scorebook 0.0.14__py3-none-any.whl → 0.0.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. scorebook/__init__.py +2 -0
  2. scorebook/dashboard/credentials.py +34 -4
  3. scorebook/eval_datasets/eval_dataset.py +2 -2
  4. scorebook/evaluate/_async/evaluate_async.py +27 -11
  5. scorebook/evaluate/_sync/evaluate.py +27 -11
  6. scorebook/metrics/README.md +121 -0
  7. scorebook/metrics/__init__.py +8 -0
  8. scorebook/metrics/accuracy.py +2 -6
  9. scorebook/metrics/bertscore.py +50 -0
  10. scorebook/metrics/bleu.py +82 -0
  11. scorebook/metrics/core/__init__.py +1 -0
  12. scorebook/metrics/{metric_base.py → core/metric_base.py} +1 -2
  13. scorebook/metrics/core/metric_registry.py +195 -0
  14. scorebook/metrics/exactmatch.py +95 -0
  15. scorebook/metrics/f1.py +96 -0
  16. scorebook/metrics/precision.py +84 -9
  17. scorebook/metrics/recall.py +94 -0
  18. scorebook/metrics/rouge.py +85 -0
  19. scorebook/score/score_helpers.py +28 -11
  20. scorebook/types.py +2 -2
  21. scorebook/utils/progress_bars.py +58 -786
  22. {scorebook-0.0.14.dist-info → scorebook-0.0.15.dist-info}/METADATA +32 -24
  23. scorebook-0.0.15.dist-info/RECORD +110 -0
  24. {scorebook-0.0.14.dist-info → scorebook-0.0.15.dist-info}/WHEEL +1 -1
  25. tutorials/README.md +147 -0
  26. tutorials/__init__.py +5 -0
  27. tutorials/examples/1-score/1-scoring_model_accuracy.py +47 -0
  28. tutorials/examples/1-score/2-scoring_model_bleu.py +46 -0
  29. tutorials/examples/1-score/3-scoring_model_f1.py +64 -0
  30. tutorials/examples/1-score/4-scoring_model_rouge.py +64 -0
  31. tutorials/examples/1-score/5-scoring_model_exact_match.py +84 -0
  32. tutorials/examples/1-score/6-scoring_with_bertscore.py +57 -0
  33. tutorials/examples/1-score/__init__.py +0 -0
  34. tutorials/examples/2-evaluate/1-evaluating_local_models.py +106 -0
  35. tutorials/examples/2-evaluate/2-evaluating_local_models_with_batching.py +108 -0
  36. tutorials/examples/2-evaluate/3-evaluating_cloud_models.py +109 -0
  37. tutorials/examples/2-evaluate/4-evaluating_cloud_models_with_batching.py +170 -0
  38. tutorials/examples/2-evaluate/5-hyperparameter_sweeps.py +122 -0
  39. tutorials/examples/2-evaluate/6-inference_pipelines.py +141 -0
  40. tutorials/examples/3-evaluation_datasets/1-evaluation_datasets_from_files.py +110 -0
  41. tutorials/examples/3-evaluation_datasets/2-evaluation_datasets_from_huggingface.py +101 -0
  42. tutorials/examples/3-evaluation_datasets/3-evaluation_datasets_from_huggingface_with_yaml_configs.py +110 -0
  43. tutorials/examples/3-evaluation_datasets/example_datasets/basic_questions.csv +11 -0
  44. tutorials/examples/3-evaluation_datasets/example_datasets/basic_questions.json +42 -0
  45. tutorials/examples/3-evaluation_datasets/example_yaml_configs/Cais-MMLU.yaml +19 -0
  46. tutorials/examples/3-evaluation_datasets/example_yaml_configs/TIGER-Lab-MMLU-Pro.yaml +18 -0
  47. tutorials/examples/4-adaptive_evaluations/1-adaptive_evaluation.py +114 -0
  48. tutorials/examples/4-adaptive_evaluations/2-adaptive_dataset_splits.py +106 -0
  49. tutorials/examples/5-upload_results/1-uploading_score_results.py +92 -0
  50. tutorials/examples/5-upload_results/2-uploading_evaluate_results.py +117 -0
  51. tutorials/examples/5-upload_results/3-uploading_your_results.py +153 -0
  52. tutorials/examples/6-providers/aws/__init__.py +1 -0
  53. tutorials/examples/6-providers/aws/batch_example.py +219 -0
  54. tutorials/examples/6-providers/portkey/__init__.py +1 -0
  55. tutorials/examples/6-providers/portkey/batch_example.py +120 -0
  56. tutorials/examples/6-providers/portkey/messages_example.py +121 -0
  57. tutorials/examples/6-providers/vertex/__init__.py +1 -0
  58. tutorials/examples/6-providers/vertex/batch_example.py +166 -0
  59. tutorials/examples/6-providers/vertex/messages_example.py +142 -0
  60. tutorials/examples/__init__.py +0 -0
  61. tutorials/notebooks/1-scoring.ipynb +162 -0
  62. tutorials/notebooks/2-evaluating.ipynb +316 -0
  63. tutorials/notebooks/3.1-adaptive_evaluation_phi.ipynb +354 -0
  64. tutorials/notebooks/3.2-adaptive_evaluation_gpt.ipynb +243 -0
  65. tutorials/notebooks/4-uploading_results.ipynb +175 -0
  66. tutorials/quickstarts/adaptive_evaluations/adaptive_evaluation_openai_demo.ipynb +229 -0
  67. tutorials/quickstarts/adaptive_evaluations/adaptive_evaluation_qwen_demo.ipynb +256 -0
  68. tutorials/quickstarts/classical_evaluations/classical_evaluation_demo.ipynb +277 -0
  69. tutorials/quickstarts/getting_started.ipynb +197 -0
  70. tutorials/utils/__init__.py +35 -0
  71. tutorials/utils/args_parser.py +132 -0
  72. tutorials/utils/output.py +23 -0
  73. tutorials/utils/setup.py +98 -0
  74. scorebook/metrics/metric_registry.py +0 -107
  75. scorebook-0.0.14.dist-info/RECORD +0 -53
  76. {scorebook-0.0.14.dist-info → scorebook-0.0.15.dist-info}/entry_points.txt +0 -0
  77. {scorebook-0.0.14.dist-info → scorebook-0.0.15.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,114 @@
1
+ """Tutorials - Adaptive Evaluations - Example 1 - Adaptive Evaluation."""
2
+
3
+ import asyncio
4
+ import string
5
+ from pathlib import Path
6
+ from pprint import pprint
7
+ from typing import Any, List
8
+
9
+ from dotenv import load_dotenv
10
+ from openai import AsyncOpenAI
11
+
12
+ from tutorials.utils import save_results_to_json, setup_logging
13
+
14
+ from scorebook import evaluate_async, login
15
+
16
+
17
+ async def main() -> Any:
18
+ """Run an adaptive evaluation using Trismik's adaptive testing.
19
+
20
+ This example demonstrates how to use Trismik's adaptive evaluation feature.
21
+ Adaptive evaluations use Item Response Theory (IRT) to efficiently estimate
22
+ model capabilities by selecting questions based on previous responses.
23
+
24
+ Benefits of adaptive evaluation:
25
+ - More efficient: Fewer questions needed to assess capability
26
+ - Precise measurement: Better statistical confidence intervals
27
+ - Optimal difficulty: Questions adapt to model's skill level
28
+
29
+ Prerequisites:
30
+ - Valid Trismik API key set in TRISMIK_API_KEY environment variable
31
+ - A Trismik project ID
32
+ - OpenAI API key set in OPENAI_API_KEY environment variable
33
+ """
34
+
35
+ # Initialize OpenAI client
36
+ client = AsyncOpenAI()
37
+ model_name = "gpt-4o-mini"
38
+
39
+ # Define an async inference function
40
+ async def inference(inputs: List[Any], **hyperparameters: Any) -> List[Any]:
41
+ """Process inputs through OpenAI's API.
42
+
43
+ Args:
44
+ inputs: Input values from an EvalDataset. For adaptive MMLU-Pro,
45
+ each input is a dict with 'question' and 'options' keys.
46
+ hyperparameters: Model hyperparameters.
47
+
48
+ Returns:
49
+ List of model outputs for all inputs.
50
+ """
51
+ outputs = []
52
+ for input_val in inputs:
53
+ # Handle dict input from adaptive dataset
54
+ if isinstance(input_val, dict):
55
+ prompt = input_val.get("question", "")
56
+ if "options" in input_val:
57
+ prompt += "\nOptions:\n" + "\n".join(
58
+ f"{letter}: {choice}"
59
+ for letter, choice in zip(string.ascii_uppercase, input_val["options"])
60
+ )
61
+ else:
62
+ prompt = str(input_val)
63
+
64
+ # Build messages for OpenAI API
65
+ messages = [
66
+ {
67
+ "role": "system",
68
+ "content": "Answer the question with a single letter representing the correct answer from the list of choices. Do not provide any additional explanation or output beyond the single letter.",
69
+ },
70
+ {"role": "user", "content": prompt},
71
+ ]
72
+
73
+ # Call OpenAI API
74
+ try:
75
+ response = await client.chat.completions.create(
76
+ model=model_name,
77
+ messages=messages,
78
+ temperature=0.7,
79
+ )
80
+ output = response.choices[0].message.content.strip()
81
+ except Exception as e:
82
+ output = f"Error: {str(e)}"
83
+
84
+ outputs.append(output)
85
+
86
+ return outputs
87
+
88
+ # Step 1: Log in with your Trismik API key
89
+ # login() reads TRISMIK_API_KEY from environment variables or .env file
90
+ login()
91
+
92
+ # Step 2: Run adaptive evaluation
93
+ results = await evaluate_async(
94
+ inference,
95
+ datasets="trismik/headQA:adaptive", # Adaptive datasets have the ":adaptive" suffix
96
+ experiment_id="Adaptive-Head-QA-Evaluation",
97
+ project_id='TRISMIK-PROJECT-ID',
98
+ return_dict=True,
99
+ return_aggregates=True,
100
+ return_items=True,
101
+ return_output=True,
102
+ )
103
+
104
+ pprint(results)
105
+ return results
106
+
107
+
108
+ if __name__ == "__main__":
109
+ load_dotenv()
110
+ log_file = setup_logging(experiment_id="1-adaptive_evaluation", base_dir=Path(__file__).parent)
111
+ output_dir = Path(__file__).parent / "results"
112
+ output_dir.mkdir(exist_ok=True)
113
+ results_dict = asyncio.run(main())
114
+ save_results_to_json(results_dict, output_dir, "1-adaptive_evaluation_output.json")
@@ -0,0 +1,106 @@
1
+ """Tutorials - Adaptive Evaluations - Example 2 - Adaptive Dataset Splits."""
2
+
3
+ import asyncio
4
+ import string
5
+ from pathlib import Path
6
+ from pprint import pprint
7
+ from typing import Any, List
8
+
9
+ from dotenv import load_dotenv
10
+ from openai import AsyncOpenAI
11
+
12
+ from tutorials.utils import save_results_to_json, setup_logging
13
+
14
+ from scorebook import evaluate_async, login
15
+
16
+
17
+ async def main() -> Any:
18
+ """
19
+
20
+ Prerequisites:
21
+ - Valid Trismik API key set in TRISMIK_API_KEY environment variable
22
+ - A Trismik project ID
23
+ - OpenAI API key set in OPENAI_API_KEY environment variable
24
+ """
25
+
26
+ # Initialize OpenAI client
27
+ client = AsyncOpenAI()
28
+ model_name = "gpt-4o-mini"
29
+
30
+ # Define an async inference function
31
+ async def inference(inputs: List[Any], **hyperparameters: Any) -> List[Any]:
32
+ """Process inputs through OpenAI's API.
33
+
34
+ Args:
35
+ inputs: Input values from an EvalDataset. For adaptive headQA,
36
+ each input is a dict with 'question' and 'options' keys.
37
+ hyperparameters: Model hyperparameters.
38
+
39
+ Returns:
40
+ List of model outputs for all inputs.
41
+ """
42
+ outputs = []
43
+ for input_val in inputs:
44
+ # Handle dict input from adaptive dataset
45
+ if isinstance(input_val, dict):
46
+ prompt = input_val.get("question", "")
47
+ if "options" in input_val:
48
+ prompt += "\nOptions:\n" + "\n".join(
49
+ f"{letter}: {choice}"
50
+ for letter, choice in zip(string.ascii_uppercase, input_val["options"])
51
+ )
52
+ else:
53
+ prompt = str(input_val)
54
+
55
+ # Build messages for OpenAI API
56
+ messages = [
57
+ {
58
+ "role": "system",
59
+ "content": "Answer the question with a single letter representing the correct answer from the list of choices. Do not provide any additional explanation or output beyond the single letter.",
60
+ },
61
+ {"role": "user", "content": prompt},
62
+ ]
63
+
64
+ # Call OpenAI API
65
+ try:
66
+ response = await client.chat.completions.create(
67
+ model=model_name,
68
+ messages=messages,
69
+ temperature=0.7,
70
+ )
71
+ output = response.choices[0].message.content.strip()
72
+ except Exception as e:
73
+ output = f"Error: {str(e)}"
74
+
75
+ outputs.append(output)
76
+
77
+ return outputs
78
+
79
+ # Step 1: Log in with your Trismik API key
80
+ # login() reads TRISMIK_API_KEY from environment variables or .env file
81
+ login()
82
+
83
+ # Step 2: Run adaptive evaluation
84
+ results = await evaluate_async(
85
+ inference,
86
+ datasets="trismik/headQA:adaptive", # Adaptive datasets have the ":adaptive" suffix
87
+ split="test", # Specify the test split for evaluation
88
+ experiment_id="Adaptive-Head-QA-Test-Evaluation",
89
+ project_id='TRISMIK-PROJECT-ID',
90
+ return_dict=True,
91
+ return_aggregates=True,
92
+ return_items=True,
93
+ return_output=True,
94
+ )
95
+
96
+ pprint(results)
97
+ return results
98
+
99
+
100
+ if __name__ == "__main__":
101
+ load_dotenv()
102
+ log_file = setup_logging(experiment_id="2-adaptive_dataset_splits", base_dir=Path(__file__).parent)
103
+ output_dir = Path(__file__).parent / "results"
104
+ output_dir.mkdir(exist_ok=True)
105
+ results_dict = asyncio.run(main())
106
+ save_results_to_json(results_dict, output_dir, "2-adaptive_dataset_splits_output.json")
@@ -0,0 +1,92 @@
1
+ """Tutorials - Upload Results - Example 1 - Uploading score() Results."""
2
+
3
+ from pathlib import Path
4
+ from pprint import pprint
5
+ from typing import Any
6
+
7
+ from dotenv import load_dotenv
8
+
9
+ from tutorials.utils import save_results_to_json, setup_logging
10
+
11
+ from scorebook import login, score
12
+ from scorebook.metrics.accuracy import Accuracy
13
+
14
+
15
+ def main() -> Any:
16
+ """Score pre-computed outputs and upload results to Trismik's dashboard.
17
+
18
+ This example demonstrates how to upload score() results to Trismik.
19
+ The score() function is used when you already have model outputs and
20
+ want to score them against labels.
21
+
22
+ Use score() when you want to:
23
+ - Score pre-computed model outputs
24
+ - Re-score existing results with different metrics
25
+ - Upload scoring results without re-running inference
26
+
27
+ Prerequisites:
28
+ - Valid Trismik API key set in TRISMIK_API_KEY environment variable
29
+ - A Trismik project ID
30
+ """
31
+
32
+ # Prepare items with pre-computed outputs and labels
33
+ items = [
34
+ {
35
+ "input": "What is 2 + 2?",
36
+ "output": "4",
37
+ "label": "4"
38
+ },
39
+ {
40
+ "input": "What is the capital of France?",
41
+ "output": "Paris",
42
+ "label": "Paris"
43
+ },
44
+ {
45
+ "input": "Who wrote Romeo and Juliet?",
46
+ "output": "William Shakespeare",
47
+ "label": "William Shakespeare"
48
+ },
49
+ {
50
+ "input": "What is 5 * 6?",
51
+ "output": "30",
52
+ "label": "30"
53
+ },
54
+ {
55
+ "input": "What is the largest planet in our solar system?",
56
+ "output": "Jupiter",
57
+ "label": "Jupiter"
58
+ },
59
+ ]
60
+
61
+ # Step 1: Log in with your Trismik API key
62
+ # login() reads TRISMIK_API_KEY from environment variables or .env file
63
+ login()
64
+
65
+ # Step 2: Score the outputs and upload results
66
+ # When you provide experiment_id and project_id, results are automatically uploaded
67
+ results = score(
68
+ items=items,
69
+ metrics=Accuracy,
70
+ dataset_name="basic_questions",
71
+ model_name="gpt-4o-mini",
72
+ experiment_id="Score-Upload-Example",
73
+ project_id="TRISMIK_PROJECT_ID", # TODO: ADD YOUR TRISMIK PROJECT ID
74
+ metadata={
75
+ "description": "Example demonstrating score() result uploading",
76
+ "note": "These are pre-computed outputs",
77
+ },
78
+ upload_results=True, # Explicitly enable uploading
79
+ )
80
+
81
+ print("\nResults uploaded successfully!")
82
+ pprint(results)
83
+ return results
84
+
85
+
86
+ if __name__ == "__main__":
87
+ load_dotenv()
88
+ log_file = setup_logging(experiment_id="1-uploading_score_results", base_dir=Path(__file__).parent)
89
+ output_dir = Path(__file__).parent / "results"
90
+ output_dir.mkdir(exist_ok=True)
91
+ results_dict = main()
92
+ save_results_to_json(results_dict, output_dir, "1-uploading_score_results_output.json")
@@ -0,0 +1,117 @@
1
+ """Tutorials - Upload Results - Example 2 - Uploading evaluate() Results."""
2
+
3
+ from pathlib import Path
4
+ from pprint import pprint
5
+ from typing import Any, List
6
+
7
+ import transformers
8
+ from dotenv import load_dotenv
9
+
10
+ from tutorials.utils import save_results_to_json, setup_logging
11
+
12
+ from scorebook import EvalDataset, evaluate, login
13
+
14
+
15
+ def main() -> Any:
16
+ """Run an evaluation and upload results to Trismik's dashboard.
17
+
18
+ This example demonstrates how to upload evaluate() results to Trismik.
19
+ The evaluate() function runs inference on a dataset and automatically
20
+ uploads the results when you provide experiment_id and project_id.
21
+
22
+ Use evaluate() when you want to:
23
+ - Run inference AND score in one step
24
+ - Track full evaluation runs with hyperparameters
25
+ - Compare different models on the same dataset
26
+
27
+ Prerequisites:
28
+ - Valid Trismik API key set in TRISMIK_API_KEY environment variable
29
+ - A Trismik project ID
30
+ """
31
+
32
+ # Initialize HuggingFace model pipeline
33
+ model_name = "microsoft/Phi-4-mini-instruct"
34
+ pipeline = transformers.pipeline(
35
+ "text-generation",
36
+ model=model_name,
37
+ model_kwargs={"torch_dtype": "auto"},
38
+ device_map="auto",
39
+ )
40
+
41
+ # Define an inference function
42
+ def inference(inputs: List[Any], **hyperparameters: Any) -> List[Any]:
43
+ """Process inputs through the model.
44
+
45
+ Args:
46
+ inputs: Input values from an EvalDataset.
47
+ hyperparameters: Model hyperparameters.
48
+
49
+ Returns:
50
+ List of model outputs for all inputs.
51
+ """
52
+ outputs = []
53
+ for input_val in inputs:
54
+ # Build messages
55
+ messages = [
56
+ {"role": "system", "content": hyperparameters["system_message"]},
57
+ {"role": "user", "content": str(input_val)},
58
+ ]
59
+
60
+ # Run inference
61
+ result = pipeline(messages)
62
+
63
+ # Extract the answer
64
+ output = str(result[0]["generated_text"][-1]["content"])
65
+ outputs.append(output)
66
+
67
+ return outputs
68
+
69
+ # Load evaluation dataset
70
+ dataset_path = Path(__file__).parent.parent / "3-evaluation_datasets" / "example_datasets" / "basic_questions.json"
71
+ dataset = EvalDataset.from_json(
72
+ path=str(dataset_path),
73
+ metrics="accuracy",
74
+ input="question",
75
+ label="answer",
76
+ )
77
+
78
+ # Step 1: Log in with your Trismik API key
79
+ # login() reads TRISMIK_API_KEY from environment variables or .env file
80
+ login()
81
+
82
+
83
+ # Step 2: Run evaluation with result uploading
84
+ # When you provide experiment_id and project_id, results are automatically uploaded
85
+ print(f"\nRunning evaluation with model: {model_name}")
86
+ print("Results will be uploaded to Trismik dashboard.\n")
87
+
88
+ results = evaluate(
89
+ inference,
90
+ dataset,
91
+ hyperparameters={
92
+ "system_message": "Answer the question directly and concisely.",
93
+ },
94
+ experiment_id="Uploading-Results-Example", # Creates/uses this experiment
95
+ project_id="TRISMIK_PROJECT_ID", # TODO: ADD YOUR TRISMIK PROJECT ID
96
+ metadata={
97
+ "model": model_name,
98
+ "description": "Example evaluation demonstrating result uploading",
99
+ },
100
+ return_aggregates=True,
101
+ return_items=True,
102
+ return_output=True,
103
+ )
104
+
105
+ print("\nResults uploaded successfully!")
106
+ pprint(results)
107
+
108
+ return results
109
+
110
+
111
+ if __name__ == "__main__":
112
+ load_dotenv()
113
+ log_file = setup_logging(experiment_id="2-uploading_evaluate_results", base_dir=Path(__file__).parent)
114
+ output_dir = Path(__file__).parent / "results"
115
+ output_dir.mkdir(exist_ok=True)
116
+ results_dict = main()
117
+ save_results_to_json(results_dict, output_dir, "2-uploading_evaluate_results_output.json")
@@ -0,0 +1,153 @@
1
+ """Tutorials - Upload Results - Example 3 - Uploading Pre-Scored Results."""
2
+
3
+ from pathlib import Path
4
+ from pprint import pprint
5
+ from typing import Any
6
+
7
+ from dotenv import load_dotenv
8
+
9
+ from tutorials.utils import save_results_to_json, setup_logging
10
+
11
+ from scorebook import login, upload_result
12
+
13
+
14
+ def main() -> Any:
15
+ """Upload pre-scored results directly to Trismik's dashboard.
16
+
17
+ This example demonstrates how to upload results where metrics are ALREADY computed.
18
+ This is different from score() or evaluate() which compute metrics for you.
19
+
20
+ Use upload_result() when you:
21
+ - Already have metric scores calculated
22
+ - Used a custom evaluation framework that computed metrics
23
+ - Want to import historical evaluation data with existing scores
24
+ - Have results from external tools (e.g., other eval frameworks)
25
+
26
+ The key difference from Examples 1 & 2:
27
+ - Example 1 (score): You have outputs/labels → Scorebook computes metrics
28
+ - Example 2 (evaluate): Scorebook runs inference AND computes metrics
29
+ - Example 3 (upload_result): You have EVERYTHING including metrics → Just upload
30
+
31
+ Prerequisites:
32
+ - Valid Trismik API key set in TRISMIK_API_KEY environment variable
33
+ - A Trismik project ID
34
+ """
35
+
36
+ # Step 1: Log in with your Trismik API key
37
+ # login() reads TRISMIK_API_KEY from environment variables or .env file
38
+ login()
39
+
40
+ # Step 2: Format your pre-scored results
41
+ # This is the structure that upload_result() expects:
42
+ # - aggregate_results: List with one dict containing overall metrics
43
+ # - item_results: List of dicts with per-item data and metric scores
44
+
45
+ # Example: You already ran an evaluation with your custom framework
46
+ # and computed accuracy, f1_score, etc.
47
+ my_pre_scored_results = {
48
+ "aggregate_results": [
49
+ {
50
+ "dataset": "spanish_translation",
51
+ "accuracy": 0.8, # Your pre-computed aggregate accuracy
52
+ "bleu_score": 0.75, # Your pre-computed BLEU score
53
+ # Add any hyperparameters used (optional)
54
+ "temperature": 0.7,
55
+ "max_tokens": 100,
56
+ }
57
+ ],
58
+ "item_results": [
59
+ {
60
+ "id": 0,
61
+ "dataset": "spanish_translation",
62
+ "input": "Translate 'hello' to Spanish",
63
+ "output": "hola",
64
+ "label": "hola",
65
+ "accuracy": 1.0, # Item-level metric scores
66
+ "bleu_score": 1.0,
67
+ "temperature": 0.7,
68
+ "max_tokens": 100,
69
+ },
70
+ {
71
+ "id": 1,
72
+ "dataset": "spanish_translation",
73
+ "input": "Translate 'goodbye' to Spanish",
74
+ "output": "adiós",
75
+ "label": "adiós",
76
+ "accuracy": 1.0,
77
+ "bleu_score": 0.95,
78
+ "temperature": 0.7,
79
+ "max_tokens": 100,
80
+ },
81
+ {
82
+ "id": 2,
83
+ "dataset": "spanish_translation",
84
+ "input": "Translate 'thank you' to Spanish",
85
+ "output": "gracias",
86
+ "label": "gracias",
87
+ "accuracy": 1.0,
88
+ "bleu_score": 1.0,
89
+ "temperature": 0.7,
90
+ "max_tokens": 100,
91
+ },
92
+ {
93
+ "id": 3,
94
+ "dataset": "spanish_translation",
95
+ "input": "Translate 'please' to Spanish",
96
+ "output": "por favor",
97
+ "label": "por favor",
98
+ "accuracy": 1.0,
99
+ "bleu_score": 1.0,
100
+ "temperature": 0.7,
101
+ "max_tokens": 100,
102
+ },
103
+ {
104
+ "id": 4,
105
+ "dataset": "spanish_translation",
106
+ "input": "Translate 'good morning' to Spanish",
107
+ "output": "buenos dias", # Missing accent - wrong answer
108
+ "label": "buenos días",
109
+ "accuracy": 0.0,
110
+ "bleu_score": 0.85,
111
+ "temperature": 0.7,
112
+ "max_tokens": 100,
113
+ },
114
+ ],
115
+ }
116
+
117
+ # Step 3: Upload your pre-scored results directly
118
+ print("\nUploading pre-scored results to Trismik...")
119
+ print("Metrics are already computed - just uploading to dashboard.\n")
120
+
121
+ run_id = upload_result(
122
+ run_result=my_pre_scored_results,
123
+ experiment_id="Pre-Scored-Results-Example",
124
+ project_id="TRISMIK_PROJECT_ID", # TODO: ADD YOUR TRISMIK PROJECT ID
125
+ dataset_name="spanish_translation",
126
+ hyperparameters={
127
+ "temperature": 0.7,
128
+ "max_tokens": 100,
129
+ },
130
+ metadata={
131
+ "description": "Results with pre-computed metrics from custom framework",
132
+ "source": "Custom evaluation tool",
133
+ "evaluation_date": "2025-01-15",
134
+ },
135
+ model_name="my-custom-translator-v2",
136
+ )
137
+
138
+ print(f"\nResults uploaded successfully with run_id: {run_id}")
139
+
140
+ # Add run_id to results for reference
141
+ my_pre_scored_results["run_id"] = run_id
142
+
143
+ pprint(my_pre_scored_results)
144
+ return my_pre_scored_results
145
+
146
+
147
+ if __name__ == "__main__":
148
+ load_dotenv()
149
+ log_file = setup_logging(experiment_id="3-uploading_your_results", base_dir=Path(__file__).parent)
150
+ output_dir = Path(__file__).parent / "results"
151
+ output_dir.mkdir(exist_ok=True)
152
+ results_dict = main()
153
+ save_results_to_json(results_dict, output_dir, "3-uploading_your_results_output.json")
@@ -0,0 +1 @@
1
+ """Example usage of the AWS API with the scorebook library."""