scitex 2.3.0__py3-none-any.whl → 2.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (99) hide show
  1. scitex/ai/classification/reporters/reporter_utils/_Plotter.py +1 -1
  2. scitex/ai/plt/__init__.py +2 -2
  3. scitex/ai/plt/{_plot_conf_mat.py → _stx_conf_mat.py} +3 -3
  4. scitex/config/PriorityConfig.py +195 -0
  5. scitex/config/__init__.py +24 -0
  6. scitex/io/_save.py +125 -34
  7. scitex/io/_save_modules/_image.py +37 -20
  8. scitex/plt/__init__.py +470 -17
  9. scitex/plt/_subplots/_AxisWrapper.py +98 -50
  10. scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +559 -124
  11. scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +49 -8
  12. scitex/plt/_subplots/_SubplotsWrapper.py +76 -91
  13. scitex/plt/_subplots/_export_as_csv.py +127 -58
  14. scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +25 -16
  15. scitex/plt/_subplots/_export_as_csv_formatters/_format_contourf.py +54 -0
  16. scitex/plt/_subplots/_export_as_csv_formatters/_format_hexbin.py +41 -0
  17. scitex/plt/_subplots/_export_as_csv_formatters/_format_hist2d.py +41 -0
  18. scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +59 -47
  19. scitex/plt/_subplots/_export_as_csv_formatters/_format_matshow.py +42 -0
  20. scitex/plt/_subplots/_export_as_csv_formatters/_format_pie.py +42 -0
  21. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +72 -35
  22. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +1 -1
  23. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +2 -2
  24. scitex/plt/_subplots/_export_as_csv_formatters/_format_quiver.py +53 -0
  25. scitex/plt/_subplots/_export_as_csv_formatters/_format_stem.py +42 -0
  26. scitex/plt/_subplots/_export_as_csv_formatters/_format_step.py +42 -0
  27. scitex/plt/_subplots/_export_as_csv_formatters/_format_streamplot.py +48 -0
  28. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_conf_mat.py → _format_stx_conf_mat.py} +2 -2
  29. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_ecdf.py → _format_stx_ecdf.py} +2 -2
  30. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_fillv.py → _format_stx_fillv.py} +2 -2
  31. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_heatmap.py → _format_stx_heatmap.py} +2 -2
  32. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_image.py → _format_stx_image.py} +2 -2
  33. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_joyplot.py → _format_stx_joyplot.py} +2 -2
  34. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_line.py → _format_stx_line.py} +3 -3
  35. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_mean_ci.py → _format_stx_mean_ci.py} +2 -2
  36. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_mean_std.py → _format_stx_mean_std.py} +2 -2
  37. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_median_iqr.py → _format_stx_median_iqr.py} +2 -2
  38. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_raster.py → _format_stx_raster.py} +2 -2
  39. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_rectangle.py → _format_stx_rectangle.py} +1 -1
  40. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_scatter_hist.py → _format_stx_scatter_hist.py} +2 -2
  41. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_shaded_line.py → _format_stx_shaded_line.py} +2 -2
  42. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_violin.py → _format_stx_violin.py} +2 -2
  43. scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py +23 -23
  44. scitex/plt/ax/__init__.py +16 -15
  45. scitex/plt/ax/_plot/__init__.py +30 -30
  46. scitex/plt/ax/_plot/_add_fitted_line.py +65 -11
  47. scitex/plt/ax/_plot/_plot_statistical_shaded_line.py +104 -76
  48. scitex/plt/ax/_plot/{_plot_conf_mat.py → _stx_conf_mat.py} +10 -10
  49. scitex/plt/ax/_plot/_stx_ecdf.py +109 -0
  50. scitex/plt/ax/_plot/{_plot_fillv.py → _stx_fillv.py} +7 -7
  51. scitex/plt/ax/_plot/_stx_heatmap.py +366 -0
  52. scitex/plt/ax/_plot/{_plot_image.py → _stx_image.py} +1 -1
  53. scitex/plt/ax/_plot/_stx_joyplot.py +113 -0
  54. scitex/plt/ax/_plot/{_plot_raster.py → _stx_raster.py} +37 -25
  55. scitex/plt/ax/_plot/{_plot_rectangle.py → _stx_rectangle.py} +10 -9
  56. scitex/plt/ax/_plot/{_plot_scatter_hist.py → _stx_scatter_hist.py} +1 -1
  57. scitex/plt/ax/_plot/_stx_shaded_line.py +215 -0
  58. scitex/plt/ax/_plot/{_plot_violin.py → _stx_violin.py} +13 -6
  59. scitex/plt/ax/_style/__init__.py +3 -0
  60. scitex/plt/ax/_style/_style_barplot.py +13 -2
  61. scitex/plt/ax/_style/_style_boxplot.py +78 -32
  62. scitex/plt/ax/_style/_style_errorbar.py +17 -3
  63. scitex/plt/ax/_style/_style_scatter.py +17 -3
  64. scitex/plt/ax/_style/_style_violinplot.py +109 -0
  65. scitex/plt/color/_vizualize_colors.py +3 -3
  66. scitex/plt/styles/SCITEX_STYLE.yaml +104 -0
  67. scitex/plt/styles/__init__.py +57 -0
  68. scitex/plt/styles/_plot_defaults.py +209 -0
  69. scitex/plt/styles/_plot_postprocess.py +518 -0
  70. scitex/plt/styles/_style_loader.py +268 -0
  71. scitex/plt/styles/presets.py +208 -0
  72. scitex/plt/utils/_collect_figure_metadata.py +160 -18
  73. scitex/plt/utils/_colorbar.py +72 -10
  74. scitex/plt/utils/_configure_mpl.py +108 -52
  75. scitex/plt/utils/_crop.py +21 -7
  76. scitex/plt/utils/_figure_mm.py +21 -7
  77. scitex/stats/__init__.py +13 -1
  78. scitex/stats/_schema.py +578 -0
  79. scitex/stats/tests/__init__.py +13 -0
  80. scitex/stats/tests/correlation/__init__.py +13 -0
  81. scitex/stats/tests/correlation/_test_pearson.py +262 -0
  82. scitex/vis/__init__.py +6 -0
  83. scitex/vis/editor/__init__.py +23 -0
  84. scitex/vis/editor/_defaults.py +205 -0
  85. scitex/vis/editor/_edit.py +342 -0
  86. scitex/vis/editor/_mpl_editor.py +231 -0
  87. scitex/vis/editor/_tkinter_editor.py +466 -0
  88. scitex/vis/editor/_web_editor.py +1440 -0
  89. scitex/vis/model/plot_types.py +15 -15
  90. {scitex-2.3.0.dist-info → scitex-2.4.1.dist-info}/METADATA +2 -1
  91. {scitex-2.3.0.dist-info → scitex-2.4.1.dist-info}/RECORD +94 -67
  92. {scitex-2.3.0.dist-info → scitex-2.4.1.dist-info}/WHEEL +1 -1
  93. scitex/plt/ax/_plot/_plot_ecdf.py +0 -84
  94. scitex/plt/ax/_plot/_plot_heatmap.py +0 -277
  95. scitex/plt/ax/_plot/_plot_joyplot.py +0 -77
  96. scitex/plt/ax/_plot/_plot_shaded_line.py +0 -142
  97. scitex/plt/presets.py +0 -224
  98. {scitex-2.3.0.dist-info → scitex-2.4.1.dist-info}/entry_points.txt +0 -0
  99. {scitex-2.3.0.dist-info → scitex-2.4.1.dist-info}/licenses/LICENSE +0 -0
@@ -288,7 +288,7 @@ class ViolinPlotConfig:
288
288
 
289
289
  @dataclass
290
290
  class HeatmapConfig:
291
- """Heatmap configuration (scitex.plt.ax.plot_heatmap)."""
291
+ """Heatmap configuration (scitex.plt.ax.stx_heatmap)."""
292
292
 
293
293
  # Data (required)
294
294
  data: Any # 2D array
@@ -313,7 +313,7 @@ class HeatmapConfig:
313
313
 
314
314
  @dataclass
315
315
  class PlotLineConfig:
316
- """Plot line configuration (scitex.plt.ax.plot_line)."""
316
+ """Plot line configuration (scitex.plt.ax.stx_line)."""
317
317
 
318
318
  # Data (required - single array)
319
319
  y: List[float]
@@ -333,7 +333,7 @@ class PlotLineConfig:
333
333
 
334
334
  @dataclass
335
335
  class ShadedLineConfig:
336
- """Shaded line configuration (scitex.plt.ax.plot_shaded_line)."""
336
+ """Shaded line configuration (scitex.plt.ax.stx_shaded_line)."""
337
337
 
338
338
  # Data (required)
339
339
  x: List[float]
@@ -355,7 +355,7 @@ class ShadedLineConfig:
355
355
 
356
356
  @dataclass
357
357
  class ViolinConfig:
358
- """Violin plot configuration (scitex.plt.ax.plot_violin)."""
358
+ """Violin plot configuration (scitex.plt.ax.stx_violin)."""
359
359
 
360
360
  # Data (required)
361
361
  data: List[List[float]]
@@ -370,7 +370,7 @@ class ViolinConfig:
370
370
 
371
371
  @dataclass
372
372
  class ECDFConfig:
373
- """ECDF configuration (scitex.plt.ax.plot_ecdf)."""
373
+ """ECDF configuration (scitex.plt.ax.stx_ecdf)."""
374
374
 
375
375
  # Data (required)
376
376
  data: List[float]
@@ -388,7 +388,7 @@ class ECDFConfig:
388
388
 
389
389
  @dataclass
390
390
  class BoxConfig:
391
- """Box plot configuration (scitex.plt.ax.plot_box)."""
391
+ """Box plot configuration (scitex.plt.ax.stx_box)."""
392
392
 
393
393
  # Data (required)
394
394
  data: List[float]
@@ -406,7 +406,7 @@ class BoxConfig:
406
406
 
407
407
  @dataclass
408
408
  class MeanStdConfig:
409
- """Mean±Std configuration (scitex.plt.ax.plot_mean_std)."""
409
+ """Mean±Std configuration (scitex.plt.ax.stx_mean_std)."""
410
410
 
411
411
  # Data (required)
412
412
  y_mean: List[float]
@@ -426,7 +426,7 @@ class MeanStdConfig:
426
426
 
427
427
  @dataclass
428
428
  class KDEConfig:
429
- """KDE configuration (scitex.plt.ax.plot_kde)."""
429
+ """KDE configuration (scitex.plt.ax.stx_kde)."""
430
430
 
431
431
  # Data (required)
432
432
  data: List[float]
@@ -609,13 +609,13 @@ PLOT_TYPE_CONFIGS = {
609
609
  "violinplot": ViolinPlotConfig,
610
610
  # Custom scitex
611
611
  "heatmap": HeatmapConfig,
612
- "plot_line": PlotLineConfig,
613
- "plot_shaded_line": ShadedLineConfig,
614
- "plot_violin": ViolinConfig,
615
- "plot_ecdf": ECDFConfig,
616
- "plot_box": BoxConfig,
617
- "plot_mean_std": MeanStdConfig,
618
- "plot_kde": KDEConfig,
612
+ "stx_line": PlotLineConfig,
613
+ "stx_shaded_line": ShadedLineConfig,
614
+ "stx_violin": ViolinConfig,
615
+ "stx_ecdf": ECDFConfig,
616
+ "stx_box": BoxConfig,
617
+ "stx_mean_std": MeanStdConfig,
618
+ "stx_kde": KDEConfig,
619
619
  # Seaborn
620
620
  "sns_boxplot": SeabornBoxplotConfig,
621
621
  "sns_violinplot": SeabornViolinplotConfig,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: scitex
3
- Version: 2.3.0
3
+ Version: 2.4.1
4
4
  Summary: A comprehensive Python library for scientific computing and data analysis
5
5
  Project-URL: Homepage, https://github.com/ywatanabe1989/scitex-code
6
6
  Project-URL: Documentation, https://scitex.readthedocs.io
@@ -258,6 +258,7 @@ Requires-Dist: tenacity; extra == 'scholar'
258
258
  Requires-Dist: watchdog; extra == 'scholar'
259
259
  Requires-Dist: webdriver-manager; extra == 'scholar'
260
260
  Provides-Extra: web
261
+ Requires-Dist: celery; extra == 'web'
261
262
  Requires-Dist: fastapi; extra == 'web'
262
263
  Requires-Dist: flask; extra == 'web'
263
264
  Requires-Dist: streamlit; extra == 'web'
@@ -55,7 +55,7 @@ scitex/ai/classification/reporters/_ClassificationReporter.py,sha256=aR0nvxGkT-b
55
55
  scitex/ai/classification/reporters/_MultiClassificationReporter.py,sha256=SC41YaOox9wnJ2c_VIodmXG8ByG9GHVs2Q0isbopFT4,13171
56
56
  scitex/ai/classification/reporters/_SingleClassificationReporter.py,sha256=ZpdRcxuRlGxrsdWNDVmSyHOQleQMIQnG9YaGLmmnB7Y,71865
57
57
  scitex/ai/classification/reporters/__init__.py,sha256=yqUZuF6KBFbuQaLQ90A871lbes0M3qWLINjTkWUQ3hA,350
58
- scitex/ai/classification/reporters/reporter_utils/_Plotter.py,sha256=Vcz_2iXNQ7Xw3UgI3OSVtDt_OgqO9s1LNd6HrSXa3cI,37483
58
+ scitex/ai/classification/reporters/reporter_utils/_Plotter.py,sha256=r7a_ncI4RZd6IZVtvLdAXKemtg6jwi2r6zibRFtzF0A,37481
59
59
  scitex/ai/classification/reporters/reporter_utils/__init__.py,sha256=BiOdqvDoHRHQyBFJG7zJWJSofeLDzAbBMBHpMmO9-j0,1568
60
60
  scitex/ai/classification/reporters/reporter_utils/aggregation.py,sha256=QBgSZ9FdN2OuIvsgHs23wCK0iG21I8Hop6pVgwxqEX4,14129
61
61
  scitex/ai/classification/reporters/reporter_utils/data_models.py,sha256=grjhoP2KsnfGM7f6SaolldyqqBo7QVYxknkkshUTAUI,11764
@@ -110,13 +110,13 @@ scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger.py,sha256=kyB4Moni6
110
110
  scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger2020.py,sha256=EQYQJ8uf8YzubZR0N8h7p3Jz2WoS706bZzKgKUC0jnE,9432
111
111
  scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger913A.py,sha256=gdFmSjmKa9dOYkoBtd9bx9nHKYdaSnNJK6UasW0tEFY,8449
112
112
  scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/rangerqh.py,sha256=LoaP_hb50mF90TEpPuCQCOAKl8GMqrEydUCNTAS7Yd8,6990
113
- scitex/ai/plt/__init__.py,sha256=pVUv13LtGBEG88MMJ_JcKKtcU5VS0ZsWtBmbnnuKg6I,1817
114
- scitex/ai/plt/_plot_conf_mat.py,sha256=no-xRnMCP_of3-tFjqlYw-EdT7MXO-qZh10gLQDDHSQ,19565
113
+ scitex/ai/plt/__init__.py,sha256=fcobYauD7Pr2RUAkei746cVv9kZPyNzByjNUlF1Gkf4,1814
115
114
  scitex/ai/plt/_plot_feature_importance.py,sha256=avHG_DPq_N0MhYs5_VwSMX70FCROPb9JigzXIHb6jig,9164
116
115
  scitex/ai/plt/_plot_learning_curve.py,sha256=yGMsXBL4o88vL8RXk5TADNW4mNioJiNwU2Zm76Azgy0,9339
117
116
  scitex/ai/plt/_plot_optuna_study.py,sha256=qgNcsqjCulc77junyEvxxMFmd5T5eU68V94coIL5ico,6766
118
117
  scitex/ai/plt/_plot_pre_rec_curve.py,sha256=0OMDwmnbz4y_IsCQYC-Lcz3x1B8oSbw9d-yG4I_5GC8,8563
119
118
  scitex/ai/plt/_plot_roc_curve.py,sha256=t3IbvBVL8WSUZlK014tjA1UF9qV8VuCHGYZeYHEU12s,7080
119
+ scitex/ai/plt/_stx_conf_mat.py,sha256=WMG21PacDA6c2RP_of5-WKP5fhL71RU6vum93nj-cwg,19562
120
120
  scitex/ai/sampling/undersample.py,sha256=6lkVthk-P2Dr1ECZP9gWVFn9yh6ijX-Fmq61pZsvREs,1232
121
121
  scitex/ai/sk/__init__.py,sha256=6WtwEsIM6Ykh5jvk4yGzQvWMK3fTn5mmFmRSK9xE0d8,209
122
122
  scitex/ai/sk/_clf.py,sha256=yW5fQEgQOtLyEjZj5dzh1gL6t3K9sEzeWsX0FTx6Ajc,1988
@@ -203,6 +203,8 @@ scitex/cli/web.py,sha256=QrjNusn_NUolCL18FnTzm51Fx-ZwWMTcV4y8kRSfeqs,13431
203
203
  scitex/cli/writer.py,sha256=1DIyFLgvfgpyO3aioKxmDfshnoiee1ggcMKxNpZZCz0,8067
204
204
  scitex/cloud/__init__.py,sha256=pPEcUYdBUSacQpiHrqvyKdvHJd3dfx5W6NL5hOw8usk,3926
205
205
  scitex/cloud/_matplotlib_hook.py,sha256=KAAjHPz2qkieYxRT0eYVnOV2nR4OCidTi22n7niuM-Y,3731
206
+ scitex/config/PriorityConfig.py,sha256=OE7s-e77R7aZRK_X4Hzr96Y90swDmNwiXodTjWi_3kk,5937
207
+ scitex/config/__init__.py,sha256=2VsN0t9w5jwoxMcRw0qDZISGcIG66DiqgAupi_AMjug,561
206
208
  scitex/context/__init__.py,sha256=9d7EwdUc9GmW-ELATjK9KeHJsSdlW1fUYApoZMa07_4,157
207
209
  scitex/context/_suppress_output.py,sha256=gxZcS1-pmZ-GRlx8X02TfidA9evpT6Kyk6NNHvNSRAk,1210
208
210
  scitex/db/README.md,sha256=5Ps4ESW5FrDedm3NEsz1nxO55q2gavFdhupMHQ6qfY4,6221
@@ -402,7 +404,7 @@ scitex/io/_mv_to_tmp.py,sha256=oNwVn4WliWX2dFsSnkrA6B7Yn-BNX6O5hHrCbjXWufg,421
402
404
  scitex/io/_path.py,sha256=mqbs2Y2kJP-IHwvdtnJs8vyime9i0QY8bh3IyVEP3qA,7803
403
405
  scitex/io/_qr_utils.py,sha256=toLF1OzI8DQhIjbGPiMyRTwd6ba-LAk0nHPZ-fKMmXU,1969
404
406
  scitex/io/_reload.py,sha256=k3FSMO-ts0sAqNVYroVAG5rxk7haIRtyDbPl1ZvLIfw,2780
405
- scitex/io/_save.py,sha256=yNTlb44zkIPD5H75-vk32K5y2Sl42Vo_x-g8f_xSk5E,36491
407
+ scitex/io/_save.py,sha256=dwivlwD-PEyFiyR3tCDe65mGmL3_cpD3N8zTeUv2-Po,42246
406
408
  scitex/io/memo.md,sha256=L6hzBLnJrC3QcUmKZ_-6wUliRXnEInZiRP8pWvKlx7k,98235
407
409
  scitex/io/_load_modules/_H5Explorer.py,sha256=FCl8_Jc1kH6xkOaIoq2CIXQ-0xjzCzbxOzHwMAr3SK8,10351
408
410
  scitex/io/_load_modules/_ZarrExplorer.py,sha256=lm9ZE64uyK9uoiY1NoJjwEbQNdbSXddPwtK3KVxwC90,3356
@@ -436,7 +438,7 @@ scitex/io/_save_modules/_csv.py,sha256=K9NFdwk_kJzD-4UhgFu3dY3zDTl44KO_lJ6YnnODj
436
438
  scitex/io/_save_modules/_excel.py,sha256=LkTF_G3ff5WlyNZNC3SWQt7_UztYrdIEgFDmusliaL0,6357
437
439
  scitex/io/_save_modules/_hdf5.py,sha256=MvtNqQd_7vQzqnV8rCOoYs8nrfhXePCQIFVK67H1kFI,9399
438
440
  scitex/io/_save_modules/_html.py,sha256=kz0mmVzAyePjQy0H5k5R4TbcjkJhrrMDFMA9h_rCbzw,1299
439
- scitex/io/_save_modules/_image.py,sha256=gUFNJMrWEHhp5xYRWTc7gPUYTzeb9y5nMhVz3JlUhV4,6325
441
+ scitex/io/_save_modules/_image.py,sha256=FtGCiSwQs9LCLw8CpIbHaiYVLxdT9Z3a-rAYKL9DIaM,6326
440
442
  scitex/io/_save_modules/_joblib.py,sha256=Mj7xnk8Xb4DzIgZUuKY-h0wZ3a252VmyR-VQpuIIBWw,562
441
443
  scitex/io/_save_modules/_json.py,sha256=5yUut628FrXjx637nFsPwCfPodrVIRwAHo3o_wZDU8I,1858
442
444
  scitex/io/_save_modules/_listed_dfs_as_csv.py,sha256=df4EmrN-duytAZsdF_5AF7d0ENhF-CJJHYBVciskRyU,1616
@@ -525,57 +527,47 @@ scitex/pd/_to_numeric.py,sha256=_0PzQR2j5_xHgxMH9b2gpZFg2PDWI3sNomxDFWWHTqo,1796
525
527
  scitex/pd/_to_xy.py,sha256=LlAnNeZjXqdu_QmNE8_mQh4cjRWZp36hy4avXucgjnA,1866
526
528
  scitex/pd/_to_xyz.py,sha256=WdtHIcAmwM7MM_2yP4MErdLrJ32XWyrbB2HuvYvZahU,3243
527
529
  scitex/plt/README.md,sha256=tC94RzEksldrlhKd6v1UAx6uF7TFI1qwgOqD7ZkTVmw,59641
528
- scitex/plt/__init__.py,sha256=ABlpsXhf0_p1tO6q-P-1mU6nv37NWx_5JfOIxKRHmfA,7891
530
+ scitex/plt/__init__.py,sha256=MK5x3EXCLz_zDQDpNvEhxLgJE_KaTeMGS31x4W8Qsms,22601
529
531
  scitex/plt/_tpl.py,sha256=IjucOOi2MMXXbD6mQDy-_y5FrUOIUu-v6jkajw_6lCo,653
530
532
  scitex/plt/gallery.md,sha256=fz4S2R8chtI5QdKp7W6PBKjsRyynAcaC1PK4cMBwIwo,10950
531
- scitex/plt/presets.py,sha256=ptS3zFXuw0SC4RAXWeqKOBPHPU5SrHFRLC-iIZPttMo,10847
532
533
  scitex/plt/_subplots/TODO.md,sha256=eMG5Za9prhuLlT4xzcPYeKdbnnSM1cTE23Te-5zLdNs,920
533
534
  scitex/plt/_subplots/_AxesWrapper.py,sha256=AJ1pw1DPb7ACjCKJ_rT6YIpc9j0npmnVAkH3wWZmrFg,5964
534
- scitex/plt/_subplots/_AxisWrapper.py,sha256=XCR3f7bvgZLMaTX8-2qo0jqO5NnqKk_TSpFXphbuYU8,10136
535
+ scitex/plt/_subplots/_AxisWrapper.py,sha256=BwpZ5mx7GEEbrYVC-n6HZvcq7tUZyeSq9wknDwMGGQE,13066
535
536
  scitex/plt/_subplots/_FigWrapper.py,sha256=vFI1HtgLge4GXFzKWR5t533gu-3x6nX_yZEj_byrFKE,14949
536
- scitex/plt/_subplots/_SubplotsWrapper.py,sha256=LuDVmeZwmiN6jPtTiGJyE5s_lkQY0r67KDhriGYWDss,24419
537
+ scitex/plt/_subplots/_SubplotsWrapper.py,sha256=Kqfs75Gux9KvGEqmmOx8ejqUQpCxih8h86QJMazJrGo,25052
537
538
  scitex/plt/_subplots/__init__.py,sha256=OWVwq2dWH0LfT3j5wgqq6m1mlvgnJgwOrsQVo9VjSs8,3222
538
- scitex/plt/_subplots/_export_as_csv.py,sha256=rzX9CAKKv21LFzlDGcFAT6MlJokkmB5J7NIQvRtCd1k,12971
539
+ scitex/plt/_subplots/_export_as_csv.py,sha256=Naf9K9iNhliW1J5Bb-B_K83NXI54JzcCwg6zSmAduNc,14908
539
540
  scitex/plt/_subplots/_export_as_csv_formatters.py,sha256=IsSQfwYb0mOUBe04BMa6zdlbL659ygkf0pFlTOPhen8,5584
540
541
  scitex/plt/_subplots/_AxisWrapperMixins/_AdjustmentMixin.py,sha256=ygE7x15pCMoiQ_1pVZ4fqZvXGxBVR5XxJ1JO-w4hz4I,19660
541
- scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py,sha256=L3sB4-dcgs4I3SD_80ZRmn44eX8nd0Ir62-GGfmHKwE,34742
542
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py,sha256=YJG9oqYV2vxYCKkVGNTCHEiSqYSorGswP0m7hbXKqYs,13028
542
+ scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py,sha256=_CYNXv9hlcGX58dX_fnG_QcOn3sdOpCVL_bq87Sn93o,51168
543
+ scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py,sha256=sy6C7TU8Sl0ldd98AKLVcnpiiWxk7m6XtxGb9R6QXXU,14994
543
544
  scitex/plt/_subplots/_AxisWrapperMixins/_TrackingMixin.py,sha256=0tv7wAjdeBQ144hvXtP3TDDQLkmuz3c0ir6V_u3goCs,5905
544
545
  scitex/plt/_subplots/_AxisWrapperMixins/_UnitAwareMixin.py,sha256=zAQGFHqdAqC3l50-h0nmR3G--bGLEnTq1N7eVy54L9s,11354
545
546
  scitex/plt/_subplots/_AxisWrapperMixins/__init__.py,sha256=0Ga-VWIQ0HFPZKx43TLB_4PQui3hSlwmI0ejY1DhloY,628
546
- scitex/plt/_subplots/_export_as_csv_formatters/__init__.py,sha256=jrHXfMLFC1dyq2M1t_sBl9cnm8TqYcsgzafj_31KSRE,2907
547
+ scitex/plt/_subplots/_export_as_csv_formatters/__init__.py,sha256=EqVSAXv_EgZ_AjTEEuZ2AWxUPLl-HzaEd1gIrdU1HxQ,3293
547
548
  scitex/plt/_subplots/_export_as_csv_formatters/_format_annotate.py,sha256=pUdP88ZlIM4Ggrg0wvedkEun-ypcXlPWeTbedQAyeic,2639
548
549
  scitex/plt/_subplots/_export_as_csv_formatters/_format_bar.py,sha256=PnvM8nOzOQjjpBLqIGABLeDjo48x8lt3A_xcmqN6h6s,3118
549
550
  scitex/plt/_subplots/_export_as_csv_formatters/_format_barh.py,sha256=BTERPXXlSRMJQAoAaAJlmNKApzAwFyTFqHXYoD0f0mY,2184
550
551
  scitex/plt/_subplots/_export_as_csv_formatters/_format_boxplot.py,sha256=ccwCk23rnInRHRIK4MS2HCZdHfr-au4N06kVc58osLU,1469
551
552
  scitex/plt/_subplots/_export_as_csv_formatters/_format_contour.py,sha256=iINqb-_tnJ8wzXDe_buIlaFH38fQQXfRAuCyNLoMwBk,1250
553
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_contourf.py,sha256=38UPNTOul3xJ3dGZNGmTeaym4aIP1nxR9NJ1btbSigI,1747
552
554
  scitex/plt/_subplots/_export_as_csv_formatters/_format_errorbar.py,sha256=AGdFlLYajd8HolZ41CMSubuQfC2Dy6SnCj_BqJlPJAU,5696
553
555
  scitex/plt/_subplots/_export_as_csv_formatters/_format_eventplot.py,sha256=CQAP7Bb826yqIYTY4Yz0L82CgYCtqzQbE4lyQ685cEo,2804
554
556
  scitex/plt/_subplots/_export_as_csv_formatters/_format_fill.py,sha256=fOBN45LjDWuI5-kkgpJnb1ZPUSKuQNmi8btjqQMjQuE,1039
555
557
  scitex/plt/_subplots/_export_as_csv_formatters/_format_fill_between.py,sha256=ix0WBNoe7jlJuKluP9k2bQ0bhlTum3UIbZb0DbymBa4,1064
558
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_hexbin.py,sha256=1OyEG3dmQQzcZa2wCieX_f9emMxNDNeM5YtwBgsf1SA,1167
556
559
  scitex/plt/_subplots/_export_as_csv_formatters/_format_hist.py,sha256=y_z-gZ9eUT6x_AikJkxs8FK-t0w2NFSYKw9nH5xxSyA,2884
557
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py,sha256=5tv1DsWTApTSP5Fw6fJErdvv5QLpEBuaiHBFB_b6A3o,1934
560
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_hist2d.py,sha256=MJb_sw03WgozXag6U7CWh2IAai59_157eNS4vU21iBY,1179
561
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py,sha256=96Zi2gJ1c4x0KVKUbplS-5OvOIM9WB_bjRMzXW4ryCI,2393
558
562
  scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow2d.py,sha256=asQlzM-1UHwuG7Wcjybexkf6XY791jRkdMS86yuelVI,1088
559
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py,sha256=srfwJsJR9qOPD04W02lYm-anCOhtly-B-0OcuSmR_6s,3520
560
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py,sha256=rEZVZqjDLOugzyYKIMT2AxEwA6Bhf-epBm_THt_I0bQ,2692
561
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_conf_mat.py,sha256=N5W6SGtTd0LfbFBR2S37p_SX5xUsJH5U0q_PpXsSJp0,2214
562
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_ecdf.py,sha256=8G8FG1rQ1gDgn5t3fxYziTKUJhWDPQ0a6xXLW6OKbCE,1396
563
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_fillv.py,sha256=a1inhHhX1ZFFHI2WFpT2Qb_1oN2LjUwH1X0eDxIyCKA,2285
564
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_heatmap.py,sha256=QakSMFRh-dTYmAShUNN7acuSfpmhYeMWLPoBhS_wWVk,2388
565
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_image.py,sha256=hUxBeSrmWSqkLL5LSpSdoSHlVzRe0X6xgWmBMav7C5U,3801
563
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_matshow.py,sha256=rF6wQXoJAcnOKr3XPERe6FmnVLd4jh_koqWpPG3GVjA,1219
564
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_pie.py,sha256=dqFGKkltfa3Y-e47pVixCSpTIY7Z-msPQFuumhfGs-o,1134
565
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py,sha256=MmIpgHaHdTMWPU4uE17tEyNPjUu3SMcsnL4EbV4oBOI,4866
566
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py,sha256=ToOsgYCgKDBqUeSVq1IWeXmvWR0gGag-pcIwmIlVav8,2691
566
567
  scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_imshow.py,sha256=ETYxkEjVZBu9jVFam29GMUZNUDDb0V0OJHtQpIjSO4A,1133
567
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_joyplot.py,sha256=rYup_TN3mNY0cTdV2mcV_W3hORVG6PE59cwOTG44exU,2186
568
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py,sha256=y2PX67uLxkN4Ky9fXFDOKINiDODe_tiGBt7r_gs5km0,1501
569
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_line.py,sha256=RfueQjmyJGO5BD-y4UwauM_frOeJsBV-Uh2TJTvAX4Q,1451
570
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_ci.py,sha256=_yDfhJ2XvH2uOExZt4V97dCicAFsgzv_4_vlMdygwGY,1478
571
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_std.py,sha256=CvwjcXiBFBd6Aktrwq4VO7u3HTXC-DUiKLc-OJHf1WQ,1511
572
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_median_iqr.py,sha256=SKrB_6pSuV0Feyk2c8C4giPSfMKTx3G0DR7A3eeUX20,1504
573
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_raster.py,sha256=EHdgTug-ZKXlWGA6QWj0f1ZFPcOoSFaa-9jEjvqHvsg,1436
574
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_rectangle.py,sha256=u38UJ5G5sPV8K77BfTO_37JWONIgLNyXNWid3sKCbVQ,4140
568
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py,sha256=Lj85dnnNRs5wsWqzvsw6Ui7q6tqhTjP0ZLjaN-sHGoU,1499
575
569
  scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter.py,sha256=oRmxy-V1LWM0R6LNdOGZnLaDJ4lTFxRkfASkgZ89uVI,1118
576
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter_hist.py,sha256=AAE4f3BWDQmuZo1pBANp2KcD2Si_I_Du_zs_ic1bu9A,3087
577
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_shaded_line.py,sha256=9ccdhfoA550-emCvnOK3hdfIBlayN4ErvVdleMLf1Jw,2061
578
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_violin.py,sha256=5d0GZ3IQoHOlO3CK3EXWCQaBcJVcrAZgvtBHZCXqzIA,4571
570
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_quiver.py,sha256=azoF9Wrww2C5utQBe9IZDeTaYRu6pyf_CalQbflR7Og,1703
579
571
  scitex/plt/_subplots/_export_as_csv_formatters/_format_scatter.py,sha256=LGo7NzsFzkkx41DLozW01rox0rv409VIpTCrNxPdJhM,1147
580
572
  scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_barplot.py,sha256=ORjLkrMtvwTlHgKS2dVS8TKHAgzFF_ISQJQoKhd9c6c,1799
581
573
  scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_boxplot.py,sha256=helouqVgGRLY6kpCmAywW2VfVWh9UITxkReP1TgT93Q,3756
@@ -589,28 +581,46 @@ scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_scatterplot.py,sha256
589
581
  scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_stripplot.py,sha256=NX0l3nCI26F3ZOJObGygacOOUUKqMIwoq8kpA98UPyQ,2679
590
582
  scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_swarmplot.py,sha256=SgeyBPqB94pO81bW4b6EqEgI8V4DB4Q1uPuG4J70c9I,2679
591
583
  scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_violinplot.py,sha256=aglGYixjV0tDeH9Au5mftmUB79ZT3KDy0iUxeCmkEtk,6772
584
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stem.py,sha256=4MT3VJwr8_RerDNZq7nO45_cEj7TjvWsMlgbFNY1Ku4,1198
585
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_step.py,sha256=ykeZCRzb6JS4rARZ70YQCYbcber0IYDbPKd-uR_DsVA,1198
586
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_streamplot.py,sha256=NNhnG5l8LpbTCKjFUT-1ogDn1RHeGeKPE69GmoTOaeY,1494
587
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_conf_mat.py,sha256=lbeooXd6gxZDqT-Z9XGZ1rDOwn4aQhKVoeKIJwdophQ,2212
588
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_ecdf.py,sha256=E375HVT8VTQfhPDFoHRrVKuzgOCOEFxPtPK6vV7KtyA,1394
589
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_fillv.py,sha256=nUKxAb-eXfu8Bx2ct_wHtkNbk31ajx2nvOoNMZ2V5Fc,2283
590
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_heatmap.py,sha256=q3cwaASu4KW49zHMQw2UADbFDuY6jdq0TZmQaF2CQaQ,2386
591
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_image.py,sha256=yWWdirdBfL96heJVGhe-atYIT5nr5DBMvgTu_msgekQ,3799
592
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_joyplot.py,sha256=BDtncVqYA4tB7WGSNAPglLUWiMK7hAwyHw2o4vP1NDA,2184
593
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_line.py,sha256=TChNU_Vr0rFgPhmi9DvlXB7MBMr_F-hopYlo_M1hcEM,1448
594
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_mean_ci.py,sha256=VlXCcmZgSR8gI9zUWPBQtT_GWHF-sDGHKyDgrWY8OA0,1476
595
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_mean_std.py,sha256=JPWnya7FcrHcuy1C5xcy24TIJ3sDDgxnbSRgpppRpUk,1509
596
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_median_iqr.py,sha256=G6iXAEKAACaj9AaBmUQBtwuAEr5EVUXgoRVpYV_KPx8,1502
597
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_raster.py,sha256=Zh3mHRe2Xe88WuhXX8MVF9cmuinkilMC6o9xsNny08I,1434
598
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_rectangle.py,sha256=vMnLpa1ibfohiOCeJs2cVd6xjOfAuw_joJZd_PL6hzA,4139
599
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_scatter_hist.py,sha256=DSdPfTx2ZqFTvXuTa63WIw9tgX7bTwvTi7wqoznJ0Hk,3085
600
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_shaded_line.py,sha256=9k-8v-IZOBBCNGL0dB4fS2F8Bs-SvOZR_JGTNNnRAzY,2059
601
+ scitex/plt/_subplots/_export_as_csv_formatters/_format_stx_violin.py,sha256=W7w1Jq03Bxhdd1s0dE3rQqzlGfmc9cvU2OBx__ysa8Y,4569
592
602
  scitex/plt/_subplots/_export_as_csv_formatters/_format_text.py,sha256=uUU_vmw8YIy_ZIMQMtK-5J-Ngc4fQVid9gm01cewnWs,1847
593
603
  scitex/plt/_subplots/_export_as_csv_formatters/_format_violin.py,sha256=Z6OeGnN8bIUnic7zc9CidMLEnRwmbD6AlGocwaD4SSc,2285
594
604
  scitex/plt/_subplots/_export_as_csv_formatters/_format_violinplot.py,sha256=L0a3fq7bd8db09vBDpY-kW9u48ISlp1qNLa0chsB2_Q,2837
595
- scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py,sha256=SO5tiVYdhKSATPOwYwRofSXxFtwxCU2IWcY_WzhW6lo,10488
596
- scitex/plt/ax/__init__.py,sha256=GnhzBMtn0XpkgS82JWw7a_QAaKYxoJvWNEL4cXAO4ss,4022
597
- scitex/plt/ax/_plot/__init__.py,sha256=pFO9FLp18-hP61myfmaRhmBhzwYbBeS0F-JiU3p2wBk,1501
598
- scitex/plt/ax/_plot/_add_fitted_line.py,sha256=hADRmkQbbENSzhc9HOoF1PTlcGJ7nTsTs-Xr6chD5no,2191
605
+ scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py,sha256=DV4xxxqvB4OF3jpa3bdtsETUqFn5U1Yd2SuMHOmnJDc,10465
606
+ scitex/plt/ax/__init__.py,sha256=hNBtO1spj_Mdr6c-hJSpnX7iOZyTDDNtP4poaWN3muk,4051
607
+ scitex/plt/ax/_plot/__init__.py,sha256=ou7mAqQehSXIa9zBi8ixSNSbh2grCsHi60WTgCC-eSo,1460
608
+ scitex/plt/ax/_plot/_add_fitted_line.py,sha256=_rKf0EPhWGwTwTIzcqh5y0L_n_QdUCmC-TvRuEKpvTU,4403
599
609
  scitex/plt/ax/_plot/_plot_circular_hist.py,sha256=cDgAol-oCXkQOtIz2fVLvZNIase0xliNnGpm0bRIHQ4,3467
600
- scitex/plt/ax/_plot/_plot_conf_mat.py,sha256=AOqgj7qmlLU6KDnpT5bqIqu3zy9OnRAQQgfKDbFWXHE,4128
601
610
  scitex/plt/ax/_plot/_plot_cube.py,sha256=l2qgBaSR-7u14EQkb1oMrF-bYFjK-fqopiTwZgNFAe4,2076
602
- scitex/plt/ax/_plot/_plot_ecdf.py,sha256=2gRHVOR4-f79U_5GNm62RY4YXMBkXzgQaaDAMc5q2SM,2385
603
- scitex/plt/ax/_plot/_plot_fillv.py,sha256=NE54h5hC4SGsG-pq9O7PspFUMmljZPbvX1xB7Avf0e4,1584
604
- scitex/plt/ax/_plot/_plot_heatmap.py,sha256=j-N0drLw6vB52QF8QIB7x7c_9DHl2QGX-AruWwjxEhc,8279
605
- scitex/plt/ax/_plot/_plot_image.py,sha256=T1uMYdKfCfUTkPgueKX4S0T7y8OZJ0TE-F7plAMhqyY,2862
606
- scitex/plt/ax/_plot/_plot_joyplot.py,sha256=YRY_8_yilWK5Cok0eVD0CEj4Mkdjf4ylFdlbY4eykuI,2381
607
- scitex/plt/ax/_plot/_plot_raster.py,sha256=McY_NQzQsajqHl_H5KRzaM2TMnrkA43Bku_551XiqBI,5928
608
- scitex/plt/ax/_plot/_plot_rectangle.py,sha256=SIFhN5ssVcBIOQWF1mC0b80t_KgXtfNfkK_emvpj1mE,2095
609
- scitex/plt/ax/_plot/_plot_scatter_hist.py,sha256=Birz3JSo8-V4EE0aiE5logeiD4ZzwGisQD1SqUfYAhE,3673
610
- scitex/plt/ax/_plot/_plot_shaded_line.py,sha256=kHIOQh2R2URXfHQBZSdtYR1Nwv_nOhj51MovK2ivVUw,4928
611
- scitex/plt/ax/_plot/_plot_statistical_shaded_line.py,sha256=6HO7sG0qpGHSbacr3uFj_81DTZeXz5u2cAxOdVKb7qw,7499
612
- scitex/plt/ax/_plot/_plot_violin.py,sha256=JwLSJ793lMRLueW6Ul4SwwZ8xjhSG8SKMp4ZCR60XSE,10265
613
- scitex/plt/ax/_style/__init__.py,sha256=SVfIDVZoGLzUu5AlBICv7F1KhaEpxHZk5OzrPHavlRk,1187
611
+ scitex/plt/ax/_plot/_plot_statistical_shaded_line.py,sha256=Z59Ye8btMPzpQg7I1xilr0RNIwrqx0IdfWSAKAQgl38,8763
612
+ scitex/plt/ax/_plot/_stx_conf_mat.py,sha256=krJQokYBkutoNS3I1pcCVAlWhw2QHGLKz5j-scLiLgY,4256
613
+ scitex/plt/ax/_plot/_stx_ecdf.py,sha256=nmscbBIj37cXG62RRMEPI4blUCP5gyHg5qM48KyR7OQ,3270
614
+ scitex/plt/ax/_plot/_stx_fillv.py,sha256=8eFk1uVuCR1l1b8Llo-cKj9xb9ZjN301LA9jcuwBzjg,1715
615
+ scitex/plt/ax/_plot/_stx_heatmap.py,sha256=6O1nt8EIX7o0rjPT9KTAPEk1OiPWyyyjkXkPbjPzF58,11051
616
+ scitex/plt/ax/_plot/_stx_image.py,sha256=RJ3niZ4Dluj8v2tQLOTV7QzZyVMY_4JLFzHgXD-xQoE,2861
617
+ scitex/plt/ax/_plot/_stx_joyplot.py,sha256=h5oCZaIiLNK-5EA0DsosyNSD6DZez38KqY6ecHgOAgc,3621
618
+ scitex/plt/ax/_plot/_stx_raster.py,sha256=2ElSm9KpASZjKAVccGVaqvHV7EfBgX_G8vdjanW2w0Y,6506
619
+ scitex/plt/ax/_plot/_stx_rectangle.py,sha256=joFAsGAJdHAP66isRqQs8Enmlks1dqQQk_wrylcB00Q,2261
620
+ scitex/plt/ax/_plot/_stx_scatter_hist.py,sha256=q-rEpAbXDub6hgUOiNBibHSvO_k_0z_gEETZX02CpCc,3672
621
+ scitex/plt/ax/_plot/_stx_shaded_line.py,sha256=dF42ReicYyjVH5Q0Tdinp-kWAhpS3rtAmr5COp9UwIo,7026
622
+ scitex/plt/ax/_plot/_stx_violin.py,sha256=v_CTZYusUnAvoasw_8OPPTWBl7IC3tUvcrAhsBF9TAM,10695
623
+ scitex/plt/ax/_style/__init__.py,sha256=HYt5WVbhS6zVk76ParvmJdJXs10jMAxOIcWor9sLbOw,1315
614
624
  scitex/plt/ax/_style/_add_marginal_ax.py,sha256=NovBtLfrpHj47BN4JmOljvvrt7zOsDoV4pg0vf0Exkg,1506
615
625
  scitex/plt/ax/_style/_add_panel.py,sha256=lHS3qDo3TtDRPgrujUcqG7Q6j6JlT5dhzkbeGSQk37c,2664
616
626
  scitex/plt/ax/_style/_auto_scale_axis.py,sha256=zIhafZXzExLa7wBtflHr0xK74E3KgZQrIjJ2kxTJBJc,6262
@@ -633,29 +643,36 @@ scitex/plt/ax/_style/_set_xyt.py,sha256=kuAEiZePdZzE-h4lyfDVL1-ut6_LeklXBWMT8oZw
633
643
  scitex/plt/ax/_style/_share_axes.py,sha256=ey7b_xXFlPywoGoiZDx_mNvrQU_p8MkkTzfV6Qx-Zn4,7526
634
644
  scitex/plt/ax/_style/_shift.py,sha256=e6cCbT8dTqyBkGqMMeCgRmRA4eE4SQgj-9CqlBC3GhA,4085
635
645
  scitex/plt/ax/_style/_show_spines.py,sha256=zjwFNHfp5ZdvnRm3q73eXkmOXPLhsvwo9XmIuqfIgn4,10258
636
- scitex/plt/ax/_style/_style_barplot.py,sha256=dnQO6hTr_WiQCxEQOEnzoEI2c2-Q6N2OOc6w2BD21xg,1551
637
- scitex/plt/ax/_style/_style_boxplot.py,sha256=QZCyc7RM6N48SKa22ocA8DPOqCdOTncAPls782Ib06A,3330
638
- scitex/plt/ax/_style/_style_errorbar.py,sha256=6IQ1H3Rn8On0rljJUsdppLxC6bkxg3xMWkgluCGvFp0,1965
639
- scitex/plt/ax/_style/_style_scatter.py,sha256=FIrMeSwiHXK_FWyJVY4C6qmdqJNL34d9Zl1UKjcfF1A,1813
646
+ scitex/plt/ax/_style/_style_barplot.py,sha256=rgQkju2_Yn4rDh0Vw4yxi7yiS_nX9D34AXDWBr8EdfY,1923
647
+ scitex/plt/ax/_style/_style_boxplot.py,sha256=mQdy-_JJCG5HiSA4SQEZvHp3rTFqYTn-nelGZFfc1RI,4800
648
+ scitex/plt/ax/_style/_style_errorbar.py,sha256=MvQqimJ77iLmIAflXmkrFO4xYyD1FdRYZusg2Jjhi6I,2461
649
+ scitex/plt/ax/_style/_style_scatter.py,sha256=kuQ_r2kJmsyJkjk4tcPFJmewRjd7xSdeQmYZpl9_qUo,2305
640
650
  scitex/plt/ax/_style/_style_suptitles.py,sha256=SeuBBBUFiLMI9LD_eAzt751tTvvdjtE3O9X3WMkg8bM,2165
651
+ scitex/plt/ax/_style/_style_violinplot.py,sha256=ETTAC4zEjiw80hygQWgEo49V7LbyQMAwuMXynqUs_xc,3579
641
652
  scitex/plt/color/_PARAMS.py,sha256=fhjnYKjax1SWIZkpZQ00bwj4NgTSFB_rdJ-f_q7OI5M,1607
642
653
  scitex/plt/color/__init__.py,sha256=cLUScQM2FKAXlk21H3Pof9H9fieLE0ao8BKMTSV9VOc,1542
643
654
  scitex/plt/color/_add_hue_col.py,sha256=PK652bJhV2MISo0566eSw1IKJ8vTwewn14IHJ-fDIao,1097
644
655
  scitex/plt/color/_colors.py,sha256=N8WYRPLYlWFn9TV-jhUAmfRjjpv45aNQAXUpGFgNa9A,4553
645
656
  scitex/plt/color/_get_colors_from_conf_matap.py,sha256=5oHCtGa3a3xtWa3NPYjgC3kapYmOUs3fZ0Q5JGK2YOI,4057
646
657
  scitex/plt/color/_interpolate.py,sha256=jTprQ4hINxjYdFLlVutI2PMkjqAWjvev-jRyIA78rEQ,976
647
- scitex/plt/color/_vizualize_colors.py,sha256=ZDRA8qRKd63tWMnh3JCBA7A_ttxme0g8w-kRZRY85rQ,1359
658
+ scitex/plt/color/_vizualize_colors.py,sha256=EoCbgm3IrXwq6oCJHmmLsVjnWaOUXp-j3D6pt0vDH5c,1356
659
+ scitex/plt/styles/SCITEX_STYLE.yaml,sha256=x7-UGZBgzLumi1eVvgEFOuQmzvTxFQ75ZVZ0VBVz-To,4514
660
+ scitex/plt/styles/__init__.py,sha256=2KrY7gkfbuAD8ZfDI5bnovMJdjTHLJV5pIMq3mz01_0,1500
661
+ scitex/plt/styles/_plot_defaults.py,sha256=FxwRUMONhizf8UeUZ8wtSCJkpONHvYaZO3rkpaC4eX8,7962
662
+ scitex/plt/styles/_plot_postprocess.py,sha256=5fL8gXqROnqDfyZqBIhUwZ8-LMiDm45C7sHSHAnnOvk,19628
663
+ scitex/plt/styles/_style_loader.py,sha256=QtjFY2VQYKZzOtYMk_RadkWX9JqK3MDgsr2WRlV2M2s,7481
664
+ scitex/plt/styles/presets.py,sha256=j5SrabLBPQizVNKPZbFD5IVSEcnu__EIdcZdZfHhh9k,8029
648
665
  scitex/plt/utils/__init__.py,sha256=gw__K6vLRrypA8AG01b9TEZkdOcoNu4j6IjEZsnv4ag,2107
649
666
  scitex/plt/utils/_calc_bacc_from_conf_mat.py,sha256=6_e5bc6hi3kosYqi-7qVJCNAPAX5dA9iebBwTrc1lX4,1222
650
667
  scitex/plt/utils/_calc_nice_ticks.py,sha256=ORlbvqcumBxx8gNwTv384OPzJRXtIIXtMsRpNOvx9SQ,3080
651
668
  scitex/plt/utils/_close.py,sha256=joX9DiSJusUn3tLpApyd62Cri2FH3nDxk6He3Hxxars,1964
652
- scitex/plt/utils/_collect_figure_metadata.py,sha256=_s7WGkSZlHifYUuXcxeiHmGnGOzZBvFZmXGPLawQkj8,16434
653
- scitex/plt/utils/_colorbar.py,sha256=edptb3XszCn1oEbp6bf7mpfIMuepq6gA5fstScR5m_M,3119
654
- scitex/plt/utils/_configure_mpl.py,sha256=6JxJFWJ6K-DiUW7yd28hSiTe4rUj7VRIDSOlqzlplPg,13606
655
- scitex/plt/utils/_crop.py,sha256=4NtKA5A-P6jooU8T0MXYDKaHq-IarpFOdS0Vej9Rn5Q,7720
669
+ scitex/plt/utils/_collect_figure_metadata.py,sha256=Nm_nmJ9mxRYqny9QvbTtM5ef5iukddcJ5_l6HKAhvmc,20705
670
+ scitex/plt/utils/_colorbar.py,sha256=K_YNnKuQv5FfrJKe8V8OA62ztLM2chy1VPHUs0Zowlk,4702
671
+ scitex/plt/utils/_configure_mpl.py,sha256=PJQkygYniH1ik7o5D_GJuJDx2wO0zFAFN89KlKkzkWg,15845
672
+ scitex/plt/utils/_crop.py,sha256=AvKM5pjTez-Eky8ADFw0RZB2hvr_bfSkDX_Zj46BuE8,8607
656
673
  scitex/plt/utils/_dimension_viewer.py,sha256=tw3if2HRlL8m0ah33ko1Y6q8hLIX8LjdWf5w34VL7ec,12569
657
674
  scitex/plt/utils/_figure_from_axes_mm.py,sha256=ZTKitbffW2E_j6cmcnEj1kW2LyXZ57DhPdlg7aAhyQA,11907
658
- scitex/plt/utils/_figure_mm.py,sha256=FYKRLCRtaNVruNMbZwY_doS3yXnSe7ttjTyhRSWiNqY,12412
675
+ scitex/plt/utils/_figure_mm.py,sha256=b9d8aRfZnZOO0kiP2EcMevbuxnsCSQMEZRStGZkgA6A,13030
659
676
  scitex/plt/utils/_get_actual_font.py,sha256=fqac11jNiPU7Q_5sZykusDlFTFiUc_0P4DZsA8-AAz8,1834
660
677
  scitex/plt/utils/_histogram_utils.py,sha256=YwaYfXDruJaeiQEucSeeeuP7xOWW1XB6GugWa4Vvyuo,4591
661
678
  scitex/plt/utils/_im2grid.py,sha256=HajDiVNXRIyRFTEEWKiobT4rD8HX2fwA-5AUxs_NqxA,2032
@@ -2733,7 +2750,8 @@ scitex/sh/_execute.py,sha256=ZV3-Fqljj2Im-q4byF0QeQvm_kWIQGZENurNXsoTcqk,6895
2733
2750
  scitex/sh/_security.py,sha256=cwKQosXr9tgFJdhJh_SaxvbqmcjX_-pVBSLuq9RuKG0,1759
2734
2751
  scitex/sh/_types.py,sha256=qjjKkhLrwVg4kKEaaFB6ja-e4XCDo7vqA5QNAXraHb8,612
2735
2752
  scitex/stats/README.md,sha256=v6PMJRE-NI9bnHXfEnzES4dYHLOyTWpSSDLAzsp161I,33416
2736
- scitex/stats/__init__.py,sha256=ZWX-9cLbFEHTIeSqrJYknGOI95ca0oLY-c8I2Bokh7s,866
2753
+ scitex/stats/__init__.py,sha256=Mr_-Yn_I2s3RcIsro-PrZsRgujNioYQ-vMI8EOX9CII,1253
2754
+ scitex/stats/_schema.py,sha256=6d_CuryEIaxeTKCVuiVFjanzzYf95BdB-tuEGy0iI4w,17739
2737
2755
  scitex/stats/run_all.sh,sha256=Q_fw3q_10mlQAUBRggSNrl0gILFvTFUlFztH2Aicfhs,1381
2738
2756
  scitex/stats/correct/__init__.py,sha256=4w1qY-QFJvGeHy95mslmNO5bHExjtRO7G_xi61LLu7I,534
2739
2757
  scitex/stats/correct/_correct_bonferroni.py,sha256=HPfi8ENbjTNURC1Jb01Aq6oo2iknrK36239CxD-hv7c,16533
@@ -2758,6 +2776,9 @@ scitex/stats/posthoc/_games_howell.py,sha256=ea_2MUs9sME6hjzdALMiCmGR4UAAaghiMln
2758
2776
  scitex/stats/posthoc/_tukey_hsd.py,sha256=bs0kzDNIdiuZ6d7YZdokOVfS9IGXOnWgK-uJZ6FFyrc,11469
2759
2777
  scitex/stats/power/__init__.py,sha256=7BI5ggoq8LofvJKMJr5kPacnopGKHME5XOJyEbV1Wrs,349
2760
2778
  scitex/stats/power/_power.py,sha256=RilUPQ6XwUG2RR8MYQIE0FDgDQri1akjF2BSDPtd4sE,13447
2779
+ scitex/stats/tests/__init__.py,sha256=cVedy-gDoWpkzQBbbR3b4XwdTOCY-ow5S-WHMHS9jPw,193
2780
+ scitex/stats/tests/correlation/__init__.py,sha256=0cHWAHSJssW8Ve9ZlYROZaZ4bzqj2wbQt8KLw3P_xkg,209
2781
+ scitex/stats/tests/correlation/_test_pearson.py,sha256=xh6_MFKTiFS_80uF955rLEkcD1r5sYLVeIVKKt3jiLA,7376
2761
2782
  scitex/stats/utils/__init__.py,sha256=jG5lS-VzJc8d5JN4kp1_Xpl4huMEjCp9g4Eo-2gy4fY,1113
2762
2783
  scitex/stats/utils/_effect_size.py,sha256=NREhBQ4NLushMs6ozyUkYXwOauV2w81ESwwua7uW4hc,26609
2763
2784
  scitex/stats/utils/_formatters.py,sha256=PhWbD1Kl3yVy8j275gaIenCkBNhQuOt44kY5cpE27Mk,7655
@@ -2817,12 +2838,18 @@ scitex/utils/_verify_scitex_format_v01.py,sha256=EYWiwxS1Xgfb1ZawMJ10coYVizGQgag
2817
2838
  scitex/utils/template.py,sha256=M38FsmsdJhPNO7eKQbsmcliHbS2aqA8B7_dxxjlzE1k,2506
2818
2839
  scitex/vis/DJANGO_INTEGRATION.md,sha256=ojhSOSLFGLoTRjo_eTCZmhd8XB40lFga3rpxmcHN2_8,17537
2819
2840
  scitex/vis/README.md,sha256=e6rbpnSJll3nVMmrcgugGCGaK0Ftsmgqcza4Qyvl90c,16881
2820
- scitex/vis/__init__.py,sha256=62IUAaR6h2V-TG1bCJUeg3h7qfzkvZqveJeWDnQF4Aw,2694
2841
+ scitex/vis/__init__.py,sha256=vLipTP0SbJr6bZ_dSLkaWpJeuJKFTIhomF-Rwk_AnmU,2780
2821
2842
  scitex/vis/tmp.txt,sha256=mReC8L9MN7ZMCYsc6G6jNxg5fyIW-7N9hvCgtrxt5ac,7960
2822
2843
  scitex/vis/backend/__init__.py,sha256=Samj3vse9vbMJDaEMbcW9t5S9vx9Z3ZYrqnCqi5a988,1110
2823
2844
  scitex/vis/backend/export.py,sha256=hK8jZfgVLtMPUo-PWqlGPC60QpRGG1KUIQnl96cI7-4,3911
2824
2845
  scitex/vis/backend/parser.py,sha256=xR-Hml_2rK6B2Kj3m4t5UPoP0BZcteewDC3DH17pRQY,4504
2825
2846
  scitex/vis/backend/render.py,sha256=jc4QU8HfUhhzrd0b7zW_KUwC6r2BXQ3C_EObqgNOzV4,11137
2847
+ scitex/vis/editor/__init__.py,sha256=6nEF5MHk39-TN35APdsEChZCIkm3NqkJlHmgTszPu-o,584
2848
+ scitex/vis/editor/_defaults.py,sha256=GkZVnJyH_Ss1JfbtPNPfZbH58V18JDLhH-SZyNfGULc,6344
2849
+ scitex/vis/editor/_edit.py,sha256=3YqMldzLK9qEXUAAIXNbdVZDX-rC2pur1GMf-GUosxc,10080
2850
+ scitex/vis/editor/_mpl_editor.py,sha256=rrns4erlzx9LwVfkjwsTOPXwdWaDgEoVEmJagKk4Jo0,7703
2851
+ scitex/vis/editor/_tkinter_editor.py,sha256=5XU70hjVdbU2VX0LpHz5wQDzxBNOXubCz8IJWt3b1mE,18683
2852
+ scitex/vis/editor/_web_editor.py,sha256=Wryx2jFHt1RaJtE-nA6WT7fWNl3jT4reSfJZ4mhDwKo,56451
2826
2853
  scitex/vis/io/__init__.py,sha256=hBeuVmbwoWfDf-b5hIzC-DPWhPPZIMnmkh2iCiCAJ34,749
2827
2854
  scitex/vis/io/load.py,sha256=6hh7pVNc4e9BM8lz1grywORUrSFI9Syb0Nk2bQWvTLg,3708
2828
2855
  scitex/vis/io/save.py,sha256=85O_lznZYJMspHjnyhBIKiMxF0xTAIQQkl_W3mmMhL8,3051
@@ -2832,7 +2859,7 @@ scitex/vis/model/axes.py,sha256=Xn1n37K-QdxQiflNLlH1HQl8IBIxPH5nxsf5LT8lUdA,4586
2832
2859
  scitex/vis/model/figure.py,sha256=Cw4X83_8IvCFxuYvMnMLNvoKusmDA9AKkiwnKnSXmzY,3786
2833
2860
  scitex/vis/model/guides.py,sha256=eJ4HZugZ-hzYKl9aoYP6taHAU2xRWCN6JDQuB5dDOGo,3421
2834
2861
  scitex/vis/model/plot.py,sha256=E-mbjyLcUs1LaAjXHJksK22G4RRpR5dukFcT0GjRElI,3991
2835
- scitex/vis/model/plot_types.py,sha256=SkdFsHjG8Ttt0rKAqTFGYn15UaQsDSjd5unfTRJoBgg,14761
2862
+ scitex/vis/model/plot_types.py,sha256=zq_PKZuMRhV1sVds51Dy_wraHSEf9y2JNEYgxxRBRhA,14746
2836
2863
  scitex/vis/model/styles.py,sha256=GdN1wG_9ncFeHFSTaQitrDTnjdTDZ3AXMl-8j_VeUsQ,6473
2837
2864
  scitex/vis/utils/__init__.py,sha256=CP6OGvw4L7ji0AQflB60EDieWleQ0V-4KI7h-eivmeI,1675
2838
2865
  scitex/vis/utils/defaults.py,sha256=oYfdNbE4zASnu6SQezVlnJdanPw1bfRkMhdUvF9Oe1U,8119
@@ -2890,8 +2917,8 @@ scitex/writer/utils/__init__.py,sha256=wizvQZbOWHsNnkdDsB8J4-lPInRM3gDdwOCRg1fLI
2890
2917
  scitex/writer/utils/_parse_latex_logs.py,sha256=_KfTzSw2IYhUzdZBJsZreAvQZk_BJHUBe2qIUNJfd-s,3154
2891
2918
  scitex/writer/utils/_parse_script_args.py,sha256=vVMQE-AHCs2Q2uVQDuZVN8N3Eft0sxuPtNmnyPXVgnc,4625
2892
2919
  scitex/writer/utils/_watch.py,sha256=qSBbwbeCPmXEWXn-ozCrar43rp664Wo65JzwIMWx7wE,2575
2893
- scitex-2.3.0.dist-info/METADATA,sha256=VcOkLhQO9DShdR8uGxRKjMdkme8DtLPmTylDyMtCA54,29622
2894
- scitex-2.3.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
2895
- scitex-2.3.0.dist-info/entry_points.txt,sha256=jmgM0XEEIfCoMvwDSUNwRHBHaX_cfcJWQgi-lFc-BNU,48
2896
- scitex-2.3.0.dist-info/licenses/LICENSE,sha256=TfPDBt3ar0uv_f9cqCDMZ5rIzW3CY8anRRd4PkL6ejs,34522
2897
- scitex-2.3.0.dist-info/RECORD,,
2920
+ scitex-2.4.1.dist-info/METADATA,sha256=jtBrKtu-EpgW2Y7Ff5_sTmiEDRavnQrYfI1CHG93i4U,29660
2921
+ scitex-2.4.1.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
2922
+ scitex-2.4.1.dist-info/entry_points.txt,sha256=jmgM0XEEIfCoMvwDSUNwRHBHaX_cfcJWQgi-lFc-BNU,48
2923
+ scitex-2.4.1.dist-info/licenses/LICENSE,sha256=TfPDBt3ar0uv_f9cqCDMZ5rIzW3CY8anRRd4PkL6ejs,34522
2924
+ scitex-2.4.1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.27.0
2
+ Generator: hatchling 1.28.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,84 +0,0 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
- # Timestamp: "2025-05-01 20:17:59 (ywatanabe)"
4
- # File: /home/ywatanabe/proj/scitex_repo/src/scitex/plt/ax/_plot/_plot_ecdf.py
5
- # ----------------------------------------
6
- import os
7
-
8
- __FILE__ = "./src/scitex/plt/ax/_plot/_plot_ecdf.py"
9
- __DIR__ = os.path.dirname(__FILE__)
10
- # ----------------------------------------
11
-
12
- import warnings
13
-
14
- import matplotlib
15
- import numpy as np
16
-
17
- from scitex.pd._force_df import force_df as scitex_pd_force_df
18
- from ....plt.utils import assert_valid_axis
19
-
20
-
21
- def plot_ecdf(axis, data, **kwargs):
22
- """Plot Empirical Cumulative Distribution Function (ECDF).
23
-
24
- The ECDF shows the proportion of data points less than or equal to each value,
25
- representing the empirical estimate of the cumulative distribution function.
26
-
27
- Parameters
28
- ----------
29
- axis : matplotlib.axes.Axes or scitex.plt._subplots.AxisWrapper
30
- Matplotlib axis or scitex axis wrapper to plot on
31
- data : array-like
32
- Data to compute and plot ECDF for. NaN values are ignored.
33
- **kwargs : dict
34
- Additional arguments to pass to plot function
35
-
36
- Returns
37
- -------
38
- tuple
39
- (axis, DataFrame) containing the plot and data
40
- """
41
- assert_valid_axis(axis, "First argument must be a matplotlib axis or scitex axis wrapper")
42
-
43
- # Flatten and remove NaN values
44
- data = np.hstack(data)
45
-
46
- # Warnings
47
- if np.isnan(data).any():
48
- warnings.warn("NaN value are ignored for ECDF plot.")
49
- data = data[~np.isnan(data)]
50
- nn = len(data)
51
-
52
- # Sort the data and compute the ECDF values
53
- data_sorted = np.sort(data)
54
- ecdf_perc = 100 * np.arange(1, len(data_sorted) + 1) / len(data_sorted)
55
-
56
- # Create the pseudo x-axis for step plotting
57
- x_step = np.repeat(data_sorted, 2)[1:]
58
- y_step = np.repeat(ecdf_perc, 2)[:-1]
59
-
60
- # Plot the ECDF using steps
61
- axis.plot(x_step, y_step, drawstyle="steps-post", **kwargs)
62
-
63
- # Scatter the original data points
64
- axis.plot(data_sorted, ecdf_perc, marker=".", linestyle="none")
65
-
66
- # Set ylim, xlim, and aspect ratio
67
- axis.set_ylim(0, 100)
68
- axis.set_xlim(0, 1.0)
69
-
70
- # Create a DataFrame to hold the ECDF data
71
- df = scitex_pd_force_df(
72
- {
73
- "x": data_sorted,
74
- "y": ecdf_perc,
75
- "n": nn,
76
- "x_step": x_step,
77
- "y_step": y_step,
78
- }
79
- )
80
-
81
- return axis, df
82
-
83
-
84
- # EOF