sciml 0.0.9__py3-none-any.whl → 0.0.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sciml/__init__.py +2 -2
- sciml/ccc.py +36 -0
- sciml/metrics.py +123 -0
- sciml/models.py +275 -276
- sciml/pipelines.py +226 -435
- sciml/regress2.py +217 -0
- {sciml-0.0.9.dist-info → sciml-0.0.10.dist-info}/LICENSE +21 -21
- {sciml-0.0.9.dist-info → sciml-0.0.10.dist-info}/METADATA +13 -13
- sciml-0.0.10.dist-info/RECORD +11 -0
- {sciml-0.0.9.dist-info → sciml-0.0.10.dist-info}/WHEEL +1 -1
- sciml/utils.py +0 -46
- sciml-0.0.9.dist-info/RECORD +0 -9
- {sciml-0.0.9.dist-info → sciml-0.0.10.dist-info}/top_level.txt +0 -0
sciml/pipelines.py
CHANGED
@@ -1,435 +1,226 @@
|
|
1
|
-
import numpy as np
|
2
|
-
import pandas as pd
|
3
|
-
from scipy import stats
|
4
|
-
from copy import deepcopy
|
5
|
-
from tqdm import tqdm
|
6
|
-
from sklearn.metrics import mean_squared_error
|
7
|
-
from xgboost import XGBRegressor
|
8
|
-
|
9
|
-
def get_metrics(df, truth = 'truth', pred = 'pred', return_dict = False):
|
10
|
-
'''
|
11
|
-
Calculate statistical measures between validation and prediction sequences
|
12
|
-
'''
|
13
|
-
df = df[[truth, pred]].copy().dropna()
|
14
|
-
slope, intercept, r_value, p_value, std_err = stats.linregress(df.dropna()[truth], df.dropna()[pred])
|
15
|
-
r2 = r_value**2
|
16
|
-
mse = mean_squared_error(df.dropna()[truth], df.dropna()[pred])
|
17
|
-
rmse = np.sqrt(mse)
|
18
|
-
mbe = np.mean(df.dropna()[pred] - df.dropna()[truth])
|
19
|
-
mae = (df.dropna()[pred] - df.dropna()[truth]).abs().mean()
|
20
|
-
if return_dict:
|
21
|
-
return pd.DataFrame.from_dict([{
|
22
|
-
'r2': r2,
|
23
|
-
'Slope': slope,
|
24
|
-
'RMSE': rmse,
|
25
|
-
'MBE': mbe,
|
26
|
-
'MAE': mae,
|
27
|
-
'Intercept': intercept,
|
28
|
-
'p-value': p_value,
|
29
|
-
'std_err': std_err
|
30
|
-
}])
|
31
|
-
else:
|
32
|
-
return r2, slope, rmse, mbe, mae, intercept, p_value, std_err
|
33
|
-
|
34
|
-
# ===============================================================================================================================
|
35
|
-
# Machine learning algorithms
|
36
|
-
def train_ml(
|
37
|
-
X_train, y_train, model_name = 'XGB',
|
38
|
-
xgb_params_user = None, rfr_params_user = None,
|
39
|
-
mlp_params_user = None, svr_params_user = None,
|
40
|
-
df21_params_user = None,
|
41
|
-
gpu = False, partial_mode = False
|
42
|
-
):
|
43
|
-
# -------------------------------------------------------------------------
|
44
|
-
# Setup parameters:
|
45
|
-
if xgb_params_user:
|
46
|
-
xgb_params = xgb_params_user
|
47
|
-
else:
|
48
|
-
xgb_params = {
|
49
|
-
"objective": "reg:squarederror",
|
50
|
-
"random_state": 0,
|
51
|
-
'seed': 0,
|
52
|
-
'n_estimators': 100,
|
53
|
-
'max_depth': 6,
|
54
|
-
'min_child_weight': 4,
|
55
|
-
'subsample': 0.8,
|
56
|
-
'colsample_bytree': 0.8,
|
57
|
-
'gamma': 0,
|
58
|
-
'reg_alpha': 0,
|
59
|
-
'reg_lambda': 1,
|
60
|
-
'learning_rate': 0.05,
|
61
|
-
}
|
62
|
-
|
63
|
-
xgb_gpu_params = {
|
64
|
-
'tree_method': 'gpu_hist',
|
65
|
-
'gpu_id': 0,
|
66
|
-
# "n_gpus": 2,
|
67
|
-
}
|
68
|
-
|
69
|
-
if gpu: xgb_params.update(xgb_gpu_params)
|
70
|
-
|
71
|
-
if rfr_params_user:
|
72
|
-
rfr_params = rfr_params_user
|
73
|
-
else:
|
74
|
-
rfr_params = {
|
75
|
-
'max_depth': 20,
|
76
|
-
'min_samples_leaf': 3,
|
77
|
-
'min_samples_split': 12,
|
78
|
-
'n_estimators': 100,
|
79
|
-
'n_jobs': -1
|
80
|
-
}
|
81
|
-
|
82
|
-
if df21_params_user:
|
83
|
-
df21_params = df21_params_user
|
84
|
-
else:
|
85
|
-
df21_params = {
|
86
|
-
'random_state': 1,
|
87
|
-
'verbose' : 0,
|
88
|
-
'predictor': "xgboost",
|
89
|
-
'n_jobs' : -1,
|
90
|
-
'predictor_kwargs' : xgb_params,
|
91
|
-
'partial_mode' : partial_mode
|
92
|
-
}
|
93
|
-
# -------------------------------------------------------------------------
|
94
|
-
# Run:
|
95
|
-
if model_name == "XGB":
|
96
|
-
from xgboost import XGBRegressor
|
97
|
-
regr = XGBRegressor(**xgb_params)
|
98
|
-
elif model_name == "MLP":
|
99
|
-
from sklearn.neural_network import MLPRegressor
|
100
|
-
regr = MLPRegressor(**mlp_params_user)
|
101
|
-
elif model_name == "RFR":
|
102
|
-
from sklearn.ensemble import RandomForestRegressor
|
103
|
-
regr = RandomForestRegressor(**rfr_params)
|
104
|
-
elif model_name == "SVR":
|
105
|
-
from sklearn.svm import SVR
|
106
|
-
regr = SVR(**svr_params_user)
|
107
|
-
elif model_name == "DF21":
|
108
|
-
from deepforest import CascadeForestRegressor
|
109
|
-
# https://deep-forest.readthedocs.io/en/latest/api_reference.html?highlight=CascadeForestRegressor#cascadeforestregressor
|
110
|
-
# predictor: {"forest", "xgboost", "lightgbm"}
|
111
|
-
# regr = CascadeForestRegressor(random_state = 1, verbose = 0, predictor = "xgboost", n_jobs = -1, predictor_kwargs = xgb_params, partial_mode = partial_mode)
|
112
|
-
regr = CascadeForestRegressor(**df21_params)
|
113
|
-
regr.fit(X_train, y_train)
|
114
|
-
return regr
|
115
|
-
|
116
|
-
def test_ml(X_test, y_test, regr):
|
117
|
-
res = y_test.copy() # y_test is 2D pandas dataframe.
|
118
|
-
res.columns = ['truth']
|
119
|
-
res['pred'] = regr.predict(X_test)
|
120
|
-
return res
|
121
|
-
|
122
|
-
def run_ensemble(X_train, y_train, n_models = 10, frac_sample = 0.8):
|
123
|
-
base_params_xgb = {
|
124
|
-
"objective": "reg:squarederror",
|
125
|
-
'seed': 0,
|
126
|
-
"random_state": 0,
|
127
|
-
}
|
128
|
-
params_xgb = deepcopy(base_params_xgb)
|
129
|
-
# dropout-like regularization
|
130
|
-
params_xgb.update({
|
131
|
-
"subsample": 0.8, # Use 80% of the data for each tree
|
132
|
-
"colsample_bytree": 0.8, # Use 80% of the features for each tree
|
133
|
-
})
|
134
|
-
|
135
|
-
models = []
|
136
|
-
for i in tqdm(range(n_models)):
|
137
|
-
# Create a bootstrapped dataset
|
138
|
-
y_resampled = y_train.copy().sample(frac = frac_sample, random_state = i)
|
139
|
-
X_resampled = X_train.copy().loc[y_resampled.index]
|
140
|
-
# print(y_resampled.sort_index().index[0], y_resampled.sort_index().index[-1])
|
141
|
-
|
142
|
-
# Train the XGBoost model
|
143
|
-
params_xgb.update({'random_state': i})
|
144
|
-
model = XGBRegressor(**params_xgb)
|
145
|
-
model.fit(X_resampled, y_resampled)
|
146
|
-
models.append(model)
|
147
|
-
return models
|
148
|
-
|
149
|
-
# ===============================================================================================================================
|
150
|
-
# Deep learning neural networks
|
151
|
-
|
152
|
-
try:
|
153
|
-
from tensorflow import keras
|
154
|
-
from tensorflow.keras import layers
|
155
|
-
from tensorflow.keras import models
|
156
|
-
# from keras.layers import Dropout
|
157
|
-
from keras.callbacks import EarlyStopping
|
158
|
-
from scitbx.
|
159
|
-
except Exception as e:
|
160
|
-
print(e)
|
161
|
-
|
162
|
-
def train_lstm(X_train, y_train, nfeature, ntime, verbose = 2, epochs = 200, batch_size = 64):
|
163
|
-
# create and fit the LSTM network
|
164
|
-
model = models.Sequential()
|
165
|
-
model.add(layers.LSTM(64, input_shape=(nfeature, ntime)))
|
166
|
-
model.add(layers.Dropout(0.2))
|
167
|
-
model.add(layers.Dense(16, activation='relu'))
|
168
|
-
model.add(layers.Dropout(0.2))
|
169
|
-
model.add(layers.Dense(1, activation='relu'))
|
170
|
-
model.compile(loss='mean_squared_error', optimizer='adam')
|
171
|
-
# es = EarlyStopping(monitor='loss', mode='min', verbose=1)
|
172
|
-
# model.fit(X_train.reshape(-1, nsites, nfeats), y_train, epochs=100, batch_size=256, verbose=2, callbacks=[es])
|
173
|
-
model.fit(X_train, y_train, epochs = epochs, batch_size = batch_size, verbose=verbose)
|
174
|
-
return model
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
import
|
180
|
-
from
|
181
|
-
from sklearn.
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
def predict(self, X):
|
229
|
-
X_current = X.copy()
|
230
|
-
for layer in self.layers:
|
231
|
-
layer_outputs = []
|
232
|
-
for reg in layer:
|
233
|
-
n_features = reg.n_features_in_
|
234
|
-
preds = reg.predict(X_current[:, :n_features]).reshape(-1, 1)
|
235
|
-
layer_outputs.append(preds)
|
236
|
-
output = np.hstack(layer_outputs)
|
237
|
-
X_current = np.hstack([X_current, output])
|
238
|
-
|
239
|
-
# Final prediction = average of last layer regressors
|
240
|
-
final_outputs = []
|
241
|
-
for reg in self.layers[-1]:
|
242
|
-
n_features = reg.n_features_in_
|
243
|
-
final_outputs.append(reg.predict(X_current[:, :n_features]).reshape(-1, 1))
|
244
|
-
return np.mean(np.hstack(final_outputs), axis=1)
|
245
|
-
|
246
|
-
|
247
|
-
from sklearn.datasets import load_diabetes
|
248
|
-
from sklearn.model_selection import train_test_split
|
249
|
-
from sklearn.metrics import mean_squared_error
|
250
|
-
|
251
|
-
X, y = load_diabetes(return_X_y=True)
|
252
|
-
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=42)
|
253
|
-
|
254
|
-
df_reg = XGBoostDeepForestRegressor(n_estimators_per_layer=2, max_layers=5)
|
255
|
-
df_reg.fit(X_train, y_train, X_val, y_val)
|
256
|
-
|
257
|
-
y_pred = df_reg.predict(X_val)
|
258
|
-
# rmse = mean_squared_error(y_val, y_pred, squared=False)
|
259
|
-
rmse = np.sqrt(mean_squared_error(y_val, y_pred))
|
260
|
-
print("Final RMSE:", rmse)
|
261
|
-
|
262
|
-
# ----------------------------------------------------------------------------------------------------
|
263
|
-
|
264
|
-
import numpy as np
|
265
|
-
from xgboost import XGBRegressor
|
266
|
-
from sklearn.metrics import mean_squared_error
|
267
|
-
import itertools
|
268
|
-
|
269
|
-
class XGBoostDeepForestRegressor:
|
270
|
-
def __init__(self, n_estimators_per_layer=2, max_layers=20, early_stopping_rounds=2, param_grid=None, use_gpu=True, gpu_id=0):
|
271
|
-
self.n_estimators_per_layer = n_estimators_per_layer
|
272
|
-
self.max_layers = max_layers
|
273
|
-
self.early_stopping_rounds = early_stopping_rounds
|
274
|
-
self.param_grid = param_grid or {
|
275
|
-
'max_depth': [3],
|
276
|
-
'learning_rate': [0.1],
|
277
|
-
'n_estimators': [100]
|
278
|
-
}
|
279
|
-
self.use_gpu = use_gpu
|
280
|
-
self.gpu_id = gpu_id
|
281
|
-
self.layers = []
|
282
|
-
|
283
|
-
def _get_param_combinations(self):
|
284
|
-
keys, values = zip(*self.param_grid.items())
|
285
|
-
return [dict(zip(keys, v)) for v in itertools.product(*values)]
|
286
|
-
|
287
|
-
def _fit_layer(self, X, y, X_val=None, y_val=None):
|
288
|
-
layer = []
|
289
|
-
layer_outputs = []
|
290
|
-
param_combos = self._get_param_combinations()
|
291
|
-
|
292
|
-
for i in range(self.n_estimators_per_layer):
|
293
|
-
best_rmse = float('inf')
|
294
|
-
best_model = None
|
295
|
-
|
296
|
-
for params in param_combos:
|
297
|
-
# Set GPU support parameters in XGBRegressor
|
298
|
-
if self.use_gpu:
|
299
|
-
params['tree_method'] = 'hist' # Use hist method
|
300
|
-
params['device'] = 'cuda' # Enable CUDA for GPU
|
301
|
-
|
302
|
-
model = XGBRegressor(**params)
|
303
|
-
model.fit(X, y)
|
304
|
-
|
305
|
-
if X_val is not None:
|
306
|
-
preds_val = model.predict(X_val)
|
307
|
-
rmse = np.sqrt(mean_squared_error(y_val, preds_val))
|
308
|
-
if rmse < best_rmse:
|
309
|
-
best_rmse = rmse
|
310
|
-
best_model = model
|
311
|
-
else:
|
312
|
-
best_model = model
|
313
|
-
|
314
|
-
final_model = best_model
|
315
|
-
preds = final_model.predict(X).reshape(-1, 1)
|
316
|
-
layer.append(final_model)
|
317
|
-
layer_outputs.append(preds)
|
318
|
-
|
319
|
-
output = np.hstack(layer_outputs)
|
320
|
-
return layer, output
|
321
|
-
|
322
|
-
def fit(self, X, y, X_val=None, y_val=None):
|
323
|
-
X_current = X.copy()
|
324
|
-
X_val_current = X_val.copy() if X_val is not None else None
|
325
|
-
|
326
|
-
best_rmse = float("inf")
|
327
|
-
no_improve_rounds = 0
|
328
|
-
|
329
|
-
for layer_index in range(self.max_layers):
|
330
|
-
print(f"Training Layer {layer_index + 1}")
|
331
|
-
layer, output = self._fit_layer(X_current, y, X_val_current, y_val)
|
332
|
-
self.layers.append(layer)
|
333
|
-
X_current = np.hstack([X_current, output])
|
334
|
-
|
335
|
-
if X_val is not None:
|
336
|
-
val_outputs = []
|
337
|
-
for reg in layer:
|
338
|
-
n_features = reg.n_features_in_
|
339
|
-
preds = reg.predict(X_val_current[:, :n_features]).reshape(-1, 1)
|
340
|
-
val_outputs.append(preds)
|
341
|
-
val_output = np.hstack(val_outputs)
|
342
|
-
X_val_current = np.hstack([X_val_current, val_output])
|
343
|
-
|
344
|
-
y_pred = self.predict(X_val)
|
345
|
-
rmse = np.sqrt(mean_squared_error(y_val, y_pred))
|
346
|
-
print(f"Validation RMSE: {rmse:.4f}")
|
347
|
-
|
348
|
-
if rmse < best_rmse:
|
349
|
-
best_rmse = rmse
|
350
|
-
no_improve_rounds = 0
|
351
|
-
else:
|
352
|
-
no_improve_rounds += 1
|
353
|
-
if no_improve_rounds >= self.early_stopping_rounds:
|
354
|
-
print("Early stopping triggered.")
|
355
|
-
break
|
356
|
-
|
357
|
-
def predict(self, X):
|
358
|
-
X_current = X.copy()
|
359
|
-
for layer in self.layers:
|
360
|
-
layer_outputs = []
|
361
|
-
for reg in layer:
|
362
|
-
n_features = reg.n_features_in_
|
363
|
-
preds = reg.predict(X_current[:, :n_features]).reshape(-1, 1)
|
364
|
-
layer_outputs.append(preds)
|
365
|
-
output = np.hstack(layer_outputs)
|
366
|
-
X_current = np.hstack([X_current, output])
|
367
|
-
|
368
|
-
final_outputs = []
|
369
|
-
for reg in self.layers[-1]:
|
370
|
-
n_features = reg.n_features_in_
|
371
|
-
final_outputs.append(reg.predict(X_current[:, :n_features]).reshape(-1, 1))
|
372
|
-
return np.mean(np.hstack(final_outputs), axis=1)
|
373
|
-
|
374
|
-
|
375
|
-
from sklearn.datasets import load_diabetes
|
376
|
-
from sklearn.model_selection import train_test_split
|
377
|
-
from sklearn.metrics import mean_squared_error
|
378
|
-
|
379
|
-
# Load dataset
|
380
|
-
X, y = load_diabetes(return_X_y=True)
|
381
|
-
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=42)
|
382
|
-
|
383
|
-
# Hyperparameter grid
|
384
|
-
param_grid = {
|
385
|
-
'max_depth': [3, 4],
|
386
|
-
'learning_rate': [0.1, 0.05],
|
387
|
-
'n_estimators': [50, 100]
|
388
|
-
}
|
389
|
-
|
390
|
-
# Create and fit the model with GPU enabled
|
391
|
-
df_reg = XGBoostDeepForestRegressor(
|
392
|
-
n_estimators_per_layer=2,
|
393
|
-
max_layers=5,
|
394
|
-
early_stopping_rounds=2,
|
395
|
-
param_grid=param_grid,
|
396
|
-
use_gpu=True, # Enable GPU acceleration
|
397
|
-
gpu_id=0 # Default to the first GPU
|
398
|
-
)
|
399
|
-
|
400
|
-
df_reg.fit(X_train, y_train, X_val, y_val)
|
401
|
-
|
402
|
-
# Final evaluation
|
403
|
-
y_pred = df_reg.predict(X_val)
|
404
|
-
rmse = np.sqrt(mean_squared_error(y_val, y_pred))
|
405
|
-
print("Final RMSE:", rmse)
|
406
|
-
|
407
|
-
# ----------------------------------------------------------------------------------------------------
|
408
|
-
|
409
|
-
xgb_params = {
|
410
|
-
"objective": "reg:squarederror",
|
411
|
-
"random_state": 0,
|
412
|
-
'seed': 0,
|
413
|
-
'n_estimators': 100,
|
414
|
-
'max_depth': 6,
|
415
|
-
'min_child_weight': 4,
|
416
|
-
'subsample': 0.8,
|
417
|
-
'colsample_bytree': 0.8,
|
418
|
-
'gamma': 0,
|
419
|
-
'reg_alpha': 0,
|
420
|
-
'reg_lambda': 1,
|
421
|
-
'learning_rate': 0.05,
|
422
|
-
}
|
423
|
-
|
424
|
-
from xgboost import XGBRegressor
|
425
|
-
regr = XGBRegressor(**xgb_params)
|
426
|
-
|
427
|
-
regr.fit(X_train, y_train)
|
428
|
-
y_pred = regr.predict(X_val)
|
429
|
-
|
430
|
-
|
431
|
-
from scipy import stats
|
432
|
-
|
433
|
-
stats.linregress(y_val, y_pred)
|
434
|
-
|
435
|
-
'''
|
1
|
+
import numpy as np
|
2
|
+
import pandas as pd
|
3
|
+
from scipy import stats
|
4
|
+
from copy import deepcopy
|
5
|
+
from tqdm import tqdm
|
6
|
+
from sklearn.metrics import mean_squared_error
|
7
|
+
from xgboost import XGBRegressor
|
8
|
+
|
9
|
+
def get_metrics(df, truth = 'truth', pred = 'pred', return_dict = False):
|
10
|
+
'''
|
11
|
+
Calculate statistical measures between validation and prediction sequences
|
12
|
+
'''
|
13
|
+
df = df[[truth, pred]].copy().dropna()
|
14
|
+
slope, intercept, r_value, p_value, std_err = stats.linregress(df.dropna()[truth], df.dropna()[pred])
|
15
|
+
r2 = r_value**2
|
16
|
+
mse = mean_squared_error(df.dropna()[truth], df.dropna()[pred])
|
17
|
+
rmse = np.sqrt(mse)
|
18
|
+
mbe = np.mean(df.dropna()[pred] - df.dropna()[truth])
|
19
|
+
mae = (df.dropna()[pred] - df.dropna()[truth]).abs().mean()
|
20
|
+
if return_dict:
|
21
|
+
return pd.DataFrame.from_dict([{
|
22
|
+
'r2': r2,
|
23
|
+
'Slope': slope,
|
24
|
+
'RMSE': rmse,
|
25
|
+
'MBE': mbe,
|
26
|
+
'MAE': mae,
|
27
|
+
'Intercept': intercept,
|
28
|
+
'p-value': p_value,
|
29
|
+
'std_err': std_err
|
30
|
+
}])
|
31
|
+
else:
|
32
|
+
return r2, slope, rmse, mbe, mae, intercept, p_value, std_err
|
33
|
+
|
34
|
+
# ===============================================================================================================================
|
35
|
+
# Machine learning algorithms
|
36
|
+
def train_ml(
|
37
|
+
X_train, y_train, model_name = 'XGB',
|
38
|
+
xgb_params_user = None, rfr_params_user = None,
|
39
|
+
mlp_params_user = None, svr_params_user = None,
|
40
|
+
df21_params_user = None,
|
41
|
+
gpu = False, partial_mode = False
|
42
|
+
):
|
43
|
+
# -------------------------------------------------------------------------
|
44
|
+
# Setup parameters:
|
45
|
+
if xgb_params_user:
|
46
|
+
xgb_params = xgb_params_user
|
47
|
+
else:
|
48
|
+
xgb_params = {
|
49
|
+
"objective": "reg:squarederror",
|
50
|
+
"random_state": 0,
|
51
|
+
'seed': 0,
|
52
|
+
'n_estimators': 100,
|
53
|
+
'max_depth': 6,
|
54
|
+
'min_child_weight': 4,
|
55
|
+
'subsample': 0.8,
|
56
|
+
'colsample_bytree': 0.8,
|
57
|
+
'gamma': 0,
|
58
|
+
'reg_alpha': 0,
|
59
|
+
'reg_lambda': 1,
|
60
|
+
'learning_rate': 0.05,
|
61
|
+
}
|
62
|
+
|
63
|
+
xgb_gpu_params = {
|
64
|
+
'tree_method': 'gpu_hist',
|
65
|
+
'gpu_id': 0,
|
66
|
+
# "n_gpus": 2,
|
67
|
+
}
|
68
|
+
|
69
|
+
if gpu: xgb_params.update(xgb_gpu_params)
|
70
|
+
|
71
|
+
if rfr_params_user:
|
72
|
+
rfr_params = rfr_params_user
|
73
|
+
else:
|
74
|
+
rfr_params = {
|
75
|
+
'max_depth': 20,
|
76
|
+
'min_samples_leaf': 3,
|
77
|
+
'min_samples_split': 12,
|
78
|
+
'n_estimators': 100,
|
79
|
+
'n_jobs': -1
|
80
|
+
}
|
81
|
+
|
82
|
+
if df21_params_user:
|
83
|
+
df21_params = df21_params_user
|
84
|
+
else:
|
85
|
+
df21_params = {
|
86
|
+
'random_state': 1,
|
87
|
+
'verbose' : 0,
|
88
|
+
'predictor': "xgboost",
|
89
|
+
'n_jobs' : -1,
|
90
|
+
'predictor_kwargs' : xgb_params,
|
91
|
+
'partial_mode' : partial_mode
|
92
|
+
}
|
93
|
+
# -------------------------------------------------------------------------
|
94
|
+
# Run:
|
95
|
+
if model_name == "XGB":
|
96
|
+
from xgboost import XGBRegressor
|
97
|
+
regr = XGBRegressor(**xgb_params)
|
98
|
+
elif model_name == "MLP":
|
99
|
+
from sklearn.neural_network import MLPRegressor
|
100
|
+
regr = MLPRegressor(**mlp_params_user)
|
101
|
+
elif model_name == "RFR":
|
102
|
+
from sklearn.ensemble import RandomForestRegressor
|
103
|
+
regr = RandomForestRegressor(**rfr_params)
|
104
|
+
elif model_name == "SVR":
|
105
|
+
from sklearn.svm import SVR
|
106
|
+
regr = SVR(**svr_params_user)
|
107
|
+
elif model_name == "DF21":
|
108
|
+
from deepforest import CascadeForestRegressor
|
109
|
+
# https://deep-forest.readthedocs.io/en/latest/api_reference.html?highlight=CascadeForestRegressor#cascadeforestregressor
|
110
|
+
# predictor: {"forest", "xgboost", "lightgbm"}
|
111
|
+
# regr = CascadeForestRegressor(random_state = 1, verbose = 0, predictor = "xgboost", n_jobs = -1, predictor_kwargs = xgb_params, partial_mode = partial_mode)
|
112
|
+
regr = CascadeForestRegressor(**df21_params)
|
113
|
+
regr.fit(X_train, y_train)
|
114
|
+
return regr
|
115
|
+
|
116
|
+
def test_ml(X_test, y_test, regr):
|
117
|
+
res = y_test.copy() # y_test is 2D pandas dataframe.
|
118
|
+
res.columns = ['truth']
|
119
|
+
res['pred'] = regr.predict(X_test)
|
120
|
+
return res
|
121
|
+
|
122
|
+
def run_ensemble(X_train, y_train, n_models = 10, frac_sample = 0.8):
|
123
|
+
base_params_xgb = {
|
124
|
+
"objective": "reg:squarederror",
|
125
|
+
'seed': 0,
|
126
|
+
"random_state": 0,
|
127
|
+
}
|
128
|
+
params_xgb = deepcopy(base_params_xgb)
|
129
|
+
# dropout-like regularization
|
130
|
+
params_xgb.update({
|
131
|
+
"subsample": 0.8, # Use 80% of the data for each tree
|
132
|
+
"colsample_bytree": 0.8, # Use 80% of the features for each tree
|
133
|
+
})
|
134
|
+
|
135
|
+
models = []
|
136
|
+
for i in tqdm(range(n_models)):
|
137
|
+
# Create a bootstrapped dataset
|
138
|
+
y_resampled = y_train.copy().sample(frac = frac_sample, random_state = i)
|
139
|
+
X_resampled = X_train.copy().loc[y_resampled.index]
|
140
|
+
# print(y_resampled.sort_index().index[0], y_resampled.sort_index().index[-1])
|
141
|
+
|
142
|
+
# Train the XGBoost model
|
143
|
+
params_xgb.update({'random_state': i})
|
144
|
+
model = XGBRegressor(**params_xgb)
|
145
|
+
model.fit(X_resampled, y_resampled)
|
146
|
+
models.append(model)
|
147
|
+
return models
|
148
|
+
|
149
|
+
# ===============================================================================================================================
|
150
|
+
# Deep learning neural networks
|
151
|
+
|
152
|
+
try:
|
153
|
+
from tensorflow import keras
|
154
|
+
from tensorflow.keras import layers
|
155
|
+
from tensorflow.keras import models
|
156
|
+
# from keras.layers import Dropout
|
157
|
+
from keras.callbacks import EarlyStopping
|
158
|
+
from scitbx.utils import *
|
159
|
+
except Exception as e:
|
160
|
+
print(e)
|
161
|
+
|
162
|
+
def train_lstm(X_train, y_train, nfeature, ntime, verbose = 2, epochs = 200, batch_size = 64):
|
163
|
+
# create and fit the LSTM network
|
164
|
+
model = models.Sequential()
|
165
|
+
model.add(layers.LSTM(64, input_shape=(nfeature, ntime)))
|
166
|
+
model.add(layers.Dropout(0.2))
|
167
|
+
model.add(layers.Dense(16, activation='relu'))
|
168
|
+
model.add(layers.Dropout(0.2))
|
169
|
+
model.add(layers.Dense(1, activation='relu'))
|
170
|
+
model.compile(loss='mean_squared_error', optimizer='adam')
|
171
|
+
# es = EarlyStopping(monitor='loss', mode='min', verbose=1)
|
172
|
+
# model.fit(X_train.reshape(-1, nsites, nfeats), y_train, epochs=100, batch_size=256, verbose=2, callbacks=[es])
|
173
|
+
model.fit(X_train, y_train, epochs = epochs, batch_size = batch_size, verbose=verbose)
|
174
|
+
return model
|
175
|
+
|
176
|
+
# ===============================================================================================================================
|
177
|
+
# Training utils
|
178
|
+
import numpy as np
|
179
|
+
import pandas as pd
|
180
|
+
from sklearn.model_selection import ShuffleSplit
|
181
|
+
from sklearn.model_selection import train_test_split
|
182
|
+
|
183
|
+
# randomly select sites
|
184
|
+
def random_select(ds, count, num, random_state = 0):
|
185
|
+
np.random.seed(random_state)
|
186
|
+
idxs = np.random.choice(np.delete(np.arange(len(ds)), count), num, replace = False)
|
187
|
+
return np.sort(idxs)
|
188
|
+
|
189
|
+
def split(Xs, ys, return_index = False, test_size = 0.33, random_state = 42):
|
190
|
+
if return_index:
|
191
|
+
sss = ShuffleSplit(n_splits=1, test_size = test_size, random_state = random_state)
|
192
|
+
sss.get_n_splits(Xs, ys)
|
193
|
+
train_index, test_index = next(sss.split(Xs, ys))
|
194
|
+
return (train_index, test_index)
|
195
|
+
else:
|
196
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
197
|
+
Xs, ys,
|
198
|
+
test_size = test_size,
|
199
|
+
random_state = random_state
|
200
|
+
)
|
201
|
+
return (X_train, X_test, y_train, y_test)
|
202
|
+
|
203
|
+
def split_cut(Xs, ys, test_ratio = 0.33):
|
204
|
+
"""
|
205
|
+
Split the timeseries into before and after halves
|
206
|
+
"""
|
207
|
+
assert ys.ndim == 2, 'ys must be 2D!'
|
208
|
+
assert len(Xs) == len(ys), 'Xs and ys should be equally long!'
|
209
|
+
assert type(Xs) == type(ys), 'Xs and ys should be the same data type!'
|
210
|
+
if not type(Xs) in [pd.core.frame.DataFrame, np.ndarray]: raise Exception('Only accept numpy ndarray or pandas dataframe')
|
211
|
+
anchor = int(np.floor(len(ys) * (1 - test_ratio)))
|
212
|
+
|
213
|
+
if type(Xs) == pd.core.frame.DataFrame:
|
214
|
+
X_train = Xs.iloc[0: anchor, :]
|
215
|
+
X_test = Xs.iloc[anchor::, :]
|
216
|
+
y_train = ys.iloc[0: anchor, :]
|
217
|
+
y_test = ys.iloc[anchor::, :]
|
218
|
+
else:
|
219
|
+
X_train = Xs[0: anchor, :]
|
220
|
+
X_test = Xs[anchor::, :]
|
221
|
+
y_train = ys[0: anchor, :]
|
222
|
+
y_test = ys[anchor::, :]
|
223
|
+
|
224
|
+
assert len(X_train) + len(X_test) == len(Xs), 'The sum of train and test lengths must equal to Xs/ys!'
|
225
|
+
|
226
|
+
return (X_train, X_test, y_train, y_test)
|