scitex 2.3.0__py3-none-any.whl → 2.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (99) hide show
  1. scitex/ai/classification/reporters/reporter_utils/_Plotter.py +1 -1
  2. scitex/ai/plt/__init__.py +2 -2
  3. scitex/ai/plt/{_plot_conf_mat.py → _stx_conf_mat.py} +3 -3
  4. scitex/config/PriorityConfig.py +195 -0
  5. scitex/config/__init__.py +24 -0
  6. scitex/io/_save.py +125 -34
  7. scitex/io/_save_modules/_image.py +37 -20
  8. scitex/plt/__init__.py +470 -17
  9. scitex/plt/_subplots/_AxisWrapper.py +98 -50
  10. scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +254 -124
  11. scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +49 -8
  12. scitex/plt/_subplots/_SubplotsWrapper.py +76 -91
  13. scitex/plt/_subplots/_export_as_csv.py +127 -58
  14. scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +25 -16
  15. scitex/plt/_subplots/_export_as_csv_formatters/_format_contourf.py +54 -0
  16. scitex/plt/_subplots/_export_as_csv_formatters/_format_hexbin.py +41 -0
  17. scitex/plt/_subplots/_export_as_csv_formatters/_format_hist2d.py +41 -0
  18. scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +59 -47
  19. scitex/plt/_subplots/_export_as_csv_formatters/_format_matshow.py +42 -0
  20. scitex/plt/_subplots/_export_as_csv_formatters/_format_pie.py +42 -0
  21. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +72 -35
  22. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +1 -1
  23. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +2 -2
  24. scitex/plt/_subplots/_export_as_csv_formatters/_format_quiver.py +53 -0
  25. scitex/plt/_subplots/_export_as_csv_formatters/_format_stem.py +42 -0
  26. scitex/plt/_subplots/_export_as_csv_formatters/_format_step.py +42 -0
  27. scitex/plt/_subplots/_export_as_csv_formatters/_format_streamplot.py +48 -0
  28. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_conf_mat.py → _format_stx_conf_mat.py} +2 -2
  29. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_ecdf.py → _format_stx_ecdf.py} +2 -2
  30. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_fillv.py → _format_stx_fillv.py} +2 -2
  31. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_heatmap.py → _format_stx_heatmap.py} +2 -2
  32. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_image.py → _format_stx_image.py} +2 -2
  33. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_joyplot.py → _format_stx_joyplot.py} +2 -2
  34. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_line.py → _format_stx_line.py} +3 -3
  35. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_mean_ci.py → _format_stx_mean_ci.py} +2 -2
  36. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_mean_std.py → _format_stx_mean_std.py} +2 -2
  37. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_median_iqr.py → _format_stx_median_iqr.py} +2 -2
  38. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_raster.py → _format_stx_raster.py} +2 -2
  39. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_rectangle.py → _format_stx_rectangle.py} +1 -1
  40. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_scatter_hist.py → _format_stx_scatter_hist.py} +2 -2
  41. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_shaded_line.py → _format_stx_shaded_line.py} +2 -2
  42. scitex/plt/_subplots/_export_as_csv_formatters/{_format_plot_violin.py → _format_stx_violin.py} +2 -2
  43. scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py +23 -23
  44. scitex/plt/ax/__init__.py +16 -15
  45. scitex/plt/ax/_plot/__init__.py +30 -30
  46. scitex/plt/ax/_plot/_add_fitted_line.py +65 -11
  47. scitex/plt/ax/_plot/_plot_statistical_shaded_line.py +104 -76
  48. scitex/plt/ax/_plot/{_plot_conf_mat.py → _stx_conf_mat.py} +10 -10
  49. scitex/plt/ax/_plot/_stx_ecdf.py +109 -0
  50. scitex/plt/ax/_plot/{_plot_fillv.py → _stx_fillv.py} +7 -7
  51. scitex/plt/ax/_plot/_stx_heatmap.py +366 -0
  52. scitex/plt/ax/_plot/{_plot_image.py → _stx_image.py} +1 -1
  53. scitex/plt/ax/_plot/_stx_joyplot.py +113 -0
  54. scitex/plt/ax/_plot/{_plot_raster.py → _stx_raster.py} +37 -25
  55. scitex/plt/ax/_plot/{_plot_rectangle.py → _stx_rectangle.py} +10 -9
  56. scitex/plt/ax/_plot/{_plot_scatter_hist.py → _stx_scatter_hist.py} +1 -1
  57. scitex/plt/ax/_plot/_stx_shaded_line.py +215 -0
  58. scitex/plt/ax/_plot/{_plot_violin.py → _stx_violin.py} +13 -6
  59. scitex/plt/ax/_style/__init__.py +3 -0
  60. scitex/plt/ax/_style/_style_barplot.py +13 -2
  61. scitex/plt/ax/_style/_style_boxplot.py +78 -32
  62. scitex/plt/ax/_style/_style_errorbar.py +17 -3
  63. scitex/plt/ax/_style/_style_scatter.py +17 -3
  64. scitex/plt/ax/_style/_style_violinplot.py +109 -0
  65. scitex/plt/color/_vizualize_colors.py +3 -3
  66. scitex/plt/styles/SCITEX_STYLE.yaml +104 -0
  67. scitex/plt/styles/__init__.py +57 -0
  68. scitex/plt/styles/_plot_defaults.py +209 -0
  69. scitex/plt/styles/_plot_postprocess.py +518 -0
  70. scitex/plt/styles/_style_loader.py +268 -0
  71. scitex/plt/styles/presets.py +208 -0
  72. scitex/plt/utils/_collect_figure_metadata.py +160 -18
  73. scitex/plt/utils/_colorbar.py +72 -10
  74. scitex/plt/utils/_configure_mpl.py +108 -52
  75. scitex/plt/utils/_crop.py +21 -7
  76. scitex/plt/utils/_figure_mm.py +21 -7
  77. scitex/stats/__init__.py +13 -1
  78. scitex/stats/_schema.py +578 -0
  79. scitex/stats/tests/__init__.py +13 -0
  80. scitex/stats/tests/correlation/__init__.py +13 -0
  81. scitex/stats/tests/correlation/_test_pearson.py +262 -0
  82. scitex/vis/__init__.py +6 -0
  83. scitex/vis/editor/__init__.py +23 -0
  84. scitex/vis/editor/_defaults.py +205 -0
  85. scitex/vis/editor/_edit.py +342 -0
  86. scitex/vis/editor/_mpl_editor.py +231 -0
  87. scitex/vis/editor/_tkinter_editor.py +466 -0
  88. scitex/vis/editor/_web_editor.py +1440 -0
  89. scitex/vis/model/plot_types.py +15 -15
  90. {scitex-2.3.0.dist-info → scitex-2.4.0.dist-info}/METADATA +2 -1
  91. {scitex-2.3.0.dist-info → scitex-2.4.0.dist-info}/RECORD +94 -67
  92. {scitex-2.3.0.dist-info → scitex-2.4.0.dist-info}/WHEEL +1 -1
  93. scitex/plt/ax/_plot/_plot_ecdf.py +0 -84
  94. scitex/plt/ax/_plot/_plot_heatmap.py +0 -277
  95. scitex/plt/ax/_plot/_plot_joyplot.py +0 -77
  96. scitex/plt/ax/_plot/_plot_shaded_line.py +0 -142
  97. scitex/plt/presets.py +0 -224
  98. {scitex-2.3.0.dist-info → scitex-2.4.0.dist-info}/entry_points.txt +0 -0
  99. {scitex-2.3.0.dist-info → scitex-2.4.0.dist-info}/licenses/LICENSE +0 -0
@@ -1,44 +1,66 @@
1
1
  #!/usr/bin/env python3
2
2
  # -*- coding: utf-8 -*-
3
- # Timestamp: "2025-05-18 18:14:26 (ywatanabe)"
4
- # File: /data/gpfs/projects/punim2354/ywatanabe/scitex_repo/src/scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py
5
- # ----------------------------------------
6
- import os
7
- __FILE__ = __file__
8
- __DIR__ = os.path.dirname(__FILE__)
9
- # ----------------------------------------
3
+ # Timestamp: "2025-12-01 13:30:00 (ywatanabe)"
4
+ # File: ./src/scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py
5
+
6
+ """CSV formatter for matplotlib plot() calls."""
10
7
 
11
8
  from collections import OrderedDict
9
+ from typing import Any, Dict, Optional
10
+
12
11
  import numpy as np
13
12
  import pandas as pd
14
13
  import xarray as xr
15
14
 
16
- def _format_plot(id, tracked_dict, kwargs):
17
- """Format data from a plot call.
18
15
 
19
- Args:
20
- id (str): Identifier for the plot
21
- tracked_dict (dict): Dictionary containing tracked data
22
- kwargs (dict): Keyword arguments passed to plot
16
+ def _format_plot(
17
+ id: str,
18
+ tracked_dict: Optional[Dict[str, Any]],
19
+ kwargs: Dict[str, Any],
20
+ ) -> pd.DataFrame:
21
+ """Format data from a plot() call for CSV export.
22
+
23
+ Handles various input formats including:
24
+ - Pre-formatted plot_df from scitex wrappers
25
+ - Raw args from __getattr__ proxied matplotlib calls
26
+ - Single array: plot(y) generates x from indices
27
+ - Two arrays: plot(x, y)
28
+ - 2D arrays: creates multiple x/y column pairs
23
29
 
24
- Returns:
25
- pd.DataFrame: Formatted data from plot
30
+ Parameters
31
+ ----------
32
+ id : str
33
+ Identifier prefix for the output columns (e.g., "ax_00").
34
+ tracked_dict : dict or None
35
+ Dictionary containing tracked data. May include:
36
+ - 'plot_df': Pre-formatted DataFrame from wrapper
37
+ - 'args': Raw positional arguments (x, y) from plot()
38
+ kwargs : dict
39
+ Keyword arguments passed to plot (currently unused).
40
+
41
+ Returns
42
+ -------
43
+ pd.DataFrame
44
+ Formatted data with columns prefixed by id.
45
+ For 1D data: {id}_plot_x, {id}_plot_y
46
+ For 2D data: {id}_plot_x00, {id}_plot_y00, {id}_plot_x01, ...
26
47
  """
27
48
  # Check if tracked_dict is empty or not a dictionary
28
49
  if not tracked_dict or not isinstance(tracked_dict, dict):
29
50
  return pd.DataFrame()
30
-
31
- # For plot_line, we expect a 'plot_df' key
51
+
52
+ # For stx_line, we expect a 'plot_df' key
32
53
  if 'plot_df' in tracked_dict:
33
54
  plot_df = tracked_dict['plot_df']
34
55
  if isinstance(plot_df, pd.DataFrame):
35
56
  # Add the id prefix to all columns
36
57
  return plot_df.add_prefix(f"{id}_")
37
-
38
- # Legacy handling for tracked args (should be deprecated)
58
+
59
+ # Handle raw args from __getattr__ proxied calls
39
60
  if 'args' in tracked_dict:
40
61
  args = tracked_dict['args']
41
62
  if isinstance(args, tuple) and len(args) > 0:
63
+ # Handle single argument: plot(y) or plot(data_2d)
42
64
  if len(args) == 1:
43
65
  args_value = args[0]
44
66
 
@@ -60,32 +82,47 @@ def _format_plot(id, tracked_dict, kwargs):
60
82
  df = pd.DataFrame({f"{id}_plot_x": x, f"{id}_plot_y": y})
61
83
  return df
62
84
 
63
- elif len(args) == 2:
64
- x, y = args
65
- if isinstance(y, (np.ndarray, xr.DataArray)):
66
- if y.ndim == 2:
67
- out = OrderedDict()
68
- for ii in range(y.shape[1]):
69
- out[f"{id}_plot_x{ii:02d}"] = x
70
- out[f"{id}_plot_y{ii:02d}"] = y[:, ii]
71
- df = pd.DataFrame(out)
72
- return df
73
-
74
- if isinstance(y, pd.DataFrame):
85
+ # Handle two arguments: plot(x, y)
86
+ elif len(args) >= 2:
87
+ x_arg, y_arg = args[0], args[1]
88
+
89
+ # Convert to numpy
90
+ x = np.asarray(x_arg.values if hasattr(x_arg, 'values') else x_arg)
91
+ y = np.asarray(y_arg.values if hasattr(y_arg, 'values') else y_arg)
92
+
93
+ # Handle 2D y array (multiple lines)
94
+ if hasattr(y, 'ndim') and y.ndim == 2:
95
+ out = OrderedDict()
96
+ for ii in range(y.shape[1]):
97
+ out[f"{id}_plot_x{ii:02d}"] = x
98
+ out[f"{id}_plot_y{ii:02d}"] = y[:, ii]
99
+ df = pd.DataFrame(out)
100
+ return df
101
+
102
+ # Handle DataFrame y
103
+ if isinstance(y_arg, pd.DataFrame):
75
104
  df = pd.DataFrame(
76
105
  {
77
106
  f"{id}_plot_x": x,
78
107
  **{
79
- f"{id}_plot_y{ii:02d}": np.array(y[col])
80
- for ii, col in enumerate(y.columns)
108
+ f"{id}_plot_y{ii:02d}": np.array(y_arg[col])
109
+ for ii, col in enumerate(y_arg.columns)
81
110
  },
82
111
  }
83
112
  )
84
113
  return df
85
114
 
86
- if isinstance(y, (np.ndarray, xr.DataArray, list)):
87
- df = pd.DataFrame({f"{id}_plot_x": x, f"{id}_plot_y": y})
115
+ # Handle 1D arrays (most common case: plot(x, y))
116
+ if hasattr(y, 'ndim') and y.ndim == 1:
117
+ # Flatten x if needed
118
+ x_flat = np.ravel(x)
119
+ y_flat = np.ravel(y)
120
+ df = pd.DataFrame({f"{id}_plot_x": x_flat, f"{id}_plot_y": y_flat})
88
121
  return df
89
122
 
123
+ # Fallback for list-like y
124
+ df = pd.DataFrame({f"{id}_plot_x": np.ravel(x), f"{id}_plot_y": np.ravel(y)})
125
+ return df
126
+
90
127
  # Default empty DataFrame if we can't process the input
91
128
  return pd.DataFrame()
@@ -12,7 +12,7 @@ import numpy as np
12
12
  import pandas as pd
13
13
 
14
14
  def _format_plot_box(id, tracked_dict, kwargs):
15
- """Format data from a plot_box call."""
15
+ """Format data from a stx_box call."""
16
16
  # Check if tracked_dict is empty or not a dictionary
17
17
  if not tracked_dict or not isinstance(tracked_dict, dict):
18
18
  return pd.DataFrame()
@@ -12,14 +12,14 @@ import pandas as pd
12
12
  from scitex.pd import force_df
13
13
 
14
14
  def _format_plot_kde(id, tracked_dict, kwargs):
15
- """Format data from a plot_kde call.
15
+ """Format data from a stx_kde call.
16
16
 
17
17
  Processes kernel density estimation plot data.
18
18
 
19
19
  Args:
20
20
  id (str): Identifier for the plot
21
21
  tracked_dict (dict): Dictionary containing 'x', 'kde', and 'n' keys
22
- kwargs (dict): Keyword arguments passed to plot_kde
22
+ kwargs (dict): Keyword arguments passed to stx_kde
23
23
 
24
24
  Returns:
25
25
  pd.DataFrame: Formatted KDE data
@@ -0,0 +1,53 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # Timestamp: "2025-12-01 12:20:00 (ywatanabe)"
4
+ # File: /home/ywatanabe/proj/scitex-code/src/scitex/plt/_subplots/_export_as_csv_formatters/_format_quiver.py
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+
9
+
10
+ def _format_quiver(id, tracked_dict, kwargs):
11
+ """Format data from a quiver (vector field) call.
12
+
13
+ Args:
14
+ id (str): Identifier for the plot
15
+ tracked_dict (dict): Dictionary containing tracked data
16
+ kwargs (dict): Keyword arguments passed to quiver
17
+
18
+ Returns:
19
+ pd.DataFrame: Formatted data from quiver (X, Y positions and U, V vectors)
20
+ """
21
+ if not tracked_dict or not isinstance(tracked_dict, dict):
22
+ return pd.DataFrame()
23
+
24
+ if 'args' in tracked_dict:
25
+ args = tracked_dict['args']
26
+ if isinstance(args, tuple):
27
+ # quiver can be called as:
28
+ # quiver(U, V) - positions auto-generated
29
+ # quiver(X, Y, U, V) - explicit positions
30
+ if len(args) == 2:
31
+ U = np.asarray(args[0])
32
+ V = np.asarray(args[1])
33
+ X, Y = np.meshgrid(np.arange(U.shape[1]), np.arange(U.shape[0]))
34
+ elif len(args) >= 4:
35
+ X = np.asarray(args[0])
36
+ Y = np.asarray(args[1])
37
+ U = np.asarray(args[2])
38
+ V = np.asarray(args[3])
39
+ else:
40
+ return pd.DataFrame()
41
+
42
+ df = pd.DataFrame({
43
+ f"{id}_quiver_x": X.flatten(),
44
+ f"{id}_quiver_y": Y.flatten(),
45
+ f"{id}_quiver_u": U.flatten(),
46
+ f"{id}_quiver_v": V.flatten()
47
+ })
48
+ return df
49
+
50
+ return pd.DataFrame()
51
+
52
+
53
+ # EOF
@@ -0,0 +1,42 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # Timestamp: "2025-12-01 12:20:00 (ywatanabe)"
4
+ # File: /home/ywatanabe/proj/scitex-code/src/scitex/plt/_subplots/_export_as_csv_formatters/_format_stem.py
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+
9
+
10
+ def _format_stem(id, tracked_dict, kwargs):
11
+ """Format data from a stem plot call.
12
+
13
+ Args:
14
+ id (str): Identifier for the plot
15
+ tracked_dict (dict): Dictionary containing tracked data
16
+ kwargs (dict): Keyword arguments passed to stem
17
+
18
+ Returns:
19
+ pd.DataFrame: Formatted data from stem plot
20
+ """
21
+ if not tracked_dict or not isinstance(tracked_dict, dict):
22
+ return pd.DataFrame()
23
+
24
+ if 'args' in tracked_dict:
25
+ args = tracked_dict['args']
26
+ if isinstance(args, tuple) and len(args) > 0:
27
+ if len(args) == 1:
28
+ y = np.asarray(args[0])
29
+ x = np.arange(len(y))
30
+ elif len(args) >= 2:
31
+ x = np.asarray(args[0])
32
+ y = np.asarray(args[1])
33
+ else:
34
+ return pd.DataFrame()
35
+
36
+ df = pd.DataFrame({f"{id}_stem_x": x, f"{id}_stem_y": y})
37
+ return df
38
+
39
+ return pd.DataFrame()
40
+
41
+
42
+ # EOF
@@ -0,0 +1,42 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # Timestamp: "2025-12-01 12:20:00 (ywatanabe)"
4
+ # File: /home/ywatanabe/proj/scitex-code/src/scitex/plt/_subplots/_export_as_csv_formatters/_format_step.py
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+
9
+
10
+ def _format_step(id, tracked_dict, kwargs):
11
+ """Format data from a step plot call.
12
+
13
+ Args:
14
+ id (str): Identifier for the plot
15
+ tracked_dict (dict): Dictionary containing tracked data
16
+ kwargs (dict): Keyword arguments passed to step
17
+
18
+ Returns:
19
+ pd.DataFrame: Formatted data from step plot
20
+ """
21
+ if not tracked_dict or not isinstance(tracked_dict, dict):
22
+ return pd.DataFrame()
23
+
24
+ if 'args' in tracked_dict:
25
+ args = tracked_dict['args']
26
+ if isinstance(args, tuple) and len(args) > 0:
27
+ if len(args) == 1:
28
+ y = np.asarray(args[0])
29
+ x = np.arange(len(y))
30
+ elif len(args) >= 2:
31
+ x = np.asarray(args[0])
32
+ y = np.asarray(args[1])
33
+ else:
34
+ return pd.DataFrame()
35
+
36
+ df = pd.DataFrame({f"{id}_step_x": x, f"{id}_step_y": y})
37
+ return df
38
+
39
+ return pd.DataFrame()
40
+
41
+
42
+ # EOF
@@ -0,0 +1,48 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # Timestamp: "2025-12-01 12:20:00 (ywatanabe)"
4
+ # File: /home/ywatanabe/proj/scitex-code/src/scitex/plt/_subplots/_export_as_csv_formatters/_format_streamplot.py
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+
9
+
10
+ def _format_streamplot(id, tracked_dict, kwargs):
11
+ """Format data from a streamplot call.
12
+
13
+ Args:
14
+ id (str): Identifier for the plot
15
+ tracked_dict (dict): Dictionary containing tracked data
16
+ kwargs (dict): Keyword arguments passed to streamplot
17
+
18
+ Returns:
19
+ pd.DataFrame: Formatted data from streamplot (X, Y positions and U, V vectors)
20
+ """
21
+ if not tracked_dict or not isinstance(tracked_dict, dict):
22
+ return pd.DataFrame()
23
+
24
+ if 'args' in tracked_dict:
25
+ args = tracked_dict['args']
26
+ if isinstance(args, tuple) and len(args) >= 4:
27
+ # streamplot(X, Y, U, V) - X, Y are 1D, U, V are 2D
28
+ X = np.asarray(args[0])
29
+ Y = np.asarray(args[1])
30
+ U = np.asarray(args[2])
31
+ V = np.asarray(args[3])
32
+
33
+ # Create meshgrid if X, Y are 1D
34
+ if X.ndim == 1 and Y.ndim == 1:
35
+ X, Y = np.meshgrid(X, Y)
36
+
37
+ df = pd.DataFrame({
38
+ f"{id}_streamplot_x": X.flatten(),
39
+ f"{id}_streamplot_y": Y.flatten(),
40
+ f"{id}_streamplot_u": U.flatten(),
41
+ f"{id}_streamplot_v": V.flatten()
42
+ })
43
+ return df
44
+
45
+ return pd.DataFrame()
46
+
47
+
48
+ # EOF
@@ -12,12 +12,12 @@ import numpy as np
12
12
  import pandas as pd
13
13
 
14
14
  def _format_plot_conf_mat(id, tracked_dict, kwargs):
15
- """Format data from a plot_conf_mat call.
15
+ """Format data from a stx_conf_mat call.
16
16
 
17
17
  Args:
18
18
  id (str): Identifier for the plot
19
19
  tracked_dict (dict): Dictionary containing tracked data
20
- kwargs (dict): Keyword arguments passed to plot_conf_mat
20
+ kwargs (dict): Keyword arguments passed to stx_conf_mat
21
21
 
22
22
  Returns:
23
23
  pd.DataFrame: Formatted confusion matrix data
@@ -11,12 +11,12 @@ __DIR__ = os.path.dirname(__FILE__)
11
11
  # ----------------------------------------
12
12
 
13
13
  def _format_plot_ecdf(id, tracked_dict, kwargs):
14
- """Format data from a plot_ecdf call.
14
+ """Format data from a stx_ecdf call.
15
15
 
16
16
  Args:
17
17
  id (str): Identifier for the plot
18
18
  tracked_dict (dict): Dictionary containing 'ecdf_df' key with ECDF data
19
- kwargs (dict): Keyword arguments passed to plot_ecdf
19
+ kwargs (dict): Keyword arguments passed to stx_ecdf
20
20
 
21
21
  Returns:
22
22
  pd.DataFrame: Formatted ECDF data
@@ -12,14 +12,14 @@ import numpy as np
12
12
  import pandas as pd
13
13
 
14
14
  def _format_plot_fillv(id, tracked_dict, kwargs):
15
- """Format data from a plot_fillv call.
15
+ """Format data from a stx_fillv call.
16
16
 
17
17
  Formats data similar to line plot format for better compatibility.
18
18
 
19
19
  Args:
20
20
  id (str): Identifier for the plot
21
21
  tracked_dict (dict): Dictionary containing tracked data
22
- kwargs (dict): Keyword arguments passed to plot_fillv
22
+ kwargs (dict): Keyword arguments passed to stx_fillv
23
23
 
24
24
  Returns:
25
25
  pd.DataFrame: Formatted fillv data in a long-format dataframe
@@ -12,14 +12,14 @@ import numpy as np
12
12
  import pandas as pd
13
13
 
14
14
  def _format_plot_heatmap(id, tracked_dict, kwargs):
15
- """Format data from a plot_heatmap call.
15
+ """Format data from a stx_heatmap call.
16
16
 
17
17
  Exports heatmap data in xyz format (x, y, value) for better compatibility.
18
18
 
19
19
  Args:
20
20
  id (str): Identifier for the plot
21
21
  tracked_dict (dict): Dictionary containing tracked data
22
- kwargs (dict): Keyword arguments passed to plot_heatmap
22
+ kwargs (dict): Keyword arguments passed to stx_heatmap
23
23
 
24
24
  Returns:
25
25
  pd.DataFrame: Formatted heatmap data in xyz format
@@ -12,7 +12,7 @@ __DIR__ = os.path.dirname(__FILE__)
12
12
  # ----------------------------------------
13
13
 
14
14
  def _format_plot_image(id, tracked_dict, kwargs):
15
- """Format data from a plot_image call.
15
+ """Format data from a stx_image call.
16
16
 
17
17
  Exports image data in long-format xyz format for better compatibility.
18
18
  Also saves channel data for RGB/RGBA images.
@@ -20,7 +20,7 @@ def _format_plot_image(id, tracked_dict, kwargs):
20
20
  Args:
21
21
  id (str or int): Identifier for the plot
22
22
  tracked_dict (dict): Dictionary containing tracked data
23
- kwargs (dict): Keyword arguments passed to plot_image
23
+ kwargs (dict): Keyword arguments passed to stx_image
24
24
 
25
25
  Returns:
26
26
  pd.DataFrame: Formatted image data in xyz format
@@ -13,12 +13,12 @@ import pandas as pd
13
13
  from scitex.pd import force_df
14
14
 
15
15
  def _format_plot_joyplot(id, tracked_dict, kwargs):
16
- """Format data from a plot_joyplot call.
16
+ """Format data from a stx_joyplot call.
17
17
 
18
18
  Args:
19
19
  id (str): Identifier for the plot
20
20
  tracked_dict (dict): Dictionary containing 'joyplot_data' key with joyplot data
21
- kwargs (dict): Keyword arguments passed to plot_joyplot
21
+ kwargs (dict): Keyword arguments passed to stx_joyplot
22
22
 
23
23
  Returns:
24
24
  pd.DataFrame: Formatted joyplot data
@@ -11,14 +11,14 @@ __DIR__ = os.path.dirname(__FILE__)
11
11
  import pandas as pd
12
12
 
13
13
  def _format_plot_line(id, tracked_dict, kwargs):
14
- """Format data from a plot_line call.
14
+ """Format data from a stx_line call.
15
15
 
16
- Processes plot_line data for CSV export.
16
+ Processes stx_line data for CSV export.
17
17
 
18
18
  Args:
19
19
  id (str): Identifier for the plot
20
20
  tracked_dict (dict): Dictionary containing 'plot_df' key with plot data
21
- kwargs (dict): Keyword arguments passed to plot_line
21
+ kwargs (dict): Keyword arguments passed to stx_line
22
22
 
23
23
  Returns:
24
24
  pd.DataFrame: Formatted line plot data
@@ -11,14 +11,14 @@ __DIR__ = os.path.dirname(__FILE__)
11
11
  import pandas as pd
12
12
 
13
13
  def _format_plot_mean_ci(id, tracked_dict, kwargs):
14
- """Format data from a plot_mean_ci call.
14
+ """Format data from a stx_mean_ci call.
15
15
 
16
16
  Processes mean with confidence interval band plot data for CSV export.
17
17
 
18
18
  Args:
19
19
  id (str): Identifier for the plot
20
20
  tracked_dict (dict): Contains 'plot_df' (pandas DataFrame with mean and CI data)
21
- kwargs (dict): Keyword arguments passed to plot_mean_ci
21
+ kwargs (dict): Keyword arguments passed to stx_mean_ci
22
22
 
23
23
  Returns:
24
24
  pd.DataFrame: Formatted mean and CI data
@@ -11,14 +11,14 @@ __DIR__ = os.path.dirname(__FILE__)
11
11
  import pandas as pd
12
12
 
13
13
  def _format_plot_mean_std(id, tracked_dict, kwargs):
14
- """Format data from a plot_mean_std call.
14
+ """Format data from a stx_mean_std call.
15
15
 
16
16
  Processes mean with standard deviation band plot data for CSV export.
17
17
 
18
18
  Args:
19
19
  id (str): Identifier for the plot
20
20
  tracked_dict (dict): Dictionary containing 'plot_df' key with mean and std data
21
- kwargs (dict): Keyword arguments passed to plot_mean_std
21
+ kwargs (dict): Keyword arguments passed to stx_mean_std
22
22
 
23
23
  Returns:
24
24
  pd.DataFrame: Formatted mean and std data
@@ -11,14 +11,14 @@ __DIR__ = os.path.dirname(__FILE__)
11
11
  import pandas as pd
12
12
 
13
13
  def _format_plot_median_iqr(id, tracked_dict, kwargs):
14
- """Format data from a plot_median_iqr call.
14
+ """Format data from a stx_median_iqr call.
15
15
 
16
16
  Processes median with interquartile range band plot data for CSV export.
17
17
 
18
18
  Args:
19
19
  id (str): Identifier for the plot
20
20
  tracked_dict (dict): Contains 'plot_df' (pandas DataFrame with median and IQR data)
21
- kwargs (dict): Keyword arguments passed to plot_median_iqr
21
+ kwargs (dict): Keyword arguments passed to stx_median_iqr
22
22
 
23
23
  Returns:
24
24
  pd.DataFrame: Formatted median and IQR data
@@ -11,12 +11,12 @@ __DIR__ = os.path.dirname(__FILE__)
11
11
  import pandas as pd
12
12
 
13
13
  def _format_plot_raster(id, tracked_dict, kwargs):
14
- """Format data from a plot_raster call.
14
+ """Format data from a stx_raster call.
15
15
 
16
16
  Args:
17
17
  id (str): Identifier for the plot
18
18
  tracked_dict (dict): Dictionary containing 'raster_digit_df' key with raster plot data
19
- kwargs (dict): Keyword arguments passed to plot_raster
19
+ kwargs (dict): Keyword arguments passed to stx_raster
20
20
 
21
21
  Returns:
22
22
  pd.DataFrame: Formatted raster plot data
@@ -12,7 +12,7 @@ import numpy as np
12
12
  import pandas as pd
13
13
 
14
14
  def _format_plot_rectangle(id, tracked_dict, kwargs):
15
- """Format data from a plot_rectangle call."""
15
+ """Format data from a stx_rectangle call."""
16
16
  # Check if tracked_dict is empty or not a dictionary
17
17
  if not tracked_dict or not isinstance(tracked_dict, dict):
18
18
  return pd.DataFrame()
@@ -12,12 +12,12 @@ import numpy as np
12
12
  import pandas as pd
13
13
 
14
14
  def _format_plot_scatter_hist(id, tracked_dict, kwargs):
15
- """Format data from a plot_scatter_hist call.
15
+ """Format data from a stx_scatter_hist call.
16
16
 
17
17
  Args:
18
18
  id (str): Identifier for the plot
19
19
  tracked_dict (dict): Dictionary containing tracked data
20
- kwargs (dict): Keyword arguments passed to plot_scatter_hist
20
+ kwargs (dict): Keyword arguments passed to stx_scatter_hist
21
21
 
22
22
  Returns:
23
23
  pd.DataFrame: Formatted scatter histogram data
@@ -11,12 +11,12 @@ __DIR__ = os.path.dirname(__FILE__)
11
11
  import pandas as pd
12
12
 
13
13
  def _format_plot_shaded_line(id, tracked_dict, kwargs):
14
- """Format data from a plot_shaded_line call.
14
+ """Format data from a stx_shaded_line call.
15
15
 
16
16
  Args:
17
17
  id (str): Identifier for the plot
18
18
  tracked_dict (dict): Dictionary containing tracked data
19
- kwargs (dict): Keyword arguments passed to plot_shaded_line
19
+ kwargs (dict): Keyword arguments passed to stx_shaded_line
20
20
 
21
21
  Returns:
22
22
  pd.DataFrame: Formatted shaded line data
@@ -12,14 +12,14 @@ import numpy as np
12
12
  import pandas as pd
13
13
 
14
14
  def _format_plot_violin(id, tracked_dict, kwargs):
15
- """Format data from a plot_violin call.
15
+ """Format data from a stx_violin call.
16
16
 
17
17
  Formats data in a long-format for better compatibility.
18
18
 
19
19
  Args:
20
20
  id (str): Identifier for the plot
21
21
  tracked_dict (dict): Dictionary containing tracked data
22
- kwargs (dict): Keyword arguments passed to plot_violin
22
+ kwargs (dict): Keyword arguments passed to stx_violin
23
23
 
24
24
  Returns:
25
25
  pd.DataFrame: Formatted violin plot data in long format