scipy 1.16.0rc2__cp311-cp311-macosx_12_0_arm64.whl → 1.16.1__cp311-cp311-macosx_12_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (123) hide show
  1. scipy/__config__.py +8 -8
  2. scipy/_cyutility.cpython-311-darwin.so +0 -0
  3. scipy/_lib/_ccallback_c.cpython-311-darwin.so +0 -0
  4. scipy/_lib/_test_deprecation_call.cpython-311-darwin.so +0 -0
  5. scipy/_lib/_util.py +7 -0
  6. scipy/_lib/messagestream.cpython-311-darwin.so +0 -0
  7. scipy/cluster/_hierarchy.cpython-311-darwin.so +0 -0
  8. scipy/cluster/_optimal_leaf_ordering.cpython-311-darwin.so +0 -0
  9. scipy/cluster/_vq.cpython-311-darwin.so +0 -0
  10. scipy/conftest.py +25 -0
  11. scipy/fft/_pocketfft/pypocketfft.cpython-311-darwin.so +0 -0
  12. scipy/fftpack/convolve.cpython-311-darwin.so +0 -0
  13. scipy/integrate/_dop.cpython-311-darwin.so +0 -0
  14. scipy/integrate/_lsoda.cpython-311-darwin.so +0 -0
  15. scipy/integrate/_odepack.cpython-311-darwin.so +0 -0
  16. scipy/integrate/_test_odeint_banded.cpython-311-darwin.so +0 -0
  17. scipy/integrate/_vode.cpython-311-darwin.so +0 -0
  18. scipy/interpolate/_dfitpack.cpython-311-darwin.so +0 -0
  19. scipy/interpolate/_dierckx.cpython-311-darwin.so +0 -0
  20. scipy/interpolate/_interpnd.cpython-311-darwin.so +0 -0
  21. scipy/interpolate/_ppoly.cpython-311-darwin.so +0 -0
  22. scipy/interpolate/_rgi_cython.cpython-311-darwin.so +0 -0
  23. scipy/io/_fast_matrix_market/_fmm_core.cpython-311-darwin.so +0 -0
  24. scipy/io/_test_fortran.cpython-311-darwin.so +0 -0
  25. scipy/io/matlab/_mio5_utils.cpython-311-darwin.so +0 -0
  26. scipy/io/matlab/_mio_utils.cpython-311-darwin.so +0 -0
  27. scipy/io/matlab/_streams.cpython-311-darwin.so +0 -0
  28. scipy/io/matlab/tests/test_streams.py +9 -0
  29. scipy/linalg/_cythonized_array_utils.cpython-311-darwin.so +0 -0
  30. scipy/linalg/_decomp_interpolative.cpython-311-darwin.so +0 -0
  31. scipy/linalg/_decomp_lu_cython.cpython-311-darwin.so +0 -0
  32. scipy/linalg/_decomp_update.cpython-311-darwin.so +0 -0
  33. scipy/linalg/_fblas.cpython-311-darwin.so +0 -0
  34. scipy/linalg/_flapack.cpython-311-darwin.so +0 -0
  35. scipy/linalg/_matfuncs_expm.cpython-311-darwin.so +0 -0
  36. scipy/linalg/_matfuncs_schur_sqrtm.cpython-311-darwin.so +0 -0
  37. scipy/linalg/_matfuncs_sqrtm_triu.cpython-311-darwin.so +0 -0
  38. scipy/linalg/_solve_toeplitz.cpython-311-darwin.so +0 -0
  39. scipy/linalg/blas.py +35 -24
  40. scipy/linalg/cython_blas.cpython-311-darwin.so +0 -0
  41. scipy/linalg/cython_lapack.cpython-311-darwin.so +0 -0
  42. scipy/linalg/tests/test_matfuncs.py +7 -0
  43. scipy/ndimage/_cytest.cpython-311-darwin.so +0 -0
  44. scipy/ndimage/_filters.py +11 -2
  45. scipy/ndimage/_ni_label.cpython-311-darwin.so +0 -0
  46. scipy/ndimage/_rank_filter_1d.cpython-311-darwin.so +0 -0
  47. scipy/ndimage/tests/test_filters.py +52 -0
  48. scipy/odr/__odrpack.cpython-311-darwin.so +0 -0
  49. scipy/optimize/_bglu_dense.cpython-311-darwin.so +0 -0
  50. scipy/optimize/_highspy/_core.cpython-311-darwin.so +0 -0
  51. scipy/optimize/_highspy/_highs_options.cpython-311-darwin.so +0 -0
  52. scipy/optimize/_lbfgsb.cpython-311-darwin.so +0 -0
  53. scipy/optimize/_lbfgsb_py.py +23 -8
  54. scipy/optimize/_lsq/givens_elimination.cpython-311-darwin.so +0 -0
  55. scipy/optimize/_lsq/least_squares.py +2 -2
  56. scipy/optimize/_minimize.py +0 -1
  57. scipy/optimize/_moduleTNC.cpython-311-darwin.so +0 -0
  58. scipy/optimize/_pava_pybind.cpython-311-darwin.so +0 -0
  59. scipy/optimize/_shgo_lib/_complex.py +2 -2
  60. scipy/optimize/_slsqplib.cpython-311-darwin.so +0 -0
  61. scipy/optimize/_trlib/_trlib.cpython-311-darwin.so +0 -0
  62. scipy/optimize/cython_optimize/_zeros.cpython-311-darwin.so +0 -0
  63. scipy/optimize/tests/test_optimize.py +3 -3
  64. scipy/signal/_filter_design.py +13 -1
  65. scipy/signal/_fir_filter_design.py +1 -1
  66. scipy/signal/_peak_finding_utils.cpython-311-darwin.so +0 -0
  67. scipy/signal/_polyutils.py +1 -1
  68. scipy/signal/_sosfilt.cpython-311-darwin.so +0 -0
  69. scipy/signal/_upfirdn_apply.cpython-311-darwin.so +0 -0
  70. scipy/signal/tests/test_filter_design.py +19 -0
  71. scipy/signal/tests/test_fir_filter_design.py +5 -0
  72. scipy/signal/tests/test_signaltools.py +1 -1
  73. scipy/sparse/_base.py +4 -1
  74. scipy/sparse/_csparsetools.cpython-311-darwin.so +0 -0
  75. scipy/sparse/csgraph/_flow.cpython-311-darwin.so +0 -0
  76. scipy/sparse/csgraph/_matching.cpython-311-darwin.so +0 -0
  77. scipy/sparse/csgraph/_min_spanning_tree.cpython-311-darwin.so +0 -0
  78. scipy/sparse/csgraph/_reordering.cpython-311-darwin.so +0 -0
  79. scipy/sparse/csgraph/_shortest_path.cpython-311-darwin.so +0 -0
  80. scipy/sparse/csgraph/_tools.cpython-311-darwin.so +0 -0
  81. scipy/sparse/csgraph/_traversal.cpython-311-darwin.so +0 -0
  82. scipy/sparse/linalg/_dsolve/_superlu.cpython-311-darwin.so +0 -0
  83. scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-311-darwin.so +0 -0
  84. scipy/sparse/linalg/_propack/_cpropack.cpython-311-darwin.so +0 -0
  85. scipy/sparse/linalg/_propack/_dpropack.cpython-311-darwin.so +0 -0
  86. scipy/sparse/linalg/_propack/_spropack.cpython-311-darwin.so +0 -0
  87. scipy/sparse/linalg/_propack/_zpropack.cpython-311-darwin.so +0 -0
  88. scipy/sparse/tests/test_base.py +3 -0
  89. scipy/spatial/_ckdtree.cpython-311-darwin.so +0 -0
  90. scipy/spatial/_distance_pybind.cpython-311-darwin.so +0 -0
  91. scipy/spatial/_hausdorff.cpython-311-darwin.so +0 -0
  92. scipy/spatial/_qhull.cpython-311-darwin.so +0 -0
  93. scipy/spatial/_voronoi.cpython-311-darwin.so +0 -0
  94. scipy/spatial/transform/_rigid_transform.cpython-311-darwin.so +0 -0
  95. scipy/spatial/transform/_rotation.cpython-311-darwin.so +0 -0
  96. scipy/special/_comb.cpython-311-darwin.so +0 -0
  97. scipy/special/_ellip_harm_2.cpython-311-darwin.so +0 -0
  98. scipy/special/_specfun.cpython-311-darwin.so +0 -0
  99. scipy/special/_test_internal.cpython-311-darwin.so +0 -0
  100. scipy/special/_ufuncs.cpython-311-darwin.so +0 -0
  101. scipy/special/_ufuncs_cxx.cpython-311-darwin.so +0 -0
  102. scipy/special/cython_special.cpython-311-darwin.so +0 -0
  103. scipy/stats/_ansari_swilk_statistics.cpython-311-darwin.so +0 -0
  104. scipy/stats/_biasedurn.cpython-311-darwin.so +0 -0
  105. scipy/stats/_continuous_distns.py +19 -16
  106. scipy/stats/_distribution_infrastructure.py +20 -0
  107. scipy/stats/_levy_stable/levyst.cpython-311-darwin.so +0 -0
  108. scipy/stats/_qmc_cy.cpython-311-darwin.so +0 -0
  109. scipy/stats/_qmvnt_cy.cpython-311-darwin.so +0 -0
  110. scipy/stats/_rcont/rcont.cpython-311-darwin.so +0 -0
  111. scipy/stats/_resampling.py +1 -1
  112. scipy/stats/_sobol.cpython-311-darwin.so +0 -0
  113. scipy/stats/_stats.cpython-311-darwin.so +0 -0
  114. scipy/stats/_stats_py.py +1 -1
  115. scipy/stats/_unuran/unuran_wrapper.cpython-311-darwin.so +0 -0
  116. scipy/stats/tests/test_distributions.py +13 -0
  117. scipy/stats/tests/test_fast_gen_inversion.py +2 -0
  118. scipy/stats/tests/test_morestats.py +4 -4
  119. scipy/version.py +2 -2
  120. {scipy-1.16.0rc2.dist-info → scipy-1.16.1.dist-info}/METADATA +2 -1
  121. {scipy-1.16.0rc2.dist-info → scipy-1.16.1.dist-info}/RECORD +123 -123
  122. {scipy-1.16.0rc2.dist-info → scipy-1.16.1.dist-info}/LICENSE.txt +0 -0
  123. {scipy-1.16.0rc2.dist-info → scipy-1.16.1.dist-info}/WHEEL +0 -0
@@ -1126,7 +1126,7 @@ class TestOptimizeSimple(CheckOptimize):
1126
1126
 
1127
1127
  def test_minimize_l_bfgs_b(self):
1128
1128
  # Minimize with L-BFGS-B method
1129
- opts = {'disp': False, 'maxiter': self.maxiter}
1129
+ opts = {'maxiter': self.maxiter}
1130
1130
  r = optimize.minimize(self.func, self.startparams,
1131
1131
  method='L-BFGS-B', jac=self.grad,
1132
1132
  options=opts)
@@ -1156,7 +1156,7 @@ class TestOptimizeSimple(CheckOptimize):
1156
1156
  # Check that the `ftol` parameter in l_bfgs_b works as expected
1157
1157
  v0 = None
1158
1158
  for tol in [1e-1, 1e-4, 1e-7, 1e-10]:
1159
- opts = {'disp': False, 'maxiter': self.maxiter, 'ftol': tol}
1159
+ opts = {'maxiter': self.maxiter, 'ftol': tol}
1160
1160
  sol = optimize.minimize(self.func, self.startparams,
1161
1161
  method='L-BFGS-B', jac=self.grad,
1162
1162
  options=opts)
@@ -1173,7 +1173,7 @@ class TestOptimizeSimple(CheckOptimize):
1173
1173
  # check that the maxls is passed down to the Fortran routine
1174
1174
  sol = optimize.minimize(optimize.rosen, np.array([-1.2, 1.0]),
1175
1175
  method='L-BFGS-B', jac=optimize.rosen_der,
1176
- options={'disp': False, 'maxls': 1})
1176
+ options={'maxls': 1})
1177
1177
  assert not sol.success
1178
1178
 
1179
1179
  def test_minimize_l_bfgs_b_maxfun_interruption(self):
@@ -60,6 +60,17 @@ def _is_int_type(x):
60
60
  return True
61
61
 
62
62
 
63
+ def _real_dtype_for_complex(dtyp, *, xp):
64
+ if xp.isdtype(dtyp, 'real floating'):
65
+ return dtyp
66
+ if dtyp == xp.complex64:
67
+ return xp.float32
68
+ elif dtyp == xp.complex128:
69
+ return xp.float64
70
+ else:
71
+ raise ValueError(f"Unknown dtype {dtyp}.")
72
+
73
+
63
74
  # https://github.com/numpy/numpy/blob/v2.2.0/numpy/_core/function_base.py#L195-L302
64
75
  def _logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, *, xp):
65
76
  if not isinstance(base, float | int) and xp.asarray(base).ndim > 0:
@@ -488,6 +499,7 @@ def freqz(b, a=1, worN=512, whole=False, plot=None, fs=2*pi,
488
499
  if xp.isdtype(a.dtype, 'integral'):
489
500
  a = xp.astype(a, xp_default_dtype(xp))
490
501
  res_dtype = xp.result_type(b, a)
502
+ real_dtype = _real_dtype_for_complex(res_dtype, xp=xp)
491
503
 
492
504
  b = xpx.atleast_nd(b, ndim=1, xp=xp)
493
505
  a = xpx.atleast_nd(a, ndim=1, xp=xp)
@@ -509,7 +521,7 @@ def freqz(b, a=1, worN=512, whole=False, plot=None, fs=2*pi,
509
521
  # if include_nyquist is true and whole is false, w should
510
522
  # include end point
511
523
  w = xp.linspace(0, lastpoint, N,
512
- endpoint=include_nyquist and not whole, dtype=res_dtype)
524
+ endpoint=include_nyquist and not whole, dtype=real_dtype)
513
525
  n_fft = N if whole else 2 * (N - 1) if include_nyquist else 2 * N
514
526
  if (xp_size(a) == 1 and (b.ndim == 1 or (b.shape[-1] == 1))
515
527
  and n_fft >= b.shape[0]
@@ -834,7 +834,7 @@ def remez(numtaps, bands, desired, *, weight=None, type='bandpass',
834
834
  xp = array_namespace(bands, desired, weight)
835
835
  bands = np.asarray(bands)
836
836
  desired = np.asarray(desired)
837
- if weight:
837
+ if weight is not None:
838
838
  weight = np.asarray(weight)
839
839
 
840
840
  fs = _validate_fs(fs, allow_none=True)
@@ -117,7 +117,7 @@ def poly(seq_of_zeros, *, xp):
117
117
  if xp.isdtype(a.dtype, 'complex floating'):
118
118
  # if complex roots are all complex conjugates, the roots are real.
119
119
  roots = xp.asarray(seq_of_zeros, dtype=xp.complex128)
120
- if xp.all(_sort_cmplx(roots, xp) == _sort_cmplx(xp.conj(roots), xp)):
120
+ if xp.all(xp.sort(xp.imag(roots)) == xp.sort(xp.imag(xp.conj(roots)))):
121
121
  a = xp.asarray(xp.real(a), copy=True)
122
122
 
123
123
  return a
Binary file
@@ -382,6 +382,19 @@ class TestTf2Sos:
382
382
  sos2 = tf2sos(b, a, analog=analog)
383
383
  assert_array_almost_equal(sos, sos2, decimal=4)
384
384
 
385
+ def test_gh_23221(self):
386
+ # Tests that this tf2sos call below does not produce ComplexWarnings
387
+ # This test is specific for scipy==1.16.0: later scipy versions do not produce
388
+ # the warning.
389
+ with suppress_warnings():
390
+ warnings.simplefilter("error")
391
+ tf2sos([0.21860986786301265, -0.4372197357260253, -0.2186098678630126,
392
+ 0.8744394714520509, -0.21860986786301248, -0.4372197357260253,
393
+ 0.21860986786301265],
394
+ [1., -4.18323041786553, 6.829924151626914, -5.407777865686045,
395
+ 2.0773105450802336, -0.33482732571537893, 0.0186009178695853 ]
396
+ )
397
+
385
398
 
386
399
  @skip_xp_backends(
387
400
  cpu_only=True, reason="XXX zpk2sos is numpy-only", exceptions=['cupy']
@@ -754,6 +767,12 @@ class TestFreqz:
754
767
  xp_assert_equal(w, xp.asarray([0. , 0.1]))
755
768
  xp_assert_equal(h, xp.asarray([1.+0.j, 1.+0.j]))
756
769
 
770
+ def test_gh_23277(self):
771
+ # backwards compatibility: `w` array must be real, not complex
772
+ filt = [0.5 + 0.0j, 0.5 + 0.0j]
773
+ w, _ = freqz(filt, worN=8)
774
+ assert w.dtype == np.float64
775
+
757
776
  def test_basic(self, xp):
758
777
  w, h = freqz(xp.asarray([1.0]), worN=8)
759
778
  assert_array_almost_equal(w, xp.pi * xp.arange(8, dtype=w.dtype) / 8.)
@@ -546,6 +546,11 @@ class TestRemez:
546
546
  with pytest.raises(ValueError, match="Sampling.*single scalar"):
547
547
  remez(11, .1, 1, fs=np.array([10, 20]))
548
548
 
549
+ def test_gh_23266(self, xp):
550
+ bands = xp.asarray([0.0, 0.2, 0.3, 0.5])
551
+ desired = xp.asarray([1.0, 0.0])
552
+ weight = xp.asarray([1.0, 2.0])
553
+ remez(21, bands, desired, weight=weight)
549
554
 
550
555
 
551
556
  @skip_xp_backends(cpu_only=True, reason="lstsq")
@@ -1295,7 +1295,7 @@ class TestMedFilt:
1295
1295
  # us into wrong memory if used (but it does not need to be used)
1296
1296
  dummy = xp.arange(10, dtype=xp.float64)
1297
1297
  a = dummy[5:6]
1298
- a.strides = 16
1298
+ a = np.lib.stride_tricks.as_strided(a, strides=(16,))
1299
1299
  xp_assert_close(signal.medfilt(a, 1), xp.asarray([5.]))
1300
1300
 
1301
1301
  @skip_xp_backends(
scipy/sparse/_base.py CHANGED
@@ -494,7 +494,10 @@ class _spbase(SparseABC):
494
494
  return self._mul_scalar(other)
495
495
 
496
496
  if self.ndim < 3:
497
- return self.tocsr()._multiply_2d_with_broadcasting(other)
497
+ try:
498
+ return self._multiply_2d_with_broadcasting(other)
499
+ except AttributeError:
500
+ return self.tocsr()._multiply_2d_with_broadcasting(other)
498
501
 
499
502
  if not (issparse(other) or isdense(other)):
500
503
  # If it's a list or whatever, treat it like an array
@@ -1624,6 +1624,9 @@ class _TestCommon:
1624
1624
  B = array([[0,7,0],[0,-4,0]])
1625
1625
  Asp = self.spcreator(A)
1626
1626
  Bsp = self.spcreator(B)
1627
+ # check output format
1628
+ out_fmt = Asp.format if Asp.format in ('csc', 'dia', 'bsr') else 'csr'
1629
+ assert (Asp.multiply(Bsp)).format == out_fmt
1627
1630
  assert_almost_equal(Asp.multiply(Bsp).toarray(), A*B) # sparse/sparse
1628
1631
  assert_almost_equal(Asp.multiply(B).toarray(), A*B) # sparse/dense
1629
1632
 
Binary file
Binary file
Binary file
@@ -935,23 +935,26 @@ class beta_gen(rv_continuous):
935
935
  log_term = sum_ab*np.log1p(a/b) + np.log(b) - 2*np.log(sum_ab)
936
936
  return t1 + t2 + log_term
937
937
 
938
- def threshold_large(v):
939
- if v == 1.0:
940
- return 1000
941
-
942
- j = np.log10(v)
943
- digits = int(j)
944
- d = int(v / 10 ** digits) + 2
945
- return d*10**(7 + j)
946
-
947
- if a >= 4.96e6 and b >= 4.96e6:
948
- return asymptotic_ab_large(a, b)
949
- elif a <= 4.9e6 and b - a >= 1e6 and b >= threshold_large(a):
950
- return asymptotic_b_large(a, b)
951
- elif b <= 4.9e6 and a - b >= 1e6 and a >= threshold_large(b):
938
+ def asymptotic_a_large(a, b):
952
939
  return asymptotic_b_large(b, a)
953
- else:
954
- return regular(a, b)
940
+
941
+ def threshold_large(v):
942
+ j = np.floor(np.log10(v))
943
+ d = np.floor(v / 10 ** j) + 2
944
+ return xpx.apply_where(v != 1.0, (d, j), lambda d_, j_: d_ * 10**(7 + j_),
945
+ fill_value=1000)
946
+
947
+ threshold_a = threshold_large(a)
948
+ threshold_b = threshold_large(b)
949
+ return _lazyselect([(a >= 4.96e6) & (b >= 4.96e6),
950
+ (a <= 4.9e6) & (b - a >= 1e6) & (b >= threshold_a),
951
+ (b <= 4.9e6) & (a - b >= 1e6) & (a >= threshold_b),
952
+ (a < 4.9e6) & (b < 4.9e6)
953
+ ],
954
+ [asymptotic_ab_large, asymptotic_b_large,
955
+ asymptotic_a_large, regular],
956
+ [a, b]
957
+ )
955
958
 
956
959
 
957
960
  beta = beta_gen(a=0.0, b=1.0, name='beta')
@@ -5100,6 +5100,26 @@ class Mixture(_ProbabilityDistribution):
5100
5100
  .. [1] Mixture distribution, *Wikipedia*,
5101
5101
  https://en.wikipedia.org/wiki/Mixture_distribution
5102
5102
 
5103
+
5104
+ Examples
5105
+ --------
5106
+ A mixture of normal distributions:
5107
+
5108
+ >>> import numpy as np
5109
+ >>> from scipy import stats
5110
+ >>> import matplotlib.pyplot as plt
5111
+ >>> X1 = stats.Normal(mu=-2, sigma=1)
5112
+ >>> X2 = stats.Normal(mu=2, sigma=1)
5113
+ >>> mixture = stats.Mixture([X1, X2], weights=[0.4, 0.6])
5114
+ >>> print(f'mean: {mixture.mean():.2f}, '
5115
+ ... f'median: {mixture.median():.2f}, '
5116
+ ... f'mode: {mixture.mode():.2f}')
5117
+ mean: 0.40, median: 1.04, mode: 2.00
5118
+ >>> x = np.linspace(-10, 10, 300)
5119
+ >>> plt.plot(x, mixture.pdf(x))
5120
+ >>> plt.title('PDF of normal distribution mixture')
5121
+ >>> plt.show()
5122
+
5103
5123
  """
5104
5124
  # Todo:
5105
5125
  # Add support for array shapes, weights
Binary file
Binary file
@@ -942,7 +942,7 @@ def monte_carlo_test(data, rvs, statistic, *, vectorized=None,
942
942
  for rvs_i, n_observations_i in zip(rvs, n_observations)]
943
943
  null_distribution.append(statistic(*resamples, axis=-1))
944
944
  null_distribution = xp.concat(null_distribution)
945
- null_distribution = xp.reshape(null_distribution, [-1] + [1]*observed.ndim)
945
+ null_distribution = xp.reshape(null_distribution, (-1,) + (1,)*observed.ndim)
946
946
 
947
947
  # relative tolerance for detecting numerically distinct but
948
948
  # theoretically equal values in the null distribution
Binary file
Binary file
scipy/stats/_stats_py.py CHANGED
@@ -10975,7 +10975,7 @@ def _xp_mean(x, /, *, axis=None, weights=None, keepdims=False, nan_policy='propa
10975
10975
  for i in axes:
10976
10976
  final_shape[i] = 1
10977
10977
 
10978
- res = xp.reshape(res, final_shape)
10978
+ res = xp.reshape(res, tuple(final_shape))
10979
10979
 
10980
10980
  return res[()] if res.ndim == 0 else res
10981
10981
 
@@ -5003,6 +5003,19 @@ class TestBeta:
5003
5003
  # return float(entropy)
5004
5004
  assert_allclose(stats.beta(a, b).entropy(), ref, rtol=tol)
5005
5005
 
5006
+ def test_entropy_broadcasting(self):
5007
+ # gh-23127 reported that the entropy method of the beta
5008
+ # distribution did not broadcast correctly.
5009
+ Beta = stats.make_distribution(stats.beta)
5010
+ a = np.asarray([5e6, 100, 1e9, 10])
5011
+ b = np.asarray([5e6, 1e9, 100, 20])
5012
+ res = Beta(a=a, b=b).entropy()
5013
+ ref = np.asarray([Beta(a=a[0], b=b[0]).entropy(),
5014
+ Beta(a=a[1], b=b[1]).entropy(),
5015
+ Beta(a=a[2], b=b[2]).entropy(),
5016
+ Beta(a=a[3], b=b[3]).entropy()])
5017
+ assert_allclose(res, ref)
5018
+
5006
5019
 
5007
5020
  class TestBetaPrime:
5008
5021
  # the test values are used in test_cdf_gh_17631 / test_ppf_gh_17631
@@ -6,6 +6,7 @@ from numpy.testing import (assert_array_equal, assert_allclose,
6
6
  from copy import deepcopy
7
7
  from scipy.stats.sampling import FastGeneratorInversion
8
8
  from scipy import stats
9
+ from scipy._lib._testutils import IS_MUSL
9
10
 
10
11
 
11
12
  def test_bad_args():
@@ -142,6 +143,7 @@ def test_geninvgauss_uerror():
142
143
 
143
144
 
144
145
  # TODO: add more distributions
146
+ @pytest.mark.skipif(IS_MUSL, reason="Hits RecursionError, see gh-23172")
145
147
  @pytest.mark.fail_slow(5)
146
148
  @pytest.mark.parametrize(("distname, args"), [("beta", (0.11, 0.11))])
147
149
  def test_error_extreme_params(distname, args):
@@ -2053,13 +2053,13 @@ class TestBoxcox_llf:
2053
2053
  def test_axis(self, xp):
2054
2054
  data = xp.asarray([[100, 200], [300, 400]])
2055
2055
  llf_axis_0 = stats.boxcox_llf(1, data, axis=0)
2056
- llf_0 = xp.asarray([
2056
+ llf_0 = xp.stack([
2057
2057
  stats.boxcox_llf(1, data[:, 0]),
2058
2058
  stats.boxcox_llf(1, data[:, 1]),
2059
2059
  ])
2060
2060
  xp_assert_close(llf_axis_0, llf_0)
2061
2061
  llf_axis_1 = stats.boxcox_llf(1, data, axis=1)
2062
- llf_1 = xp.asarray([
2062
+ llf_1 = xp.stack([
2063
2063
  stats.boxcox_llf(1, data[0, :]),
2064
2064
  stats.boxcox_llf(1, data[1, :]),
2065
2065
  ])
@@ -2732,11 +2732,11 @@ class TestCircFuncs:
2732
2732
 
2733
2733
  res = circfunc(x, high=360, axis=1)
2734
2734
  ref = [circfunc(x[i, :], high=360) for i in range(x.shape[0])]
2735
- xp_assert_close(res, xp.asarray(ref))
2735
+ xp_assert_close(res, xp.stack(ref))
2736
2736
 
2737
2737
  res = circfunc(x, high=360, axis=0)
2738
2738
  ref = [circfunc(x[:, i], high=360) for i in range(x.shape[1])]
2739
- xp_assert_close(res, xp.asarray(ref))
2739
+ xp_assert_close(res, xp.stack(ref))
2740
2740
 
2741
2741
  @pytest.mark.parametrize("test_func,expected",
2742
2742
  [(stats.circmean, 0.167690146),
scipy/version.py CHANGED
@@ -2,10 +2,10 @@
2
2
  """
3
3
  Module to expose more detailed version info for the installed `scipy`
4
4
  """
5
- version = "1.16.0rc2"
5
+ version = "1.16.1"
6
6
  full_version = version
7
7
  short_version = version.split('.dev')[0]
8
- git_revision = "e0b3e3ff7842025c64b134de740680b8ba9951b9"
8
+ git_revision = "0cf8e9541b1a2457992bf4ec2c0c669da373e497"
9
9
  release = 'dev' not in version and '+' not in version
10
10
 
11
11
  if not release:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scipy
3
- Version: 1.16.0rc2
3
+ Version: 1.16.1
4
4
  Summary: Fundamental algorithms for scientific computing in Python
5
5
  Maintainer-Email: SciPy Developers <scipy-dev@python.org>
6
6
  License: Copyright (c) 2001-2002 Enthought, Inc. 2003, SciPy Developers.
@@ -948,6 +948,7 @@ Classifier: Programming Language :: Python :: 3
948
948
  Classifier: Programming Language :: Python :: 3.11
949
949
  Classifier: Programming Language :: Python :: 3.12
950
950
  Classifier: Programming Language :: Python :: 3.13
951
+ Classifier: Programming Language :: Python :: 3.14
951
952
  Classifier: Topic :: Software Development :: Libraries
952
953
  Classifier: Topic :: Scientific/Engineering
953
954
  Classifier: Operating System :: Microsoft :: Windows