scipy 1.16.0rc2__cp313-cp313-macosx_14_0_arm64.whl → 1.16.2__cp313-cp313-macosx_14_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scipy/.dylibs/libgcc_s.1.1.dylib +0 -0
- scipy/.dylibs/libgfortran.5.dylib +0 -0
- scipy/.dylibs/libquadmath.0.dylib +0 -0
- scipy/__config__.py +5 -5
- scipy/_cyutility.cpython-313-darwin.so +0 -0
- scipy/_lib/_ccallback_c.cpython-313-darwin.so +0 -0
- scipy/_lib/_test_deprecation_call.cpython-313-darwin.so +0 -0
- scipy/_lib/_util.py +7 -0
- scipy/_lib/messagestream.cpython-313-darwin.so +0 -0
- scipy/cluster/_hierarchy.cpython-313-darwin.so +0 -0
- scipy/cluster/_optimal_leaf_ordering.cpython-313-darwin.so +0 -0
- scipy/cluster/_vq.cpython-313-darwin.so +0 -0
- scipy/conftest.py +25 -0
- scipy/fft/_pocketfft/pypocketfft.cpython-313-darwin.so +0 -0
- scipy/fftpack/convolve.cpython-313-darwin.so +0 -0
- scipy/integrate/_dop.cpython-313-darwin.so +0 -0
- scipy/integrate/_lsoda.cpython-313-darwin.so +0 -0
- scipy/integrate/_odepack.cpython-313-darwin.so +0 -0
- scipy/integrate/_test_odeint_banded.cpython-313-darwin.so +0 -0
- scipy/integrate/_vode.cpython-313-darwin.so +0 -0
- scipy/interpolate/_dfitpack.cpython-313-darwin.so +0 -0
- scipy/interpolate/_fitpack.cpython-313-darwin.so +0 -0
- scipy/interpolate/_interpnd.cpython-313-darwin.so +0 -0
- scipy/interpolate/_ppoly.cpython-313-darwin.so +0 -0
- scipy/interpolate/_rgi_cython.cpython-313-darwin.so +0 -0
- scipy/io/_fast_matrix_market/_fmm_core.cpython-313-darwin.so +0 -0
- scipy/io/_test_fortran.cpython-313-darwin.so +0 -0
- scipy/io/matlab/_mio5_utils.cpython-313-darwin.so +0 -0
- scipy/io/matlab/_mio_utils.cpython-313-darwin.so +0 -0
- scipy/io/matlab/_streams.cpython-313-darwin.so +0 -0
- scipy/io/matlab/tests/test_streams.py +9 -0
- scipy/linalg/_cythonized_array_utils.cpython-313-darwin.so +0 -0
- scipy/linalg/_decomp_interpolative.cpython-313-darwin.so +0 -0
- scipy/linalg/_decomp_lu_cython.cpython-313-darwin.so +0 -0
- scipy/linalg/_decomp_update.cpython-313-darwin.so +0 -0
- scipy/linalg/_fblas.cpython-313-darwin.so +0 -0
- scipy/linalg/_flapack.cpython-313-darwin.so +0 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cpython-313-darwin.so +0 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cpython-313-darwin.so +0 -0
- scipy/linalg/_solve_toeplitz.cpython-313-darwin.so +0 -0
- scipy/linalg/blas.py +35 -24
- scipy/linalg/cython_blas.cpython-313-darwin.so +0 -0
- scipy/linalg/cython_lapack.cpython-313-darwin.so +0 -0
- scipy/linalg/tests/test_lapack.py +5 -1
- scipy/linalg/tests/test_matfuncs.py +7 -0
- scipy/ndimage/_cytest.cpython-313-darwin.so +0 -0
- scipy/ndimage/_filters.py +11 -2
- scipy/ndimage/_ni_label.cpython-313-darwin.so +0 -0
- scipy/ndimage/_rank_filter_1d.cpython-313-darwin.so +0 -0
- scipy/ndimage/tests/test_filters.py +52 -0
- scipy/odr/__odrpack.cpython-313-darwin.so +0 -0
- scipy/optimize/_bglu_dense.cpython-313-darwin.so +0 -0
- scipy/optimize/_highspy/_core.cpython-313-darwin.so +0 -0
- scipy/optimize/_highspy/_highs_options.cpython-313-darwin.so +0 -0
- scipy/optimize/_lbfgsb_py.py +25 -10
- scipy/optimize/_lsq/givens_elimination.cpython-313-darwin.so +0 -0
- scipy/optimize/_lsq/least_squares.py +2 -2
- scipy/optimize/_minimize.py +0 -1
- scipy/optimize/_moduleTNC.cpython-313-darwin.so +0 -0
- scipy/optimize/_pava_pybind.cpython-313-darwin.so +0 -0
- scipy/optimize/_shgo_lib/_complex.py +2 -2
- scipy/optimize/_slsqp_py.py +5 -5
- scipy/optimize/_slsqplib.cpython-313-darwin.so +0 -0
- scipy/optimize/_trlib/_trlib.cpython-313-darwin.so +0 -0
- scipy/optimize/cython_optimize/_zeros.cpython-313-darwin.so +0 -0
- scipy/optimize/tests/test_optimize.py +12 -3
- scipy/signal/_filter_design.py +13 -1
- scipy/signal/_fir_filter_design.py +1 -1
- scipy/signal/_peak_finding_utils.cpython-313-darwin.so +0 -0
- scipy/signal/_polyutils.py +1 -1
- scipy/signal/_short_time_fft.py +74 -33
- scipy/signal/_sosfilt.cpython-313-darwin.so +0 -0
- scipy/signal/_spectral_py.py +2 -2
- scipy/signal/_upfirdn_apply.cpython-313-darwin.so +0 -0
- scipy/signal/tests/test_filter_design.py +19 -0
- scipy/signal/tests/test_fir_filter_design.py +5 -0
- scipy/signal/tests/test_short_time_fft.py +9 -0
- scipy/signal/tests/test_signaltools.py +9 -3
- scipy/signal/tests/test_spectral.py +39 -1
- scipy/sparse/_base.py +4 -1
- scipy/sparse/_csparsetools.cpython-313-darwin.so +0 -0
- scipy/sparse/csgraph/_flow.cpython-313-darwin.so +0 -0
- scipy/sparse/csgraph/_matching.cpython-313-darwin.so +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cpython-313-darwin.so +0 -0
- scipy/sparse/csgraph/_reordering.cpython-313-darwin.so +0 -0
- scipy/sparse/csgraph/_shortest_path.cpython-313-darwin.so +0 -0
- scipy/sparse/csgraph/_tools.cpython-313-darwin.so +0 -0
- scipy/sparse/csgraph/_traversal.cpython-313-darwin.so +0 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-313-darwin.so +0 -0
- scipy/sparse/linalg/_propack/_cpropack.cpython-313-darwin.so +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cpython-313-darwin.so +0 -0
- scipy/sparse/linalg/_propack/_spropack.cpython-313-darwin.so +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cpython-313-darwin.so +0 -0
- scipy/sparse/tests/test_base.py +3 -0
- scipy/spatial/_ckdtree.cpython-313-darwin.so +0 -0
- scipy/spatial/_distance_pybind.cpython-313-darwin.so +0 -0
- scipy/spatial/_hausdorff.cpython-313-darwin.so +0 -0
- scipy/spatial/_qhull.cpython-313-darwin.so +0 -0
- scipy/spatial/_voronoi.cpython-313-darwin.so +0 -0
- scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
- scipy/spatial/tests/test_distance.py +5 -4
- scipy/spatial/transform/_rigid_transform.cpython-313-darwin.so +0 -0
- scipy/spatial/transform/_rotation.cpython-313-darwin.so +0 -0
- scipy/special/_comb.cpython-313-darwin.so +0 -0
- scipy/special/_ellip_harm_2.cpython-313-darwin.so +0 -0
- scipy/special/_specfun.cpython-313-darwin.so +0 -0
- scipy/special/_test_internal.cpython-313-darwin.so +0 -0
- scipy/special/_ufuncs.cpython-313-darwin.so +0 -0
- scipy/special/_ufuncs_cxx.cpython-313-darwin.so +0 -0
- scipy/special/cython_special.cpython-313-darwin.so +0 -0
- scipy/stats/_ansari_swilk_statistics.cpython-313-darwin.so +0 -0
- scipy/stats/_biasedurn.cpython-313-darwin.so +0 -0
- scipy/stats/_continuous_distns.py +19 -16
- scipy/stats/_distribution_infrastructure.py +20 -0
- scipy/stats/_levy_stable/levyst.cpython-313-darwin.so +0 -0
- scipy/stats/_qmc_cy.cpython-313-darwin.so +0 -0
- scipy/stats/_qmvnt_cy.cpython-313-darwin.so +0 -0
- scipy/stats/_rcont/rcont.cpython-313-darwin.so +0 -0
- scipy/stats/_resampling.py +1 -1
- scipy/stats/_sobol.cpython-313-darwin.so +0 -0
- scipy/stats/_stats.cpython-313-darwin.so +0 -0
- scipy/stats/_stats_py.py +1 -1
- scipy/stats/_unuran/unuran_wrapper.cpython-313-darwin.so +0 -0
- scipy/stats/tests/test_distributions.py +13 -0
- scipy/stats/tests/test_fast_gen_inversion.py +2 -0
- scipy/stats/tests/test_morestats.py +4 -4
- scipy/version.py +2 -2
- {scipy-1.16.0rc2.dist-info → scipy-1.16.2.dist-info}/METADATA +3 -2
- {scipy-1.16.0rc2.dist-info → scipy-1.16.2.dist-info}/RECORD +131 -130
- {scipy-1.16.0rc2.dist-info → scipy-1.16.2.dist-info}/LICENSE.txt +0 -0
- {scipy-1.16.0rc2.dist-info → scipy-1.16.2.dist-info}/WHEEL +0 -0
@@ -0,0 +1,39 @@
|
|
1
|
+
Qhull, Copyright (c) 1993-2020
|
2
|
+
|
3
|
+
C.B. Barber
|
4
|
+
Arlington, MA
|
5
|
+
|
6
|
+
and
|
7
|
+
|
8
|
+
The National Science and Technology Research Center for
|
9
|
+
Computation and Visualization of Geometric Structures
|
10
|
+
(The Geometry Center)
|
11
|
+
University of Minnesota
|
12
|
+
|
13
|
+
email: qhull@qhull.org
|
14
|
+
|
15
|
+
This software includes Qhull from C.B. Barber and The Geometry Center.
|
16
|
+
Files derived from Qhull 1.0 are copyrighted by the Geometry Center. The
|
17
|
+
remaining files are copyrighted by C.B. Barber. Qhull is free software
|
18
|
+
and may be obtained via http from www.qhull.org. It may be freely copied,
|
19
|
+
modified, and redistributed under the following conditions:
|
20
|
+
|
21
|
+
1. All copyright notices must remain intact in all files.
|
22
|
+
|
23
|
+
2. A copy of this text file must be distributed along with any copies
|
24
|
+
of Qhull that you redistribute; this includes copies that you have
|
25
|
+
modified, or copies of programs or other software products that
|
26
|
+
include Qhull.
|
27
|
+
|
28
|
+
3. If you modify Qhull, you must include a notice giving the
|
29
|
+
name of the person performing the modification, the date of
|
30
|
+
modification, and the reason for such modification.
|
31
|
+
|
32
|
+
4. When distributing modified versions of Qhull, or other software
|
33
|
+
products that include Qhull, you must provide notice that the original
|
34
|
+
source code may be obtained as noted above.
|
35
|
+
|
36
|
+
5. There is no warranty or other guarantee of fitness for Qhull, it is
|
37
|
+
provided solely "as is". Bug reports or fixes may be sent to
|
38
|
+
qhull_bug@qhull.org; the authors may or may not act on them as
|
39
|
+
they desire.
|
@@ -32,14 +32,14 @@
|
|
32
32
|
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
33
33
|
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
34
34
|
|
35
|
-
import sys
|
36
|
-
import os.path
|
37
|
-
|
38
35
|
from functools import wraps, partial
|
36
|
+
import os.path
|
37
|
+
import sys
|
38
|
+
import sysconfig
|
39
|
+
import warnings
|
39
40
|
import weakref
|
40
41
|
|
41
42
|
import numpy as np
|
42
|
-
import warnings
|
43
43
|
from numpy.linalg import norm
|
44
44
|
from numpy.testing import (verbose, assert_,
|
45
45
|
assert_array_equal, assert_equal,
|
@@ -632,6 +632,7 @@ class TestCdist:
|
|
632
632
|
assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2)
|
633
633
|
|
634
634
|
@pytest.mark.thread_unsafe
|
635
|
+
@pytest.mark.skipif(sysconfig.get_platform() == 'win-arm64', reason="numpy#29442")
|
635
636
|
def test_cdist_out(self, metric):
|
636
637
|
# Test that out parameter works properly
|
637
638
|
eps = 1e-15
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -935,23 +935,26 @@ class beta_gen(rv_continuous):
|
|
935
935
|
log_term = sum_ab*np.log1p(a/b) + np.log(b) - 2*np.log(sum_ab)
|
936
936
|
return t1 + t2 + log_term
|
937
937
|
|
938
|
-
def
|
939
|
-
if v == 1.0:
|
940
|
-
return 1000
|
941
|
-
|
942
|
-
j = np.log10(v)
|
943
|
-
digits = int(j)
|
944
|
-
d = int(v / 10 ** digits) + 2
|
945
|
-
return d*10**(7 + j)
|
946
|
-
|
947
|
-
if a >= 4.96e6 and b >= 4.96e6:
|
948
|
-
return asymptotic_ab_large(a, b)
|
949
|
-
elif a <= 4.9e6 and b - a >= 1e6 and b >= threshold_large(a):
|
950
|
-
return asymptotic_b_large(a, b)
|
951
|
-
elif b <= 4.9e6 and a - b >= 1e6 and a >= threshold_large(b):
|
938
|
+
def asymptotic_a_large(a, b):
|
952
939
|
return asymptotic_b_large(b, a)
|
953
|
-
|
954
|
-
|
940
|
+
|
941
|
+
def threshold_large(v):
|
942
|
+
j = np.floor(np.log10(v))
|
943
|
+
d = np.floor(v / 10 ** j) + 2
|
944
|
+
return xpx.apply_where(v != 1.0, (d, j), lambda d_, j_: d_ * 10**(7 + j_),
|
945
|
+
fill_value=1000)
|
946
|
+
|
947
|
+
threshold_a = threshold_large(a)
|
948
|
+
threshold_b = threshold_large(b)
|
949
|
+
return _lazyselect([(a >= 4.96e6) & (b >= 4.96e6),
|
950
|
+
(a <= 4.9e6) & (b - a >= 1e6) & (b >= threshold_a),
|
951
|
+
(b <= 4.9e6) & (a - b >= 1e6) & (a >= threshold_b),
|
952
|
+
(a < 4.9e6) & (b < 4.9e6)
|
953
|
+
],
|
954
|
+
[asymptotic_ab_large, asymptotic_b_large,
|
955
|
+
asymptotic_a_large, regular],
|
956
|
+
[a, b]
|
957
|
+
)
|
955
958
|
|
956
959
|
|
957
960
|
beta = beta_gen(a=0.0, b=1.0, name='beta')
|
@@ -5100,6 +5100,26 @@ class Mixture(_ProbabilityDistribution):
|
|
5100
5100
|
.. [1] Mixture distribution, *Wikipedia*,
|
5101
5101
|
https://en.wikipedia.org/wiki/Mixture_distribution
|
5102
5102
|
|
5103
|
+
|
5104
|
+
Examples
|
5105
|
+
--------
|
5106
|
+
A mixture of normal distributions:
|
5107
|
+
|
5108
|
+
>>> import numpy as np
|
5109
|
+
>>> from scipy import stats
|
5110
|
+
>>> import matplotlib.pyplot as plt
|
5111
|
+
>>> X1 = stats.Normal(mu=-2, sigma=1)
|
5112
|
+
>>> X2 = stats.Normal(mu=2, sigma=1)
|
5113
|
+
>>> mixture = stats.Mixture([X1, X2], weights=[0.4, 0.6])
|
5114
|
+
>>> print(f'mean: {mixture.mean():.2f}, '
|
5115
|
+
... f'median: {mixture.median():.2f}, '
|
5116
|
+
... f'mode: {mixture.mode():.2f}')
|
5117
|
+
mean: 0.40, median: 1.04, mode: 2.00
|
5118
|
+
>>> x = np.linspace(-10, 10, 300)
|
5119
|
+
>>> plt.plot(x, mixture.pdf(x))
|
5120
|
+
>>> plt.title('PDF of normal distribution mixture')
|
5121
|
+
>>> plt.show()
|
5122
|
+
|
5103
5123
|
"""
|
5104
5124
|
# Todo:
|
5105
5125
|
# Add support for array shapes, weights
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
scipy/stats/_resampling.py
CHANGED
@@ -942,7 +942,7 @@ def monte_carlo_test(data, rvs, statistic, *, vectorized=None,
|
|
942
942
|
for rvs_i, n_observations_i in zip(rvs, n_observations)]
|
943
943
|
null_distribution.append(statistic(*resamples, axis=-1))
|
944
944
|
null_distribution = xp.concat(null_distribution)
|
945
|
-
null_distribution = xp.reshape(null_distribution,
|
945
|
+
null_distribution = xp.reshape(null_distribution, (-1,) + (1,)*observed.ndim)
|
946
946
|
|
947
947
|
# relative tolerance for detecting numerically distinct but
|
948
948
|
# theoretically equal values in the null distribution
|
Binary file
|
Binary file
|
scipy/stats/_stats_py.py
CHANGED
@@ -10975,7 +10975,7 @@ def _xp_mean(x, /, *, axis=None, weights=None, keepdims=False, nan_policy='propa
|
|
10975
10975
|
for i in axes:
|
10976
10976
|
final_shape[i] = 1
|
10977
10977
|
|
10978
|
-
res = xp.reshape(res, final_shape)
|
10978
|
+
res = xp.reshape(res, tuple(final_shape))
|
10979
10979
|
|
10980
10980
|
return res[()] if res.ndim == 0 else res
|
10981
10981
|
|
Binary file
|
@@ -5003,6 +5003,19 @@ class TestBeta:
|
|
5003
5003
|
# return float(entropy)
|
5004
5004
|
assert_allclose(stats.beta(a, b).entropy(), ref, rtol=tol)
|
5005
5005
|
|
5006
|
+
def test_entropy_broadcasting(self):
|
5007
|
+
# gh-23127 reported that the entropy method of the beta
|
5008
|
+
# distribution did not broadcast correctly.
|
5009
|
+
Beta = stats.make_distribution(stats.beta)
|
5010
|
+
a = np.asarray([5e6, 100, 1e9, 10])
|
5011
|
+
b = np.asarray([5e6, 1e9, 100, 20])
|
5012
|
+
res = Beta(a=a, b=b).entropy()
|
5013
|
+
ref = np.asarray([Beta(a=a[0], b=b[0]).entropy(),
|
5014
|
+
Beta(a=a[1], b=b[1]).entropy(),
|
5015
|
+
Beta(a=a[2], b=b[2]).entropy(),
|
5016
|
+
Beta(a=a[3], b=b[3]).entropy()])
|
5017
|
+
assert_allclose(res, ref)
|
5018
|
+
|
5006
5019
|
|
5007
5020
|
class TestBetaPrime:
|
5008
5021
|
# the test values are used in test_cdf_gh_17631 / test_ppf_gh_17631
|
@@ -6,6 +6,7 @@ from numpy.testing import (assert_array_equal, assert_allclose,
|
|
6
6
|
from copy import deepcopy
|
7
7
|
from scipy.stats.sampling import FastGeneratorInversion
|
8
8
|
from scipy import stats
|
9
|
+
from scipy._lib._testutils import IS_MUSL
|
9
10
|
|
10
11
|
|
11
12
|
def test_bad_args():
|
@@ -142,6 +143,7 @@ def test_geninvgauss_uerror():
|
|
142
143
|
|
143
144
|
|
144
145
|
# TODO: add more distributions
|
146
|
+
@pytest.mark.skipif(IS_MUSL, reason="Hits RecursionError, see gh-23172")
|
145
147
|
@pytest.mark.fail_slow(5)
|
146
148
|
@pytest.mark.parametrize(("distname, args"), [("beta", (0.11, 0.11))])
|
147
149
|
def test_error_extreme_params(distname, args):
|
@@ -2053,13 +2053,13 @@ class TestBoxcox_llf:
|
|
2053
2053
|
def test_axis(self, xp):
|
2054
2054
|
data = xp.asarray([[100, 200], [300, 400]])
|
2055
2055
|
llf_axis_0 = stats.boxcox_llf(1, data, axis=0)
|
2056
|
-
llf_0 = xp.
|
2056
|
+
llf_0 = xp.stack([
|
2057
2057
|
stats.boxcox_llf(1, data[:, 0]),
|
2058
2058
|
stats.boxcox_llf(1, data[:, 1]),
|
2059
2059
|
])
|
2060
2060
|
xp_assert_close(llf_axis_0, llf_0)
|
2061
2061
|
llf_axis_1 = stats.boxcox_llf(1, data, axis=1)
|
2062
|
-
llf_1 = xp.
|
2062
|
+
llf_1 = xp.stack([
|
2063
2063
|
stats.boxcox_llf(1, data[0, :]),
|
2064
2064
|
stats.boxcox_llf(1, data[1, :]),
|
2065
2065
|
])
|
@@ -2732,11 +2732,11 @@ class TestCircFuncs:
|
|
2732
2732
|
|
2733
2733
|
res = circfunc(x, high=360, axis=1)
|
2734
2734
|
ref = [circfunc(x[i, :], high=360) for i in range(x.shape[0])]
|
2735
|
-
xp_assert_close(res, xp.
|
2735
|
+
xp_assert_close(res, xp.stack(ref))
|
2736
2736
|
|
2737
2737
|
res = circfunc(x, high=360, axis=0)
|
2738
2738
|
ref = [circfunc(x[:, i], high=360) for i in range(x.shape[1])]
|
2739
|
-
xp_assert_close(res, xp.
|
2739
|
+
xp_assert_close(res, xp.stack(ref))
|
2740
2740
|
|
2741
2741
|
@pytest.mark.parametrize("test_func,expected",
|
2742
2742
|
[(stats.circmean, 0.167690146),
|
scipy/version.py
CHANGED
@@ -2,10 +2,10 @@
|
|
2
2
|
"""
|
3
3
|
Module to expose more detailed version info for the installed `scipy`
|
4
4
|
"""
|
5
|
-
version = "1.16.
|
5
|
+
version = "1.16.2"
|
6
6
|
full_version = version
|
7
7
|
short_version = version.split('.dev')[0]
|
8
|
-
git_revision = "
|
8
|
+
git_revision = "b1296b9b4393e251511fe8fdd3e58c22a1124899"
|
9
9
|
release = 'dev' not in version and '+' not in version
|
10
10
|
|
11
11
|
if not release:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: scipy
|
3
|
-
Version: 1.16.
|
3
|
+
Version: 1.16.2
|
4
4
|
Summary: Fundamental algorithms for scientific computing in Python
|
5
5
|
Maintainer-Email: SciPy Developers <scipy-dev@python.org>
|
6
6
|
License: Copyright (c) 2001-2002 Enthought, Inc. 2003, SciPy Developers.
|
@@ -948,6 +948,7 @@ Classifier: Programming Language :: Python :: 3
|
|
948
948
|
Classifier: Programming Language :: Python :: 3.11
|
949
949
|
Classifier: Programming Language :: Python :: 3.12
|
950
950
|
Classifier: Programming Language :: Python :: 3.13
|
951
|
+
Classifier: Programming Language :: Python :: 3.14
|
951
952
|
Classifier: Topic :: Software Development :: Libraries
|
952
953
|
Classifier: Topic :: Scientific/Engineering
|
953
954
|
Classifier: Operating System :: Microsoft :: Windows
|
@@ -963,7 +964,7 @@ Project-URL: tracker, https://github.com/scipy/scipy/issues
|
|
963
964
|
Requires-Python: >=3.11
|
964
965
|
Requires-Dist: numpy<2.6,>=1.25.2
|
965
966
|
Provides-Extra: test
|
966
|
-
Requires-Dist: pytest; extra == "test"
|
967
|
+
Requires-Dist: pytest>=8.0.0; extra == "test"
|
967
968
|
Requires-Dist: pytest-cov; extra == "test"
|
968
969
|
Requires-Dist: pytest-timeout; extra == "test"
|
969
970
|
Requires-Dist: pytest-xdist; extra == "test"
|