scipplan 0.2.0a2__py2.py3-none-any.whl → 0.2.1a0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. scipplan/__init__.py +2 -2
  2. scipplan/parse_model.py +68 -24
  3. scipplan/plan_model.py +12 -9
  4. {scipplan-0.2.0a2.dist-info → scipplan-0.2.1a0.dist-info}/LICENSE +1 -1
  5. scipplan-0.2.1a0.dist-info/METADATA +105 -0
  6. scipplan-0.2.1a0.dist-info/RECORD +20 -0
  7. {scipplan-0.2.0a2.dist-info → scipplan-0.2.1a0.dist-info}/WHEEL +1 -1
  8. scipplan/translation/constants_navigation_1.txt +0 -2
  9. scipplan/translation/constants_navigation_2.txt +0 -2
  10. scipplan/translation/constants_navigation_3.txt +0 -1
  11. scipplan/translation/goals_navigation_1.txt +0 -2
  12. scipplan/translation/goals_navigation_2.txt +0 -2
  13. scipplan/translation/goals_navigation_3.txt +0 -2
  14. scipplan/translation/initials_navigation_1.txt +0 -4
  15. scipplan/translation/initials_navigation_2.txt +0 -4
  16. scipplan/translation/initials_navigation_3.txt +0 -4
  17. scipplan/translation/instantaneous_constraints_navigation_1.txt +0 -9
  18. scipplan/translation/instantaneous_constraints_navigation_2.txt +0 -10
  19. scipplan/translation/instantaneous_constraints_navigation_3.txt +0 -11
  20. scipplan/translation/pvariables_navigation_1.txt +0 -8
  21. scipplan/translation/pvariables_navigation_2.txt +0 -8
  22. scipplan/translation/pvariables_navigation_3.txt +0 -8
  23. scipplan/translation/reward_navigation_1.txt +0 -1
  24. scipplan/translation/reward_navigation_2.txt +0 -1
  25. scipplan/translation/reward_navigation_3.txt +0 -1
  26. scipplan/translation/temporal_constraints_navigation_1.txt +0 -6
  27. scipplan/translation/temporal_constraints_navigation_2.txt +0 -6
  28. scipplan/translation/temporal_constraints_navigation_3.txt +0 -7
  29. scipplan/translation/transitions_navigation_1.txt +0 -4
  30. scipplan/translation/transitions_navigation_2.txt +0 -4
  31. scipplan/translation/transitions_navigation_3.txt +0 -4
  32. scipplan-0.2.0a2.dist-info/METADATA +0 -217
  33. scipplan-0.2.0a2.dist-info/RECORD +0 -44
  34. {scipplan-0.2.0a2.dist-info → scipplan-0.2.1a0.dist-info}/entry_points.txt +0 -0
  35. {scipplan-0.2.0a2.dist-info → scipplan-0.2.1a0.dist-info}/top_level.txt +0 -0
scipplan/__init__.py CHANGED
@@ -1,5 +1,5 @@
1
- __version__ = "0.2.0alpha2"
1
+ __version__ = "0.2.1alpha0"
2
2
  print(f"SCIPPlan Version: {__version__}")
3
- __release__ = "v0.2.0a2"
3
+ __release__ = "v0.2.1a0"
4
4
  __author__ = "Ari Gestetner, Buser Say"
5
5
  __email__ = "ari.gestetner@monash.edu, buser.say@monash.edu"
scipplan/parse_model.py CHANGED
@@ -10,13 +10,68 @@ from math import exp, log, sqrt, sin, cos, isclose
10
10
 
11
11
  from pyscipopt.scip import Model, SumExpr
12
12
 
13
- def switch_comparator(comparator):
14
- if isinstance(comparator, ast.Eq): return ast.NotEq()
15
- if isinstance(comparator, ast.NotEq): return ast.Eq()
16
- if isinstance(comparator, ast.Lt): return ast.Gt()
17
- if isinstance(comparator, ast.LtE): return ast.GtE()
18
- if isinstance(comparator, ast.Gt): return ast.Lt()
19
- if isinstance(comparator, ast.GtE): return ast.LtE()
13
+
14
+ def linearise(expr: ast.Compare, aux_var: Variable) -> tuple[ast.Compare, ast.Compare]:
15
+ """linearise
16
+ This function linearises an inequality using an auxilary variable
17
+
18
+ The linearisation process is as follows.
19
+ If the expression is of the form of E1 <= E2, then we linearise by using the following expressions.
20
+ z=0 ==> E1 <= E2 and z=1 ==> E1 > E2 (equivalent to E1 >= E2 + feastol). This is then equivalent to,
21
+ E2 + feastol - M + z*M <= E1 <= E2 + zM.
22
+
23
+ Similarly, for E1 < E2 we have z=0 ==> E1 < E2 which is equivalent to E1 <= E2 - feastol + z*M
24
+ and z=1 ==> E1 >= E2.
25
+ Thus for E1 < E2 we have,
26
+ E2 + z*M - M <= E1 <= E2 + z*M - feastol.
27
+
28
+ If, however, the inequality is of the form of E1 >= E2 then we evaluate the expression, E2 <= E1.
29
+ Similarly, if the expression is E1 > E2 then we evaluate the expression E2 < E1.
30
+
31
+ :param expr: An inequality expression which is linearised.
32
+ :type expr: ast.Compare
33
+ :param aux_var: An auxiliary variable used when linearising the inequality to determine if the expression is true or false.
34
+ :type aux_var: Variable
35
+ :raises ValueError: If expr is not a valid inequality (i.e. doesn't use <, <=, > and >=)
36
+ :return: both the linearised inequalities
37
+ :rtype: tuple[ast.Compare, ast.Compare]
38
+ """
39
+ if not isinstance(expr.ops[0], (ast.Lt, ast.LtE, ast.Gt, ast.GtE)):
40
+ raise ValueError("Only <, <=, > or >= are allowed")
41
+ if isinstance(expr.ops[0], ast.GtE):
42
+ expr.left, expr.comparators[0] = expr.comparators[0], expr.left
43
+ expr.ops[0] = ast.LtE()
44
+ if isinstance(expr.ops[0], ast.Gt):
45
+ expr.left, expr.comparators[0] = expr.comparators[0], expr.left
46
+ expr.ops[0] = ast.Lt()
47
+
48
+ if isinstance(expr.ops[0], ast.LtE):
49
+ lhs = ast.BinOp(
50
+ left=expr.comparators[0],
51
+ op=ast.Add(),
52
+ right=ast.parse(f"feastol - bigM + {aux_var.name} * bigM").body[0].value
53
+ )
54
+ rhs = ast.BinOp(
55
+ left=expr.comparators[0],
56
+ op=ast.Add(),
57
+ right=ast.parse(f"{aux_var.name} * bigM").body[0].value
58
+ )
59
+ if isinstance(expr.ops[0], ast.Lt):
60
+ lhs = ast.BinOp(
61
+ left=expr.comparators[0],
62
+ op=ast.Add(),
63
+ right=ast.parse(f"{aux_var.name} * bigM - bigM").body[0].value
64
+ )
65
+ rhs = ast.BinOp(
66
+ left=expr.comparators[0],
67
+ op=ast.Add(),
68
+ right=ast.parse(f"{aux_var.name} * bigM - feastol").body[0].value
69
+ )
70
+ expr1 = ast.Compare(lhs, [ast.LtE()], [expr.left])
71
+ expr2 = ast.Compare(expr.left, [ast.LtE()], [rhs])
72
+ return expr1, expr2
73
+
74
+
20
75
 
21
76
  @dataclass
22
77
  class Expressions:
@@ -37,8 +92,8 @@ class Expressions:
37
92
 
38
93
  class ParserType(Enum):
39
94
  """ParserType
40
- "enum type CALCULATOR: Used to calculate using feastol
41
- "enum type PARSER: Used to parse an expression and create the correct minlp constraints
95
+ enum type CALCULATOR: Used to calculate using feastol
96
+ enum type PARSER: Used to parse an expression and create the correct minlp constraints
42
97
  """
43
98
  CALCULATOR = "calculator"
44
99
  PARSER = "parser"
@@ -152,22 +207,11 @@ class ParseModel:
152
207
  aux_vars.append(aux_var)
153
208
  self.variables[aux_var.name] = aux_var.model_var
154
209
 
155
- expr.left = ast.BinOp(
156
- left=expr.left,
157
- op=(ast.Add() if isinstance(expr.ops[0], (ast.Gt, ast.GtE)) else ast.Sub()),
158
- right=ast.parse(f"bigM * {aux_var.name}").body[0].value
159
- )
160
- self.expressions.add_expressions(self.evaluate(expr))
210
+ expr1, expr2 = linearise(expr, aux_var)
161
211
 
162
- expr.ops[0] = switch_comparator(expr.ops[0])
163
-
164
- expr.comparators[0] = ast.BinOp(
165
- left=expr.comparators[0],
166
- op=(ast.Add() if isinstance(expr.ops[0], (ast.Gt, ast.GtE)) else ast.Sub()),
167
- right=ast.parse(f"feastol - bigM").body[0].value
168
- )
169
-
170
- self.expressions.add_expressions(self.evaluate(expr))
212
+ self.expressions.add_expressions(self.evaluate(expr1))
213
+ self.expressions.add_expressions(self.evaluate(expr2))
214
+
171
215
  else:
172
216
  raise Exception("or expressions may only be made up of inequalities")
173
217
  lhs = SumExpr()
scipplan/plan_model.py CHANGED
@@ -116,12 +116,17 @@ class PlanModel:
116
116
 
117
117
  self.var_names.add(name)
118
118
 
119
- for t in range(self.config.horizon):
120
- variables[(name, t)] = Variable.create_var(self.model, name, vtype, t, self.constants)
121
- var_type = variables[(name, t)].var_type
122
- if var_type is VarType.STATE:
123
- variables[(name, self.config.horizon)] = Variable.create_var(self.model, name, vtype, self.config.horizon, self.constants)
124
-
119
+ if vtype.startswith("global"):
120
+ var = Variable.create_var(self.model, name, vtype, "global", self.constants)
121
+ for t in range(self.config.horizon + 1):
122
+ variables[(name, t)] = var
123
+ else:
124
+ for t in range(self.config.horizon):
125
+ variables[(name, t)] = Variable.create_var(self.model, name, vtype, t, self.constants)
126
+ var_type = variables[(name, t)].var_type
127
+ if var_type is VarType.STATE:
128
+ variables[(name, self.config.horizon)] = Variable.create_var(self.model, name, vtype, self.config.horizon, self.constants)
129
+
125
130
  return variables
126
131
 
127
132
 
@@ -160,8 +165,6 @@ class PlanModel:
160
165
  for cons_idx, (translation, constraints) in enumerate(translations.items()):
161
166
  for idx, constraint in enumerate(constraints):
162
167
  if (self.config.provide_sols is False) and (translation == "temporal_constraints"):
163
- # for func_name, func in self.ode_functions.items():
164
- # constraint = constraint.replace(func_name, func)
165
168
  pattern = r"|".join(f"({func_name})" for func_name, func in self.ode_functions.items())
166
169
  constraint = re.sub(pattern, lambda x: self.ode_functions[x.group(0)], constraint)
167
170
  constraints[idx] = constraint
@@ -297,7 +300,7 @@ class PlanModel:
297
300
 
298
301
  dt = Symbol(dt_var)
299
302
  # Used to represent constant variables
300
- temp_var = Symbol("TEMP_VAR")
303
+ temp_var = Symbol("ODES_TEMP_VAR")
301
304
 
302
305
  variables = {}
303
306
  states = []
@@ -1,4 +1,4 @@
1
- Copyright (c) 2024 Ari Gestetner
1
+ Copyright (c) 2025 Buser Say
2
2
 
3
3
  Permission is hereby granted, free of charge, to any person obtaining a copy
4
4
  of this software and associated documentation files (the "Software"), to deal
@@ -0,0 +1,105 @@
1
+ Metadata-Version: 2.1
2
+ Name: scipplan
3
+ Version: 0.2.1a0
4
+ Summary: Metric Hybrid Factored Planning in Nonlinear Domains with Constraint Generation in Python.
5
+ Author: Ari Gestetner, Buser Say
6
+ Author-email: ari.gestetner@monash.edu, buser.say@monash.edu
7
+ License: MIT License
8
+ Keywords: scip,automated planner
9
+ Classifier: Development Status :: 3 - Alpha
10
+ Classifier: Environment :: Console
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: License :: OSI Approved :: MIT License
13
+ Classifier: Natural Language :: English
14
+ Classifier: Operating System :: OS Independent
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
17
+ Description-Content-Type: text/markdown
18
+ License-File: LICENSE
19
+ Requires-Dist: PySCIPOpt==5.2.1
20
+ Requires-Dist: sympy==1.13.3
21
+
22
+ # SCIPPlan
23
+
24
+ SCIPPlan [1,2,3] is a SCIP-based [4] hybrid planner for domains with i) mixed (i.e., real and/or discrete valued) state and action spaces, ii) nonlinear state transitions (which can be specified as ODEs or directly as solution equations) that are functions of time, and iii) general reward functions. SCIPPlan iteratively i) finds violated constraints (i.e., zero-crossings) by simulating the state transitions, and ii) adds the violated (symbolic) constraints back to its underlying optimisation model, until a valid plan is found.
25
+
26
+ ## Example Domain: Navigation
27
+
28
+ <img src=./visualisation/scipplan_navigation_1.gif width="32%" height="32%"> <img src=./visualisation/scipplan_navigation_2.gif width="32%" height="32%"> <img src=./visualisation/scipplan_navigation_3.gif width="32%" height="32%">
29
+
30
+
31
+ Figure 1: Visualisation of different plans generated by SCIPPlan [1,2,3] for example navigation domains where the red square represents the agent, the blue shapes represent the obstacles, the gold star represents the goal location and the delta represents time. The agent can control its acceleration and the duration of its control input to modify its speed and location in order to navigate in a two-dimensional maze. The purpose of the domain is to find a path for the agent with minimum makespan such that the agent reaches its the goal without colliding with the obstacles.
32
+
33
+ Note that SCIPPlan does not linearise or discretise the domain to find a valid plan.
34
+
35
+ ## Dependencies
36
+
37
+ i) Solver: SCIP (the current implementation uses the python interface to the SCIP solver, i.e., PySCIPOpt [5]). This version of SCIPPlan has only been tested on PySCIOpt>=4.0.0 using earlier an version of pyscipopt may result in unintended behaviour.
38
+
39
+ ii) Symbolic Mathematics: SymPy [6].
40
+
41
+ ## Installing and Running SCIPPlan
42
+ In order to Install SCIPPlan you need to ensure you have a working version of the SCIP optimisation suite on your system which can be installed from [the SCIP website](https://www.scipopt.org). For more information about SCIP and PySCIPOpt refer to this [installation guide](https://github.com/scipopt/PySCIPOpt/blob/master/INSTALL.md).
43
+
44
+ After installing SCIP you will be able to install SCIPPlan using
45
+ ```bash
46
+ pip install scipplan
47
+ ```
48
+ Now you will be able to run some of the example domains which include
49
+ - Navigation (3 instances)
50
+
51
+ To run one of these examples all you need to do is run
52
+ ```bash
53
+ scipplan -D navigation -I 1
54
+ ```
55
+ which will run the 1st instance of the navigation domain using the ODEs as the transition function with the help of SymPy [6]. Similarly, the command
56
+ ```bash
57
+ scipplan -D navigation -I 1 --provide-sols
58
+ ```
59
+ will run the the 1st instance of the navigation domain using the solution equations as the transition function. For more information regarding the available tags and what they mean run `scipplan --help`.
60
+
61
+ Alternatively you can import scipplan classes to run it using python.
62
+ ```py
63
+ from scipplan.scipplan import SCIPPlan
64
+ from scipplan.config import Config
65
+ from scipplan.helpers import write_to_csv
66
+ ```
67
+ this will import the only two classes and function needed to run SCIPPlan. Then to set the configuration either create an instance of the Config class by setting the params or by retrieving the cli input
68
+ ```py
69
+ # Set params
70
+ config = Config(domain="navigation", instance=1)
71
+ # Retrieve cli args
72
+ config = Config.get_config()
73
+ ```
74
+ after which you are able to solve problem by either using the solve or optimize methods
75
+ ```py
76
+ # The optimize method just optimises the problem for the given horizon
77
+ plan = SCIPPlan(config)
78
+ plan.optimize()
79
+ # Class method which takes input the config, solves the problem
80
+ # with auto incrementing the horizon until a solution is found then
81
+ # returns the plan as well as the time taken to solve the problem
82
+ plan, solve_time = SCIPPlan.solve(config)
83
+ ```
84
+ In order to save the generated constraints for the horizon solved as well as the results, use the following code
85
+ ```py
86
+ write_to_csv("new_constraints", plan.new_constraints, config)
87
+ write_to_csv("results", plan.results_table, config)
88
+ ```
89
+
90
+ ## Citation
91
+
92
+ If you are using SCIPPlan, please cite the papers [1,2,3] and the underlying SCIP solver [4].
93
+
94
+ ## References
95
+ [1] Buser Say and Scott Sanner. [Metric Nonlinear Hybrid Planning with Constraint Generation](http://icaps18.icaps-conference.org/fileadmin/alg/conferences/icaps18/workshops/workshop06/docs/proceedings.pdf#page=23). In PlanSOpt, pages 19-25, 2018.
96
+
97
+ [2] Buser Say and Scott Sanner. [Metric Hybrid Factored Planning in Nonlinear Domains with Constraint Generation](https://link.springer.com/chapter/10.1007/978-3-030-19212-9_33). In CPAIOR, pages 502-518, 2019.
98
+
99
+ [3] Buser Say. [Robust Metric Hybrid Planning in Stochastic Nonlinear Domains Using Mathematical Optimization](https://ojs.aaai.org/index.php/ICAPS/article/view/27216). In ICAPS, pages 375-383, 2023.
100
+
101
+ [4] [SCIP](https://www.scipopt.org/)
102
+
103
+ [5] [PySCIPOpt](https://github.com/SCIP-Interfaces/PySCIPOpt)
104
+
105
+ [6] [SymPy](https://www.sympy.org/en/index.html)
@@ -0,0 +1,20 @@
1
+ scipplan/__init__.py,sha256=ouJVzwoTiWQv-wEqrnAqqH3BShu0S-bpc2JLlYDHcsk,195
2
+ scipplan/config.py,sha256=Ojs_pdjhwRuANPJcGyb3m5mMGqbTZkHuNvppd_Wd4FQ,5615
3
+ scipplan/helpers.py,sha256=YmS0HPQymsO5_e3jK7WQ-hBRZnxoZtewLhuzubw5sR4,975
4
+ scipplan/parse_model.py,sha256=CI_38xmaiVr8DuOi3UdNrVqWHTdW6qm_5luwLZxIk9I,11136
5
+ scipplan/plan_model.py,sha256=Pz2RaYFcx1ZV6BQmr-ikUKAiQ8LqNhA0DPhdT8Ls6u8,14373
6
+ scipplan/scipplan.py,sha256=Ykz_L0f2dyX4-EQB1iCH-QR3waVUwxKzgskdQeUP9nE,8675
7
+ scipplan/variables.py,sha256=3sxY3zQuxsa5z2fTFjv4zOSb9GarzojZ4W4kIx9FX68,2561
8
+ scipplan/zero_crossing.py,sha256=kGyJsWZLLXqLW1p3LPDlPC34rTkFF8daDzqgbEcaXus,1043
9
+ scipplan/translation/odes_navigation_1.txt,sha256=Uv13eTSTvURb6TtY7rq-otlpJMS8cQDYSyaO3X2_SRs,1015
10
+ scipplan/translation/odes_navigation_2.txt,sha256=DcbpXv-q0NP8Tx10YKqD6425esblgPNlTxchkyWMJAc,1192
11
+ scipplan/translation/odes_navigation_3.txt,sha256=ZFTyFEiL1KP0yxOCOzOSoXz9dXulRmtXDBnfZqaVbaE,1370
12
+ scipplan/translation/solutions_navigation_1.txt,sha256=5iLPRtJXqfAXi0QG-3WPtKn8t0pH4-E2AtNp8-7k1CQ,1542
13
+ scipplan/translation/solutions_navigation_2.txt,sha256=b1c74m54iRCcZoe8uqquUQyn6HtRTiFqIA8ss2mZUdg,1895
14
+ scipplan/translation/solutions_navigation_3.txt,sha256=Jv3bzMt84LVyR1DSVJ5B8Ky9id_khZ1PxZ1s3QPKpk8,2249
15
+ scipplan-0.2.1a0.dist-info/LICENSE,sha256=KLZVolgtGLnK2b-INKXXO7wOneDlgmIUP6WC4R5wRC4,1053
16
+ scipplan-0.2.1a0.dist-info/METADATA,sha256=m7v1qFgcpUHPisS9edhi0dUat1JZCmi61-qgh-hZ7MI,5818
17
+ scipplan-0.2.1a0.dist-info/WHEEL,sha256=Kh9pAotZVRFj97E15yTA4iADqXdQfIVTHcNaZTjxeGM,110
18
+ scipplan-0.2.1a0.dist-info/entry_points.txt,sha256=3qiNbbp6qIwivyPmmikyp7ByCfmsa9rGFNJPcN9Is8I,52
19
+ scipplan-0.2.1a0.dist-info/top_level.txt,sha256=xO2FLRn7YQ-C25E8lagIEbik5T5FTr-Ta5bdiZezEPY,9
20
+ scipplan-0.2.1a0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.42.0)
2
+ Generator: bdist_wheel (0.45.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py2-none-any
5
5
  Tag: py3-none-any
@@ -1,2 +0,0 @@
1
- Epsilon = config_epsilon
2
- bigM = config_bigM
@@ -1,2 +0,0 @@
1
- bigM = config_bigM
2
- Epsilon = config_epsilon
@@ -1 +0,0 @@
1
- Epsilon = config_epsilon
@@ -1,2 +0,0 @@
1
- Location_x == 8.0
2
- Location_y == 8.0
@@ -1,2 +0,0 @@
1
- Location_x == 8.0
2
- Location_y == 8.0
@@ -1,2 +0,0 @@
1
- Location_x == 8.0
2
- Location_y == 8.0
@@ -1,4 +0,0 @@
1
- Location_x == 0.0
2
- Location_y == 0.0
3
- Speed_x == 0.0
4
- Speed_y == 0.0
@@ -1,4 +0,0 @@
1
- Location_x == 0.0
2
- Location_y == 0.0
3
- Speed_x == 0.0
4
- Speed_y == 0.0
@@ -1,4 +0,0 @@
1
- Location_x == 0.0
2
- Location_y == 0.0
3
- Speed_x == 0.0
4
- Speed_y == 0.0
@@ -1,9 +0,0 @@
1
- Location_x <= 10.0
2
- Location_y <= 10.0
3
- Location_x >= 0.0
4
- Location_y >= 0.0
5
- Accelerate_x <= 0.5
6
- Accelerate_y <= 0.5
7
- Accelerate_x >= -0.5
8
- Accelerate_y >= -0.5
9
- (Location_x <= 4.0) or (Location_x >= 6.0) or (Location_y <= 4.0) or (Location_y >= 6.0)
@@ -1,10 +0,0 @@
1
- Location_x <= 10.0
2
- Location_y <= 10.0
3
- Location_x >= 0.0
4
- Location_y >= 0.0
5
- Accelerate_x <= 0.5
6
- Accelerate_y <= 0.5
7
- Accelerate_x >= -0.5
8
- Accelerate_y >= -0.5
9
- (Location_x <= 2.0) or (Location_x >= 4.0) or (Location_y <= 1.0) or (Location_y >= 5.0)
10
- (Location_x <= 5.0) or (Location_x >= 7.0) or (Location_y <= 5.0) or (Location_y >= 9.0)
@@ -1,11 +0,0 @@
1
- Location_x <= 10.0
2
- Location_y <= 10.0
3
- Location_x >= 0.0
4
- Location_y >= 0.0
5
- Accelerate_x <= 0.5
6
- Accelerate_y <= 0.5
7
- Accelerate_x >= -0.5
8
- Accelerate_y >= -0.5
9
- (Location_x <= 2.0) or (Location_x >= 4.0) or (Location_y <= 1.0) or (Location_y >= 9.0)
10
- (Location_x <= 4.0) or (Location_x >= 7.0) or (Location_y <= 7.0) or (Location_y >= 9.0)
11
- (Location_x <= 4.0) or (Location_x >= 9.0) or (Location_y <= 2.0) or (Location_y >= 6.0)
@@ -1,8 +0,0 @@
1
- action_continuous: Accelerate_x
2
- action_continuous: Accelerate_y
3
- action_continuous: Dt
4
- action_boolean: Mode
5
- state_continuous: Location_x
6
- state_continuous: Location_y
7
- state_continuous: Speed_x
8
- state_continuous: Speed_y
@@ -1,8 +0,0 @@
1
- action_continuous: Accelerate_x
2
- action_continuous: Accelerate_y
3
- action_continuous: Dt
4
- state_continuous: Location_x
5
- state_continuous: Location_y
6
- state_continuous: Speed_x
7
- state_continuous: Speed_y
8
- action_boolean: Mode
@@ -1,8 +0,0 @@
1
- action_continuous: Accelerate_x
2
- action_continuous: Accelerate_y
3
- action_boolean: Mode
4
- action_continuous: Dt
5
- state_continuous: Location_x
6
- state_continuous: Location_y
7
- state_continuous: Speed_x
8
- state_continuous: Speed_y
@@ -1 +0,0 @@
1
- -1.0*(Dt + Mode * Epsilon)
@@ -1 +0,0 @@
1
- -1.0*(Dt + Epsilon * Mode)
@@ -1 +0,0 @@
1
- -1.0*(Dt+Epsilon*Mode)
@@ -1,6 +0,0 @@
1
- Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 10.0
2
- Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 10.0
3
- Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 0.0
4
- Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 0.0
5
-
6
- (Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 4.0) or (Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 6.0) or (Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 4.0) or (Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 6.0)
@@ -1,6 +0,0 @@
1
- Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 10.0
2
- Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 10.0
3
- Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 0.0
4
- Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 0.0
5
- (Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 2.0) or (Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 4.0) or (Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 1.0) or (Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 5.0)
6
- (Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 5.0) or (Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 7.0) or (Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 5.0) or (Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 9.0)
@@ -1,7 +0,0 @@
1
- Location_x + Speed_x*(Dt+Epsilon*Mode) + 0.5*Accelerate_x*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) <= 10.0
2
- Location_y + Speed_y*(Dt+Epsilon*Mode) + 0.5*Accelerate_y*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) <= 10.0
3
- Location_x + Speed_x*(Dt+Epsilon*Mode) + 0.5*Accelerate_x*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) >= 0.0
4
- Location_y + Speed_y*(Dt+Epsilon*Mode) + 0.5*Accelerate_y*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) >= 0.0
5
- (Location_x + Speed_x*(Dt+Epsilon*Mode) + 0.5*Accelerate_x*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) <= 2.0) or (Location_x + Speed_x*(Dt+Epsilon*Mode) + 0.5*Accelerate_x*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) >= 4.0) or (Location_y + Speed_y*(Dt+Epsilon*Mode) + 0.5*Accelerate_y*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) <= 1.0) or (Location_y + Speed_y*(Dt+Epsilon*Mode) + 0.5*Accelerate_y*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) >= 9.0)
6
- (Location_x + Speed_x*(Dt+Epsilon*Mode) + 0.5*Accelerate_x*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) <= 4.0) or (Location_x + Speed_x*(Dt+Epsilon*Mode) + 0.5*Accelerate_x*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) >= 7.0) or (Location_y + Speed_y*(Dt+Epsilon*Mode) + 0.5*Accelerate_y*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) <= 7.0) or (Location_y + Speed_y*(Dt+Epsilon*Mode) + 0.5*Accelerate_y*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) >= 9.0)
7
- (Location_x + Speed_x*(Dt+Epsilon*Mode) + 0.5*Accelerate_x*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) <= 4.0) or (Location_x + Speed_x*(Dt+Epsilon*Mode) + 0.5*Accelerate_x*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) >= 9.0) or (Location_y + Speed_y*(Dt+Epsilon*Mode) + 0.5*Accelerate_y*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) <= 2.0) or (Location_y + Speed_y*(Dt+Epsilon*Mode) + 0.5*Accelerate_y*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) >= 6.0)
@@ -1,4 +0,0 @@
1
- Location_x_dash - 1.0*Location_x - 1.0*Speed_x*(Dt + Epsilon*Mode) - 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) == 0.0
2
- Location_y_dash - 1.0*Location_y - 1.0*Speed_y*(Dt + Epsilon*Mode) - 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) == 0.0
3
- Speed_x_dash - 1.0*Speed_x - 1.0*Accelerate_x*(Dt + Epsilon*Mode) == 0.0
4
- Speed_y_dash - 1.0*Speed_y - 1.0*Accelerate_y*(Dt + Epsilon*Mode) == 0.0
@@ -1,4 +0,0 @@
1
- Location_x_dash - 1.0*Location_x - 1.0*Speed_x*(Dt + Epsilon*Mode) - 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) == 0.0
2
- Location_y_dash - 1.0*Location_y - 1.0*Speed_y*(Dt + Epsilon*Mode) - 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) == 0.0
3
- Speed_x_dash - 1.0*Speed_x - 1.0*Accelerate_x*(Dt + Epsilon*Mode) == 0.0
4
- Speed_y_dash - 1.0*Speed_y - 1.0*Accelerate_y*(Dt + Epsilon*Mode) == 0.0
@@ -1,4 +0,0 @@
1
- Location_x_dash - 1.0*Location_x - 1.0*Speed_x*(Dt+Epsilon*Mode) - 0.5*Accelerate_x*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) == 0.0
2
- Location_y_dash - 1.0*Location_y - 1.0*Speed_y*(Dt+Epsilon*Mode) - 0.5*Accelerate_y*(Dt+Epsilon*Mode)*(Dt+Epsilon*Mode) == 0.0
3
- Speed_x_dash - 1.0*Speed_x - 1.0*Accelerate_x*(Dt+Epsilon*Mode) == 0.0
4
- Speed_y_dash - 1.0*Speed_y - 1.0*Accelerate_y*(Dt+Epsilon*Mode) == 0.0
@@ -1,217 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: scipplan
3
- Version: 0.2.0a2
4
- Summary: Metric Hybrid Factored Planning in Nonlinear Domains with Constraint Generation in Python.
5
- Author: Ari Gestetner, Buser Say
6
- Author-email: ari.gestetner@monash.edu, buser.say@monash.edu
7
- License: MIT License
8
- Keywords: scip,automated planner
9
- Classifier: Development Status :: 3 - Alpha
10
- Classifier: Environment :: Console
11
- Classifier: Intended Audience :: Science/Research
12
- Classifier: License :: OSI Approved :: MIT License
13
- Classifier: Natural Language :: English
14
- Classifier: Operating System :: OS Independent
15
- Classifier: Programming Language :: Python :: 3
16
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
17
- Description-Content-Type: text/markdown
18
- License-File: LICENSE
19
- Requires-Dist: PySCIPOpt ==5.2.1
20
- Requires-Dist: sympy ==1.13.3
21
-
22
- # SCIPPlan
23
-
24
- SCIPPlan [1,2,3] is a SCIP-based [4] hybrid planner for domains with i) mixed (i.e., real and/or discrete valued) state and action spaces, ii) nonlinear state transitions that are functions of time, and iii) general reward functions. SCIPPlan iteratively i) finds violated constraints (i.e., zero-crossings) by simulating the state transitions, and ii) adds the violated (symbolic) constraints back to its underlying optimisation model, until a valid plan is found.
25
-
26
- ## Example Domain: Navigation
27
-
28
- <img src=./visualisation/scipplan_navigation_1.gif width="32%" height="32%"> <img src=./visualisation/scipplan_navigation_2.gif width="32%" height="32%"> <img src=./visualisation/scipplan_navigation_3.gif width="32%" height="32%">
29
-
30
-
31
- Figure 1: Visualisation of different plans generated by SCIPPlan [1,2,3] for example navigation domains where the red square represents the agent, the blue shapes represent the obstacles, the gold star represents the goal location and the delta represents time. The agent can control its acceleration and the duration of its control input to modify its speed and location in order to navigate in a two-dimensional maze. The purpose of the domain is to find a path for the agent with minimum makespan such that the agent reaches its the goal without colliding with the obstacles.
32
-
33
- Note that SCIPPlan does not linearise or discretise the domain to find a valid plan.
34
-
35
- ## Dependencies
36
-
37
- i) Solver: SCIP (the current implementation uses the python interface to the SCIP solver, i.e., PySCIPOpt [5]). This version of SCIPPlan has only been tested on PySCIOpt>=4.0.0 using earlier an version of pyscipopt may result in unintended behaviour.
38
-
39
- ## Installing and Running SCIPPlan
40
- In order to Install SCIPPlan you need to ensure you have a working version of the SCIP optimisation suite on your system which can be installed from [the SCIP website](https://www.scipopt.org). For more information about SCIP and PySCIPOpt refer to this [installation guide](https://github.com/scipopt/PySCIPOpt/blob/master/INSTALL.md).
41
-
42
- After installing SCIP you will be able to install SCIPPlan using
43
- ```bash
44
- pip install scipplan
45
- ```
46
- Now you will be able to run some of the example domains which include
47
- - Navigation (3 instances)
48
-
49
- To run one of these examples all you need to do is run
50
- ```bash
51
- scipplan -D navigation -I 1
52
- ```
53
- which will run the 1st instance of the navigation domain. For more information regarding the available tags and what they mean run `scipplan --help`.
54
-
55
- Alternatively you can import scipplan classes to run it using python.
56
- ```py
57
- from scipplan.scipplan import SCIPPlan
58
- from scipplan.config import Config
59
- from scipplan.helpers import write_to_csv
60
- ```
61
- this will import the only 2 classes and function needed to run SCIPPlan. Then to set the configuration either create an instance of the Config class by setting the params or by retrieving the cli input
62
- ```py
63
- # Set params
64
- config = Config(domain="navigation", instance=1)
65
- # Retrieve cli args
66
- config = Config.get_config()
67
- ```
68
- after which you are able to solve problem by either using the solve or optimize methods
69
- ```py
70
- # The optimize method just optimises the problem for the given horizon
71
- plan = SCIPPlan(config)
72
- plan.optimize()
73
- # Class method which takes input the config, solves the problem
74
- # with auto incrementing the horizon until a solution is found then
75
- # returns the plan as well as the time taken to solve the problem
76
- plan, solve_time = SCIPPlan.solve(config)
77
- ```
78
- In order to save the generated constraints for the horizon solved as well as the results, use the following code
79
- ```py
80
- write_to_csv("new_constraints", plan.new_constraints, config)
81
- write_to_csv("results", plan.results_table, config)
82
- ```
83
-
84
-
85
-
86
- ## Custom Domains
87
- If you would like to create your own domain you will need to create a directory named "translation" in the directory which scipplan is run from with txt files of the format "{translation type}\_{domain name}\_{instance number}.txt" (e.g. "pvariables_navigation_1.txt"). Note that the files in the translation directory will override any example files if they share domain name and instance number (e.g. navigation 1 would override the example).
88
-
89
- For each domain instance the following translation files are required
90
- - constants
91
- - pvariables
92
- - initials
93
- - goals
94
- - instantaneous_constraints
95
- - temporal_constraints
96
- - transitions
97
- - reward
98
-
99
- As a part of SCIPPlan, all the constraint files allow for the use of "and" and "or" expressions, polynomials and `exp`, `log`, `sqrt`, `sin` and `cos` functions (Note: `sin` and `cos` are only available in PySCIPOpt>=4.3.0 so if your version is below that you will not be able to use the trig functions unless you update).
100
-
101
- ### Constants
102
- The constants file allows for constant values to be defined as a variable to be used in other files in the model. To use add constants as follows
103
- ```txt
104
- HalfVal = 0.5
105
- Epsilon = config_epsilon
106
- bigM = config_bigM
107
- ```
108
-
109
- Some config values can be accessed in the constants file to be used in other files and are available as
110
- - `config_epsilon`
111
- - `config_gap`
112
- - `config_bigM`
113
- Note that these variables are only accessible in the constants file and you will need to define a new constants variable to store the value
114
-
115
- ### Pvariables
116
- When creating the pvariables file, the variables should be listed in the following format
117
- ```txt
118
- action_continuous: Accelerate_x
119
- action_continuous: Accelerate_y
120
- action_continuous: Dt
121
- action_boolean: Mode
122
- state_continuous: Location_x
123
- state_continuous: Location_y
124
- state_continuous: Speed_x
125
- state_continuous: Speed_y
126
- ```
127
- where the variable and value type of the variable is set in the format "{variable type}_{value type}" and the variable itself has to be in a Python compatible format (e.g. variables can't use - sign like `some-var` but can use _ like `some_var` as well as the dash sign ' cannot be used). The use of next state variables which is often written using the dash symbol will be explained further in the Transitions section.
128
- Additionally a variable for Dt has to be defined and has to be the same as the dt_var in the config object so if you would like to use a different variable name for Dt (e.g. dt) please also ensure you add it to the config via the `--dt-var` tag or the `dt_var` parameter.
129
- The available variable types are
130
- - state
131
- - action
132
- - auxiliary
133
-
134
- The available value types are
135
- - continuos
136
- - integer
137
- - boolean
138
-
139
- Please note that constants don't need to have their variable names defined in pvariables as they are defined in constants.
140
-
141
- ### Initials
142
- The initials file defines the initial state values for time t=0, for example
143
- ```txt
144
- Location_x == 0.0
145
- Location_y == 0.0
146
- Speed_x == 0.0
147
- Speed_y == 0.0
148
- ```
149
- notice te use of teh constant value defined earlier in the constants file.
150
- ### Goals
151
- The goals file should encode the final state values such that t=H+1, for example
152
- ```txt
153
- Location_x == 8.0
154
- Location_y == 8.0
155
- ```
156
- ### Instantaneous Constraints
157
- This is where the instantaneous constraints go.
158
- An example is as follows
159
- ```txt
160
- Location_x <= 10.0
161
- Location_y <= 10.0
162
- Location_x >= 0.0
163
- Location_y >= 0.0
164
- Accelerate_x <= 0.5
165
- Accelerate_y <= 0.5
166
- Accelerate_x >= -0.5
167
- Accelerate_y >= -0.5
168
- (Location_x <= 4.0) or (Location_x >= 6.0) or (Location_y <= 4.0) or (Location_y >= 6.0)
169
- ```
170
- ### Temporal Constraints
171
- The temporal constraints are the constraints which SCIPPlan will ensure that the solution never violates by iterating through every epsilon value of Dt and checking for zero crossings. An example of a temporal constraint is as follows
172
- ```txt
173
- Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 10.0
174
- Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 10.0
175
- Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 0.0
176
- Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 0.0
177
-
178
- ((Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 4.0) or
179
- (Location_x + Speed_x*(Dt + Epsilon*Mode) + 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 6.0) or
180
- (Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) <= 4.0) or
181
- (Location_y + Speed_y*(Dt + Epsilon*Mode) + 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) >= 6.0))
182
- ```
183
-
184
- The use of mode switches are used in these constraints (`Dt + Epsilon*Mode`). Please note that the or expression is enclosed in round brackets which allows the constraints to be parsed as a singular expression
185
- ### Transitions
186
- Transitions are to be added here with the following syntax.
187
- For example $S_{t+1} = \frac 12 A_t\cdot t^2 + V_t\cdot t + S_t$.
188
- Alternatively this can be written as $S' = \frac 12 A\cdot t^2 + V\cdot t + S$.
189
- Since Python doesn't allow variables to use the ' symbol it should be replaced with `_dash`, for example
190
- ```txt
191
- Location_x_dash - 1.0*Location_x - 1.0*Speed_x*(Dt + Epsilon*Mode) - 0.5*Accelerate_x*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) == 0.0
192
- Location_y_dash - 1.0*Location_y - 1.0*Speed_y*(Dt + Epsilon*Mode) - 0.5*Accelerate_y*(Dt + Epsilon*Mode)*(Dt + Epsilon*Mode) == 0.0
193
- Speed_x_dash - 1.0*Speed_x - 1.0*Accelerate_x*(Dt + Epsilon*Mode) == 0.0
194
- Speed_y_dash - 1.0*Speed_y - 1.0*Accelerate_y*(Dt + Epsilon*Mode) == 0.0
195
- ```
196
-
197
- ### Reward
198
- As for the reward function, SCIPPlan maximises the reward thus if using a cost function it should be negated as per the example
199
- ```txt
200
- -1.0*(Dt + Mode * Epsilon)
201
- ```
202
- Only one reward function is able to be optimised for in SCIPPlan
203
-
204
- ## Citation
205
-
206
- If you are using SCIPPlan, please cite the papers [1,2,3] and the underlying SCIP solver [4].
207
-
208
- ## References
209
- [1] Buser Say and Scott Sanner. [Metric Nonlinear Hybrid Planning with Constraint Generation](http://icaps18.icaps-conference.org/fileadmin/alg/conferences/icaps18/workshops/workshop06/docs/proceedings.pdf#page=23). In PlanSOpt, pages 19-25, 2018.
210
-
211
- [2] Buser Say and Scott Sanner. [Metric Hybrid Factored Planning in Nonlinear Domains with Constraint Generation](https://link.springer.com/chapter/10.1007/978-3-030-19212-9_33). In CPAIOR, pages 502-518, 2019.
212
-
213
- [3] Buser Say. [Robust Metric Hybrid Planning in Stochastic Nonlinear Domains Using Mathematical Optimization](https://ojs.aaai.org/index.php/ICAPS/article/view/27216). In ICAPS, pages 375-383, 2023.
214
-
215
- [4] [SCIP](https://www.scipopt.org/)
216
-
217
- [5] [PySCIPOpt](https://github.com/SCIP-Interfaces/PySCIPOpt)
@@ -1,44 +0,0 @@
1
- scipplan/__init__.py,sha256=ixsTY7OH5FwbQyfs19fKu0-LtwjJgvw62l0VyFuQats,195
2
- scipplan/config.py,sha256=Ojs_pdjhwRuANPJcGyb3m5mMGqbTZkHuNvppd_Wd4FQ,5615
3
- scipplan/helpers.py,sha256=YmS0HPQymsO5_e3jK7WQ-hBRZnxoZtewLhuzubw5sR4,975
4
- scipplan/parse_model.py,sha256=-vssLQZHbXxkoiHjTHD-ZxY2h0w9LvGuJZXSd4RZvlM,9564
5
- scipplan/plan_model.py,sha256=6siDOhLkjJeibXhJh9PGocOjRQOZcSk_x5ZzeW6IrzA,14258
6
- scipplan/scipplan.py,sha256=Ykz_L0f2dyX4-EQB1iCH-QR3waVUwxKzgskdQeUP9nE,8675
7
- scipplan/variables.py,sha256=3sxY3zQuxsa5z2fTFjv4zOSb9GarzojZ4W4kIx9FX68,2561
8
- scipplan/zero_crossing.py,sha256=kGyJsWZLLXqLW1p3LPDlPC34rTkFF8daDzqgbEcaXus,1043
9
- scipplan/translation/constants_navigation_1.txt,sha256=X0jvJe5MiwvayKBVXo9TQlGZGfUlpnFpMiReL68rsXc,43
10
- scipplan/translation/constants_navigation_2.txt,sha256=eMN8PnTBS5qc_8u6W7Q-wSlXvX_wFjFaFCT38wviiQE,44
11
- scipplan/translation/constants_navigation_3.txt,sha256=ItHwvPfASUvSbdKlek4GFZweDGmxT1wRr3SH7W4-CBc,24
12
- scipplan/translation/goals_navigation_1.txt,sha256=uxlsrr_M5maa8FGVZXrsnzu7CG-R1ubKVu8Wj5eAqks,35
13
- scipplan/translation/goals_navigation_2.txt,sha256=uxlsrr_M5maa8FGVZXrsnzu7CG-R1ubKVu8Wj5eAqks,35
14
- scipplan/translation/goals_navigation_3.txt,sha256=uxlsrr_M5maa8FGVZXrsnzu7CG-R1ubKVu8Wj5eAqks,35
15
- scipplan/translation/initials_navigation_1.txt,sha256=6uKI2B_vG-AACgFrBmmPBqC_NEQ2znHTcV44aI-rbXY,66
16
- scipplan/translation/initials_navigation_2.txt,sha256=s7ukUEHwcmMsey1bHCRJh515PLKYXODz8Sb5jQBtGeM,65
17
- scipplan/translation/initials_navigation_3.txt,sha256=s7ukUEHwcmMsey1bHCRJh515PLKYXODz8Sb5jQBtGeM,65
18
- scipplan/translation/instantaneous_constraints_navigation_1.txt,sha256=WbITeszv_n93_BhE2eiNqFPAZVO4f2s44KcKUsNURyA,244
19
- scipplan/translation/instantaneous_constraints_navigation_2.txt,sha256=e5YdZn3OKLJh0kEiCNqpOgxgAAQxIHMB3J5OTYvPlgw,333
20
- scipplan/translation/instantaneous_constraints_navigation_3.txt,sha256=HnzfFntGIQ0WIMnEfcYPg1cy7u9dJn3xuYqdXZVFFvE,422
21
- scipplan/translation/odes_navigation_1.txt,sha256=Uv13eTSTvURb6TtY7rq-otlpJMS8cQDYSyaO3X2_SRs,1015
22
- scipplan/translation/odes_navigation_2.txt,sha256=DcbpXv-q0NP8Tx10YKqD6425esblgPNlTxchkyWMJAc,1192
23
- scipplan/translation/odes_navigation_3.txt,sha256=ZFTyFEiL1KP0yxOCOzOSoXz9dXulRmtXDBnfZqaVbaE,1370
24
- scipplan/translation/pvariables_navigation_1.txt,sha256=97t5uPWAWKmtbDPJZIor5nn5qPU6aMcGdpLAuKnlDbQ,217
25
- scipplan/translation/pvariables_navigation_2.txt,sha256=lGUNN04bC-CJFTThNC3dwP9kU2xGftSshx-24I6zlZw,216
26
- scipplan/translation/pvariables_navigation_3.txt,sha256=1-yvM5BSJ5TXBlHkMbcXWd5zoc2ezSBpIIuM_zwEXSo,216
27
- scipplan/translation/reward_navigation_1.txt,sha256=dvR0CkxkWRbO3wP0fenXDSDMpueEUtSUqw990UnCcJY,26
28
- scipplan/translation/reward_navigation_2.txt,sha256=ck6uUGNhM_DWiG1hHN6_xTps1muychzqTOpz1iLF9bk,26
29
- scipplan/translation/reward_navigation_3.txt,sha256=O8unFCIySCz4GCBX_9mQcm-JMn5Ur6upp3HBbA4e_C8,22
30
- scipplan/translation/solutions_navigation_1.txt,sha256=5iLPRtJXqfAXi0QG-3WPtKn8t0pH4-E2AtNp8-7k1CQ,1542
31
- scipplan/translation/solutions_navigation_2.txt,sha256=b1c74m54iRCcZoe8uqquUQyn6HtRTiFqIA8ss2mZUdg,1895
32
- scipplan/translation/solutions_navigation_3.txt,sha256=Jv3bzMt84LVyR1DSVJ5B8Ky9id_khZ1PxZ1s3QPKpk8,2249
33
- scipplan/translation/temporal_constraints_navigation_1.txt,sha256=h06iRA5TDr6R5XdjhEyYnZ3f-FQwUkbKGNw-t0k0jm8,875
34
- scipplan/translation/temporal_constraints_navigation_2.txt,sha256=x73dbxxb_YzvdvtVNaJfG-S9ggf-yqTYdoU6NiDQBqk,1319
35
- scipplan/translation/temporal_constraints_navigation_3.txt,sha256=Ki4nAX9-QtBbY9ZdHwHdqta8JQoLrAVvlZrLa1pWLnQ,1668
36
- scipplan/translation/transitions_navigation_1.txt,sha256=kfnr3_A9mCfflLsL4aq7OeR_BHSNST6eYuAg4ZxaPoU,411
37
- scipplan/translation/transitions_navigation_2.txt,sha256=kfnr3_A9mCfflLsL4aq7OeR_BHSNST6eYuAg4ZxaPoU,411
38
- scipplan/translation/transitions_navigation_3.txt,sha256=aIPP3FOjXZ3G6sTqicEIZ0JKJxdxHCRRZIdc5bUPFBM,395
39
- scipplan-0.2.0a2.dist-info/LICENSE,sha256=tfR4peJA8KJtYEn1NzNV-LWQVRAserdq7OJgYghreR0,1057
40
- scipplan-0.2.0a2.dist-info/METADATA,sha256=z5n-lnRohnGouOC9IYge-rjf0EDnqYwRhwLZ_D8L9NU,11296
41
- scipplan-0.2.0a2.dist-info/WHEEL,sha256=-G_t0oGuE7UD0DrSpVZnq1hHMBV9DD2XkS5v7XpmTnk,110
42
- scipplan-0.2.0a2.dist-info/entry_points.txt,sha256=3qiNbbp6qIwivyPmmikyp7ByCfmsa9rGFNJPcN9Is8I,52
43
- scipplan-0.2.0a2.dist-info/top_level.txt,sha256=xO2FLRn7YQ-C25E8lagIEbik5T5FTr-Ta5bdiZezEPY,9
44
- scipplan-0.2.0a2.dist-info/RECORD,,