31. tutorials/examples/1-score/5-scoring_model_exact_match.py +84 -0
  32. tutorials/examples/1-score/6-scoring_with_bertscore.py +57 -0
  33. tutorials/examples/1-score/__init__.py +0 -0
  34. tutorials/examples/2-evaluate/1-evaluating_local_models.py +106 -0
  35. tutorials/examples/2-evaluate/2-evaluating_local_models_with_batching.py +108 -0
  36. tutorials/examples/2-evaluate/3-evaluating_cloud_models.py +109 -0
  37. tutorials/examples/2-evaluate/4-evaluating_cloud_models_with_batching.py +170 -0
  38. tutorials/examples/2-evaluate/5-hyperparameter_sweeps.py +122 -0
  39. tutorials/examples/2-evaluate/6-inference_pipelines.py +141 -0
  40. tutorials/examples/3-evaluation_datasets/1-evaluation_datasets_from_files.py +110 -0
  41. tutorials/examples/3-evaluation_datasets/2-evaluation_datasets_from_huggingface.py +101 -0
  42. tutorials/examples/3-evaluation_datasets/3-evaluation_datasets_from_huggingface_with_yaml_configs.py +110 -0
  43. tutorials/examples/3-evaluation_datasets/example_datasets/basic_questions.csv +11 -0
  44. tutorials/examples/3-evaluation_datasets/example_datasets/basic_questions.json +42 -0
  45. tutorials/examples/3-evaluation_datasets/example_yaml_configs/Cais-MMLU.yaml +19 -0
  46. tutorials/examples/3-evaluation_datasets/example_yaml_configs/TIGER-Lab-MMLU-Pro.yaml +18 -0
  47. tutorials/examples/4-adaptive_evaluations/1-adaptive_evaluation.py +114 -0
  48. tutorials/examples/4-adaptive_evaluations/2-adaptive_dataset_splits.py +106 -0
  49. tutorials/examples/5-upload_results/1-uploading_score_results.py +92 -0
  50. tutorials/examples/5-upload_results/2-uploading_evaluate_results.py +117 -0
  51. tutorials/examples/5-upload_results/3-uploading_your_results.py +153 -0
  52. tutorials/examples/6-providers/aws/__init__.py +1 -0
  53. tutorials/examples/6-providers/aws/batch_example.py +219 -0
  54. tutorials/examples/6-providers/portkey/__init__.py +1 -0
  55. tutorials/examples/6-providers/portkey/batch_example.py +120 -0
  56. tutorials/examples/6-providers/portkey/messages_example.py +121 -0
  57. tutorials/examples/6-providers/vertex/__init__.py +1 -0
  58. tutorials/examples/6-providers/vertex/batch_example.py +166 -0
  59. tutorials/examples/6-providers/vertex/messages_example.py +142 -0
  60. tutorials/examples/__init__.py +0 -0
  61. tutorials/notebooks/1-scoring.ipynb +162 -0
  62. tutorials/notebooks/2-evaluating.ipynb +316 -0
  63. tutorials/notebooks/3.1-adaptive_evaluation_phi.ipynb +354 -0
  64. tutorials/notebooks/3.2-adaptive_evaluation_gpt.ipynb +243 -0
  65. tutorials/notebooks/4-uploading_results.ipynb +175 -0
  66. tutorials/quickstarts/adaptive_evaluations/adaptive_evaluation_openai_demo.ipynb +229 -0
  67. tutorials/quickstarts/adaptive_evaluations/adaptive_evaluation_qwen_demo.ipynb +256 -0
  68. tutorials/quickstarts/classical_evaluations/classical_evaluation_demo.ipynb +277 -0
  69. tutorials/quickstarts/getting_started.ipynb +197 -0
  70. tutorials/utils/__init__.py +35 -0
  71. tutorials/utils/args_parser.py +132 -0
  72. tutorials/utils/output.py +23 -0
  73. tutorials/utils/setup.py +98 -0
  74. scorebook/metrics/metric_registry.py +0 -107
  75. scorebook-0.0.14.dist-info/RECORD +0 -53
  76. {scorebook-0.0.14.dist-info → scorebook-0.0.16.dist-info}/entry_points.txt +0 -0
  77. {scorebook-0.0.14.dist-info → scorebook-0.0.16.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,122 @@
1
+ """Tutorials - Evaluate - Example 5 - Hyperparameter Sweeps."""
2
+
3
+ from pathlib import Path
4
+ from pprint import pprint
5
+ from typing import Any, List
6
+
7
+ import transformers
8
+ from dotenv import load_dotenv
9
+
10
+ from tutorials.utils import save_results_to_json, setup_logging
11
+
12
+ from scorebook import EvalDataset, evaluate
13
+
14
+
15
+ def main() -> Any:
16
+ """Run a Scorebook evaluation with a hyperparameter sweep.
17
+
18
+ This example demonstrates how Scorebook can automatically test multiple
19
+ hyperparameter configurations in a single evaluation.
20
+
21
+ How Hyperparameter Sweeping Works:
22
+ - Define hyperparameters with lists of values to test
23
+ - Scorebook generates all possible combinations (Cartesian product)
24
+ - Each configuration is evaluated separately on the same dataset
25
+
26
+ Example Hyperparameters:
27
+ - system_message: "Answer the question directly and concisely." (1 value)
28
+ - temperature: [0.6, 0.7, 0.8] (3 values)
29
+ - top_p: [0.7, 0.8, 0.9] (3 values)
30
+ - top_k: [10, 20, 30] (3 values)
31
+
32
+ Total configurations = 1 × 3 × 3 × 3 = 27 hyperparameter configurations
33
+ """
34
+
35
+ # Initialize HuggingFace model pipeline
36
+ model_name = "microsoft/Phi-4-mini-instruct"
37
+ pipeline = transformers.pipeline(
38
+ "text-generation",
39
+ model=model_name,
40
+ model_kwargs={"torch_dtype": "auto"},
41
+ device_map="auto",
42
+ )
43
+
44
+ # Define an inference function
45
+ def inference(inputs: List[Any], **hyperparameters: Any) -> List[Any]:
46
+ """Process inputs through the model.
47
+
48
+ Args:
49
+ inputs: Input values from an EvalDataset.
50
+ hyperparameters: Model hyperparameters including system_message, temperature, top_p, top_k.
51
+
52
+ Returns:
53
+ List of model outputs for all inputs.
54
+ """
55
+ outputs = []
56
+ for input_val in inputs:
57
+ # Preprocess: Build messages
58
+ messages = [
59
+ {"role": "system", "content": hyperparameters["system_message"]},
60
+ {"role": "user", "content": str(input_val)},
61
+ ]
62
+
63
+ # Run inference
64
+ result = pipeline(
65
+ messages,
66
+ temperature=hyperparameters["temperature"],
67
+ top_p=hyperparameters.get("top_p"),
68
+ top_k=hyperparameters.get("top_k"),
69
+ )
70
+
71
+ # Postprocess: Extract the answer
72
+ output = str(result[0]["generated_text"][-1]["content"])
73
+ outputs.append(output)
74
+
75
+ return outputs
76
+
77
+ # Create a list of evaluation items
78
+ evaluation_items = [
79
+ {"question": "What is 2 + 2?", "answer": "4"},
80
+ {"question": "What is the capital of France?", "answer": "Paris"},
81
+ {"question": "Who wrote Romeo and Juliet?", "answer": "William Shakespeare"},
82
+ ]
83
+
84
+ # Create an evaluation dataset
85
+ evaluation_dataset = EvalDataset.from_list(
86
+ name="basic_questions",
87
+ metrics="accuracy",
88
+ items=evaluation_items,
89
+ input="question",
90
+ label="answer",
91
+ )
92
+
93
+ # Define hyperparameters with lists of values to create a sweep
94
+ hyperparameters = {
95
+ "system_message": "Answer the question directly and concisely.",
96
+ "temperature": [0.6, 0.7, 0.8],
97
+ "top_p": [0.7, 0.8, 0.9],
98
+ "top_k": [10, 20, 30],
99
+ }
100
+
101
+ # Run evaluation across all hyperparameter combinations
102
+ results = evaluate(
103
+ inference,
104
+ evaluation_dataset,
105
+ hyperparameters=hyperparameters,
106
+ return_aggregates=True,
107
+ return_items=True,
108
+ return_output=True,
109
+ upload_results=False,
110
+ )
111
+
112
+ pprint(results)
113
+ return results
114
+
115
+
116
+ if __name__ == "__main__":
117
+ load_dotenv()
118
+ log_file = setup_logging(experiment_id="5-hyperparameter_sweeps", base_dir=Path(__file__).parent)
119
+ output_dir = Path(__file__).parent / "results"
120
+ output_dir.mkdir(exist_ok=True)
121
+ results_dict = main()
122
+ save_results_to_json(results_dict, output_dir, "5-hyperparameter_sweeps_output.json")
@@ -0,0 +1,141 @@
1
+ """Tutorials - Evaluate - Example 6 - Inference Pipelines."""
2
+
3
+ from pprint import pprint
4
+ from typing import Any, List
5
+
6
+ import transformers
7
+ from dotenv import load_dotenv
8
+ from pathlib import Path
9
+
10
+ from tutorials.utils import save_results_to_json, setup_logging
11
+
12
+ from scorebook import EvalDataset, InferencePipeline, evaluate
13
+
14
+
15
+ def main() -> Any:
16
+ """Run a simple Scorebook evaluation using an InferencePipeline.
17
+
18
+ This example demonstrates how to use Scorebook's InferencePipeline in evaluations.
19
+
20
+ Inference pipelines separate the evaluation workflow into three distinct stages:
21
+ 1. Pre-processing: Convert raw dataset items into model-ready input format
22
+ 2. Inference: Execute model predictions on preprocessed data
23
+ 3. Post-processing: Extract final answers from raw model outputs
24
+
25
+ These stages can be encapsulated in reusable functions and used to create pipelines.
26
+ An inference pipeline can be passed into the evaluate function's inference parameter.
27
+ """
28
+
29
+ # === Pre-Processing ===
30
+
31
+ # The preprocessor function is responsible for mapping items in an Eval Dataset to model inputs
32
+ def preprocessor(input_value: str, **hyperparameter_config: Any) -> List[Any]:
33
+ """Convert an evaluation input to a valid model input.
34
+
35
+ Args:
36
+ input_value: The input value from the dataset.
37
+ hyperparameter_config: Model hyperparameters.
38
+
39
+ Returns:
40
+ A structured representation of an evaluation item for model input.
41
+ """
42
+ messages = [
43
+ {
44
+ "role": "system",
45
+ "content": hyperparameter_config["system_message"],
46
+ },
47
+ {"role": "user", "content": input_value},
48
+ ]
49
+
50
+ return messages
51
+
52
+ # === Inference ===
53
+
54
+ pipeline = transformers.pipeline(
55
+ "text-generation",
56
+ model="microsoft/Phi-4-mini-instruct",
57
+ model_kwargs={"torch_dtype": "auto"},
58
+ device_map="auto",
59
+ )
60
+
61
+ # An inference function for an InferencePipeline that returns a list of raw outputs
62
+ def inference(preprocessed_items: List[Any], **hyperparameter_config: Any) -> List[Any]:
63
+ """Run model inference on preprocessed eval items.
64
+
65
+ Args:
66
+ preprocessed_items: The list of evaluation items for an EvalDataset.
67
+ hyperparameter_config: Model hyperparameters.
68
+
69
+ Returns:
70
+ A list of model outputs for an EvalDataset.
71
+ """
72
+ return [
73
+ pipeline(model_input, temperature=hyperparameter_config["temperature"])
74
+ for model_input in preprocessed_items
75
+ ]
76
+
77
+ # === Post-Processing ===
78
+
79
+ # The postprocessor function parses model output for metric scoring
80
+ def postprocessor(model_output: Any, **hyperparameter_config: Any) -> str:
81
+ """Extract the final parsed answer from the model output.
82
+
83
+ Args:
84
+ model_output: An evaluation item from an EvalDataset.
85
+ hyperparameter_config: Model hyperparameters.
86
+
87
+ Returns:
88
+ Parsed answer from the model output to be used for scoring.
89
+ """
90
+ return str(model_output[0]["generated_text"][-1]["content"])
91
+
92
+ # === Evaluation With An InferencePipeline ===
93
+
94
+ # Step 1: Create an inference pipeline, using the 3 functions defined
95
+ inference_pipeline = InferencePipeline(
96
+ model="microsoft/Phi-4-mini-instruct",
97
+ preprocessor=preprocessor,
98
+ inference_function=inference,
99
+ postprocessor=postprocessor,
100
+ )
101
+
102
+ # Step 2: Create a list of evaluation items
103
+ evaluation_items = [
104
+ {"question": "What is 2 + 2?", "answer": "4"},
105
+ {"question": "What is the capital of France?", "answer": "Paris"},
106
+ {"question": "Who wrote Romeo and Juliet?", "answer": "William Shakespeare"},
107
+ ]
108
+
109
+ # Create an evaluation dataset
110
+ evaluation_dataset = EvalDataset.from_list(
111
+ name="basic_questions",
112
+ metrics="accuracy",
113
+ items=evaluation_items,
114
+ input="question",
115
+ label="answer",
116
+ )
117
+
118
+ # Step 3: Run the evaluation using the inference pipeline and dataset
119
+ results = evaluate(
120
+ inference_pipeline,
121
+ evaluation_dataset,
122
+ hyperparameters={
123
+ "temperature": 0.7,
124
+ "system_message": "Answer the question directly and concisely.",
125
+ },
126
+ return_items=True, # Enable to include results for individual items in the dict returned.
127
+ return_output=True, # Enable to include the model's output for individual items.
128
+ upload_results=False, # Disable uploading for this example
129
+ )
130
+
131
+ pprint(results)
132
+ return results
133
+
134
+
135
+ if __name__ == "__main__":
136
+ load_dotenv()
137
+ log_file = setup_logging(experiment_id="6-inference_output", base_dir=Path(__file__).parent)
138
+ output_dir = Path(__file__).parent / "results"
139
+ output_dir.mkdir(exist_ok=True)
140
+ results_dict = main()
141
+ save_results_to_json(results_dict, output_dir, "6-inference_output_output.json")
@@ -0,0 +1,110 @@
1
+ """Tutorials - Evaluation Datasets - Example 1 - Loading Datasets from Files."""
2
+
3
+ from pathlib import Path
4
+ from pprint import pprint
5
+ from typing import Any, List
6
+
7
+ import transformers
8
+ from dotenv import load_dotenv
9
+
10
+ from tutorials.utils import save_results_to_json, setup_logging
11
+
12
+ from scorebook import EvalDataset, evaluate
13
+
14
+
15
+ def main() -> Any:
16
+ """Run evaluations using datasets loaded from local files.
17
+
18
+ This example demonstrates how to load evaluation datasets from files:
19
+ - from_json: Load datasets from JSON files
20
+ - from_csv: Load datasets from CSV files
21
+
22
+ Both methods support loading data from local files with custom field mappings.
23
+ """
24
+
25
+ # Initialize HuggingFace model pipeline
26
+ model_name = "microsoft/Phi-4-mini-instruct"
27
+ pipeline = transformers.pipeline(
28
+ "text-generation",
29
+ model=model_name,
30
+ model_kwargs={"torch_dtype": "auto"},
31
+ device_map="auto",
32
+ )
33
+
34
+ # Define an inference function
35
+ def inference(inputs: List[Any], **hyperparameters: Any) -> List[Any]:
36
+ """Process inputs through the model.
37
+
38
+ Args:
39
+ inputs: Input values from an EvalDataset.
40
+ hyperparameters: Model hyperparameters.
41
+
42
+ Returns:
43
+ List of model outputs for all inputs.
44
+ """
45
+ outputs = []
46
+ for input_val in inputs:
47
+ # Build messages
48
+ messages = [
49
+ {
50
+ "role": "system",
51
+ "content": "Answer the question directly and concisely. Provide only the answer, no additional context or text.",
52
+ },
53
+ {"role": "user", "content": str(input_val)},
54
+ ]
55
+
56
+ # Run inference
57
+ result = pipeline(messages, temperature=0.7)
58
+
59
+ # Extract the answer
60
+ output = str(result[0]["generated_text"][-1]["content"])
61
+ outputs.append(output)
62
+
63
+ return outputs
64
+
65
+ # Construct paths to example data files
66
+ example_datasets_dir = Path(__file__).parent / "example_datasets"
67
+ json_path = example_datasets_dir / "basic_questions.json"
68
+ csv_path = example_datasets_dir / "basic_questions.csv"
69
+
70
+ # Load dataset from JSON file
71
+ json_dataset = EvalDataset.from_json(
72
+ name="basic_questions_json",
73
+ path=str(json_path),
74
+ metrics="accuracy",
75
+ input="question",
76
+ label="answer",
77
+ )
78
+ print(f"Loaded {json_dataset.name} from JSON file: {len(json_dataset.items)} items")
79
+
80
+ # Load dataset from CSV file
81
+ csv_dataset = EvalDataset.from_csv(
82
+ name="basic_questions_csv",
83
+ path=str(csv_path),
84
+ metrics="accuracy",
85
+ input="question",
86
+ label="answer",
87
+ )
88
+ print(f"Loaded {csv_dataset.name} from CSV file: {len(csv_dataset.items)} items")
89
+
90
+ # Run evaluation on both datasets
91
+ results = evaluate(
92
+ inference,
93
+ datasets=[json_dataset, csv_dataset],
94
+ return_aggregates=True,
95
+ return_items=True,
96
+ return_output=True,
97
+ upload_results=False,
98
+ )
99
+
100
+ pprint(results)
101
+ return results
102
+
103
+
104
+ if __name__ == "__main__":
105
+ load_dotenv()
106
+ log_file = setup_logging(experiment_id="1-evaluation_datasets_from_files", base_dir=Path(__file__).parent)
107
+ output_dir = Path(__file__).parent / "results"
108
+ output_dir.mkdir(exist_ok=True)
109
+ results_dict = main()
110
+ save_results_to_json(results_dict, output_dir, "1-evaluation_datasets_from_files_output.json")
@@ -0,0 +1,101 @@
1
+ """Tutorials - Evaluation Datasets - Example 2 - Loading from HuggingFace."""
2
+
3
+ import asyncio
4
+ from pathlib import Path
5
+ from pprint import pprint
6
+ from typing import Any, List
7
+
8
+ from dotenv import load_dotenv
9
+ from openai import AsyncOpenAI
10
+
11
+ from tutorials.utils import save_results_to_json, setup_logging
12
+
13
+ from scorebook import EvalDataset, evaluate_async
14
+
15
+
16
+ async def main() -> Any:
17
+ """Run evaluations using datasets loaded from HuggingFace Hub.
18
+
19
+ This example demonstrates how to load evaluation datasets directly from
20
+ HuggingFace Hub using the from_huggingface method. This allows you to
21
+ easily evaluate on standard benchmarks and datasets.
22
+
23
+ We'll evaluate on the SimpleQA dataset, which tests factual question answering.
24
+
25
+ Prerequisites:
26
+ - OpenAI API key set in environment variable OPENAI_API_KEY
27
+ """
28
+
29
+ # Initialize OpenAI client
30
+ client = AsyncOpenAI()
31
+ model_name = "gpt-4o-mini"
32
+
33
+ # Define an async inference function
34
+ async def inference(inputs: List[Any], **hyperparameters: Any) -> List[Any]:
35
+ """Process inputs through OpenAI's API.
36
+
37
+ Args:
38
+ inputs: Input values from an EvalDataset.
39
+ hyperparameters: Model hyperparameters.
40
+
41
+ Returns:
42
+ List of model outputs for all inputs.
43
+ """
44
+ outputs = []
45
+ for input_val in inputs:
46
+ # Build messages for OpenAI API
47
+ messages = [
48
+ {
49
+ "role": "system",
50
+ "content": "Answer the question directly and concisely. Provide only the answer, no additional context or text.",
51
+ },
52
+ {"role": "user", "content": str(input_val)},
53
+ ]
54
+
55
+ # Call OpenAI API
56
+ try:
57
+ response = await client.chat.completions.create(
58
+ model=model_name,
59
+ messages=messages,
60
+ temperature=0.7,
61
+ )
62
+ output = response.choices[0].message.content.strip()
63
+ except Exception as e:
64
+ output = f"Error: {str(e)}"
65
+
66
+ outputs.append(output)
67
+
68
+ return outputs
69
+
70
+ # Load dataset from HuggingFace Hub
71
+ simple_qa = EvalDataset.from_huggingface(
72
+ path="basicv8vc/SimpleQA",
73
+ metrics="accuracy",
74
+ input="problem",
75
+ label="answer",
76
+ split="test",
77
+ )
78
+ print(f"Loaded {simple_qa.name} from HuggingFace Hub: {len(simple_qa.items)} items")
79
+
80
+ # Run evaluation with a sample to avoid long runtime
81
+ results = await evaluate_async(
82
+ inference,
83
+ simple_qa,
84
+ sample_size=10, # Sample 10 items for quick testing
85
+ return_aggregates=True,
86
+ return_items=True,
87
+ return_output=True,
88
+ upload_results=False,
89
+ )
90
+
91
+ pprint(results)
92
+ return results
93
+
94
+
95
+ if __name__ == "__main__":
96
+ load_dotenv()
97
+ log_file = setup_logging(experiment_id="2-evaluation_datasets_from_huggingface", base_dir=Path(__file__).parent)
98
+ output_dir = Path(__file__).parent / "results"
99
+ output_dir.mkdir(exist_ok=True)
100
+ results_dict = asyncio.run(main())
101
+ save_results_to_json(results_dict, output_dir, "2-evaluation_datasets_from_huggingface_output.json")
@@ -0,0 +1,110 @@
1
+ """Tutorials - Evaluation Datasets - Example 3 - Loading from YAML Config."""
2
+
3
+ import asyncio
4
+ from pathlib import Path
5
+ from pprint import pprint
6
+ from typing import Any, List
7
+
8
+ from dotenv import load_dotenv
9
+ from openai import AsyncOpenAI
10
+
11
+ from tutorials.utils import save_results_to_json, setup_logging
12
+
13
+ from scorebook import EvalDataset, evaluate_async
14
+
15
+
16
+ async def main() -> Any:
17
+ """Run evaluations using datasets loaded from YAML configuration files.
18
+
19
+ This example demonstrates how to use YAML configuration files to define
20
+ dataset loading parameters. YAML configs are useful for:
21
+ - Storing dataset configurations in version control
22
+ - Reusing the same dataset configuration across projects
23
+ - Defining complex prompt templates and field mappings
24
+
25
+ The YAML files contain:
26
+ - HuggingFace dataset path and split information
27
+ - Metrics to use for evaluation
28
+ - Jinja2 templates for input and label formatting
29
+ - Metadata about the dataset
30
+
31
+ Prerequisites:
32
+ - OpenAI API key set in environment variable OPENAI_API_KEY
33
+ """
34
+
35
+ # Initialize OpenAI client
36
+ client = AsyncOpenAI()
37
+ model_name = "gpt-4o-mini"
38
+
39
+ # Define an async inference function
40
+ async def inference(inputs: List[Any], **hyperparameters: Any) -> List[Any]:
41
+ """Process inputs through OpenAI's API.
42
+
43
+ Args:
44
+ inputs: Input values from an EvalDataset.
45
+ hyperparameters: Model hyperparameters.
46
+
47
+ Returns:
48
+ List of model outputs for all inputs.
49
+ """
50
+ outputs = []
51
+ for input_val in inputs:
52
+ # Build messages for OpenAI API
53
+ messages = [
54
+ {
55
+ "role": "system",
56
+ "content": "Answer the multiple choice question by selecting the correct letter (A, B, C, D, etc.). Provide ONLY the letter of your answer, no additional text or explanation.",
57
+ },
58
+ {"role": "user", "content": str(input_val)},
59
+ ]
60
+
61
+ # Call OpenAI API
62
+ try:
63
+ response = await client.chat.completions.create(
64
+ model=model_name,
65
+ messages=messages,
66
+ temperature=0.7,
67
+ )
68
+ output = response.choices[0].message.content.strip()
69
+ except Exception as e:
70
+ output = f"Error: {str(e)}"
71
+
72
+ outputs.append(output)
73
+
74
+ return outputs
75
+
76
+ # Construct paths to YAML config files
77
+ yaml_configs_dir = Path(__file__).parent / "example_yaml_configs"
78
+ cais_mmlu_yaml = yaml_configs_dir / "Cais-MMLU.yaml"
79
+ tiger_mmlu_pro_yaml = yaml_configs_dir / "TIGER-Lab-MMLU-Pro.yaml"
80
+
81
+ # Load Cais-MMLU dataset from YAML configuration
82
+ cais_mmlu = EvalDataset.from_yaml(str(cais_mmlu_yaml))
83
+ print(f"Loaded {cais_mmlu.name} from YAML config: {len(cais_mmlu.items)} items")
84
+
85
+ # Load TIGER-Lab MMLU-Pro dataset from YAML configuration
86
+ tiger_mmlu_pro = EvalDataset.from_yaml(str(tiger_mmlu_pro_yaml))
87
+ print(f"Loaded {tiger_mmlu_pro.name} from YAML config: {len(tiger_mmlu_pro.items)} items")
88
+
89
+ # Run evaluation on both datasets
90
+ results = await evaluate_async(
91
+ inference,
92
+ datasets=[cais_mmlu, tiger_mmlu_pro],
93
+ sample_size=5, # Sample 5 items from each dataset for quick testing
94
+ return_aggregates=True,
95
+ return_items=True,
96
+ return_output=True,
97
+ upload_results=False,
98
+ )
99
+
100
+ pprint(results)
101
+ return results
102
+
103
+
104
+ if __name__ == "__main__":
105
+ load_dotenv()
106
+ log_file = setup_logging(experiment_id="3-evaluation_datasets_from_yaml", base_dir=Path(__file__).parent)
107
+ output_dir = Path(__file__).parent / "results"
108
+ output_dir.mkdir(exist_ok=True)
109
+ results_dict = asyncio.run(main())
110
+ save_results_to_json(results_dict, output_dir, "3-evaluation_datasets_from_yaml_output.json")
@@ -0,0 +1,11 @@
1
+ question,answer
2
+ What is 2 + 2?,4
3
+ What is the capital of France?,Paris
4
+ Who wrote Romeo and Juliet?,William Shakespeare
5
+ What is 5 * 6?,30
6
+ What is the largest planet in our solar system?,Jupiter
7
+ Who painted the Mona Lisa?,Leonardo da Vinci
8
+ What is the square root of 64?,8
9
+ What is the capital of Japan?,Tokyo
10
+ Who invented the telephone?,Alexander Graham Bell
11
+ What is 12 - 7?,5
@@ -0,0 +1,42 @@
1
+ [
2
+ {
3
+ "question": "What is 2 + 2?",
4
+ "answer": "4"
5
+ },
6
+ {
7
+ "question": "What is the capital of France?",
8
+ "answer": "Paris"
9
+ },
10
+ {
11
+ "question": "Who wrote Romeo and Juliet?",
12
+ "answer": "William Shakespeare"
13
+ },
14
+ {
15
+ "question": "What is 5 * 6?",
16
+ "answer": "30"
17
+ },
18
+ {
19
+ "question": "What is the largest planet in our solar system?",
20
+ "answer": "Jupiter"
21
+ },
22
+ {
23
+ "question": "Who painted the Mona Lisa?",
24
+ "answer": "Leonardo da Vinci"
25
+ },
26
+ {
27
+ "question": "What is the square root of 64?",
28
+ "answer": "8"
29
+ },
30
+ {
31
+ "question": "What is the capital of Japan?",
32
+ "answer": "Tokyo"
33
+ },
34
+ {
35
+ "question": "Who invented the telephone?",
36
+ "answer": "Alexander Graham Bell"
37
+ },
38
+ {
39
+ "question": "What is 12 - 7?",
40
+ "answer": "5"
41
+ }
42
+ ]
@@ -0,0 +1,19 @@
1
+ path: "cais/mmlu"
2
+ name: "Cais-MMLU"
3
+ split: "test"
4
+ config: "all"
5
+ metrics:
6
+ - "accuracy"
7
+
8
+ templates:
9
+ input: |
10
+ {{ question }}
11
+
12
+ A. {{ choices[0] }}
13
+ B. {{ choices[1] }}
14
+ C. {{ choices[2] }}
15
+ D. {{ choices[3] }}
16
+ label: "{{ answer }}"
17
+
18
+ metadata:
19
+ description: "MMLU multiple choice questions from Cais"
@@ -0,0 +1,18 @@
1
+ path: "TIGER-Lab/MMLU-Pro"
2
+ name: "TIGER-Lab/MMLU-Pro"
3
+ split: "validation"
4
+ config: "default"
5
+ metrics:
6
+ - "accuracy"
7
+
8
+ templates:
9
+ input: |
10
+ {{ question }}
11
+ Options:
12
+ {% for option in options %}
13
+ {{ number_to_letter(loop.index0) }} : {{ option }}
14
+ {% endfor %}
15
+ label: "{{ answer }}"
16
+
17
+ metadata:
18
+ description: "MMLU-Pro multiple choice questions"