sciml 0.0.8__py3-none-any.whl → 0.0.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sciml/__init__.py +1 -1
- sciml/models.py +276 -268
- sciml/pipelines.py +434 -434
- sciml/utils.py +45 -45
- {sciml-0.0.8.dist-info → sciml-0.0.9.dist-info}/LICENSE +21 -21
- {sciml-0.0.8.dist-info → sciml-0.0.9.dist-info}/METADATA +13 -13
- sciml-0.0.9.dist-info/RECORD +9 -0
- {sciml-0.0.8.dist-info → sciml-0.0.9.dist-info}/WHEEL +1 -1
- sciml-0.0.8.dist-info/RECORD +0 -9
- {sciml-0.0.8.dist-info → sciml-0.0.9.dist-info}/top_level.txt +0 -0
sciml/__init__.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
# coding: utf-8
|
1
|
+
# coding: utf-8
|
2
2
|
__all__ = ["utils", "pipelines", "models"]
|
sciml/models.py
CHANGED
@@ -1,269 +1,277 @@
|
|
1
|
-
import numpy as np
|
2
|
-
import copy
|
3
|
-
import itertools
|
4
|
-
import warnings
|
5
|
-
from xgboost import XGBRegressor
|
6
|
-
from sklearn.metrics import mean_squared_error
|
7
|
-
from sklearn.model_selection import train_test_split
|
8
|
-
|
9
|
-
class SmartForest:
|
10
|
-
"""
|
11
|
-
SmartForest: A deep, intelligent decision forest model for complex sequential and tabular data.
|
12
|
-
|
13
|
-
SmartForest blends ideas from deep forests (cascade forest structures), LSTM-style forget gates,
|
14
|
-
and ensemble learning using XGBoost. It is especially suited for time series or structured tabular data
|
15
|
-
where layer-wise feature expansion and memory-inspired filtering can enhance performance.
|
16
|
-
|
17
|
-
Key Features:
|
18
|
-
-------------
|
19
|
-
- Deep cascade of XGBoost regressors
|
20
|
-
- Optional Multi-Grained Scanning (MGS) for local feature extraction
|
21
|
-
- Forget-gate-inspired mechanism to regulate information flow across layers
|
22
|
-
- Early stopping to prevent overfitting
|
23
|
-
- Full retention of best-performing model (lowest validation RMSE)
|
24
|
-
|
25
|
-
Parameters:
|
26
|
-
-----------
|
27
|
-
n_estimators_per_layer : int
|
28
|
-
Number of XGBoost regressors per layer.
|
29
|
-
|
30
|
-
max_layers : int
|
31
|
-
Maximum number of layers (depth) in the model.
|
32
|
-
|
33
|
-
early_stopping_rounds : int
|
34
|
-
Number of layers with no improvement before early stopping is triggered.
|
35
|
-
|
36
|
-
param_grid : dict
|
37
|
-
Grid of XGBoost hyperparameters to search over.
|
38
|
-
|
39
|
-
use_gpu : bool
|
40
|
-
If True, use GPU-accelerated training (CUDA required).
|
41
|
-
|
42
|
-
gpu_id : int
|
43
|
-
ID of GPU to use (if use_gpu=True).
|
44
|
-
|
45
|
-
window_sizes : list of int
|
46
|
-
Enables Multi-Grained Scanning if non-empty, with specified sliding window sizes.
|
47
|
-
|
48
|
-
forget_factor : float in [0, 1]
|
49
|
-
Simulates LSTM-style forget gate; higher values forget more past information.
|
50
|
-
|
51
|
-
verbose : int
|
52
|
-
Verbosity level (0 = silent, 1 = progress updates).
|
53
|
-
|
54
|
-
Methods:
|
55
|
-
--------
|
56
|
-
fit(X, y, X_val=None, y_val=None):
|
57
|
-
Train the SmartForest model layer by layer, using optional validation for early stopping.
|
58
|
-
|
59
|
-
predict(X):
|
60
|
-
Make predictions on new data using the trained cascade structure.
|
61
|
-
|
62
|
-
get_best_model():
|
63
|
-
Returns a copy of the best model and the corresponding RMSE from validation.
|
64
|
-
|
65
|
-
Example:
|
66
|
-
--------
|
67
|
-
>>> model = SmartForest(n_estimators_per_layer=5, max_layers=10, window_sizes=[2, 3], forget_factor=0.2)
|
68
|
-
>>> model.fit(X_train, y_train, X_val, y_val)
|
69
|
-
>>> y_pred = model.predict(X_val)
|
70
|
-
>>> best_model, best_rmse = model.get_best_model()
|
71
|
-
"""
|
72
|
-
def __init__(self, n_estimators_per_layer = 5, max_layers = 10, early_stopping_rounds = 3, param_grid = None,
|
73
|
-
use_gpu = False, gpu_id = 0, window_sizes = [], forget_factor = 0, verbose = 1):
|
74
|
-
self.n_estimators_per_layer = n_estimators_per_layer
|
75
|
-
self.max_layers = max_layers
|
76
|
-
self.early_stopping_rounds = early_stopping_rounds
|
77
|
-
self.param_grid = param_grid or {
|
78
|
-
"objective": ["reg:squarederror"],
|
79
|
-
"random_state": [42],
|
80
|
-
'seed': [0],
|
81
|
-
'n_estimators': [100],
|
82
|
-
'max_depth': [6],
|
83
|
-
'min_child_weight': [4],
|
84
|
-
'subsample': [0.8],
|
85
|
-
'colsample_bytree': [0.8],
|
86
|
-
'gamma': [0],
|
87
|
-
'reg_alpha': [0],
|
88
|
-
'reg_lambda': [1],
|
89
|
-
'learning_rate': [0.05],
|
90
|
-
}
|
91
|
-
self.use_gpu = use_gpu
|
92
|
-
self.gpu_id = gpu_id
|
93
|
-
self.window_sizes = window_sizes
|
94
|
-
self.forget_factor = forget_factor
|
95
|
-
self.layers = []
|
96
|
-
self.best_model = None
|
97
|
-
self.best_rmse = float("inf")
|
98
|
-
self.verbose = verbose
|
99
|
-
|
100
|
-
def _get_param_combinations(self):
|
101
|
-
keys, values = zip(*self.param_grid.items())
|
102
|
-
return [dict(zip(keys, v)) for v in itertools.product(*values)]
|
103
|
-
|
104
|
-
def _multi_grained_scanning(self, X, y):
|
105
|
-
new_features = []
|
106
|
-
for window_size in self.window_sizes:
|
107
|
-
if X.shape[1] < window_size:
|
108
|
-
continue
|
109
|
-
for start in range(X.shape[1] - window_size + 1):
|
110
|
-
window = X[:, start:start + window_size]
|
111
|
-
if y is None:
|
112
|
-
new_features.append(window)
|
113
|
-
continue
|
114
|
-
|
115
|
-
param_combos = self._get_param_combinations()
|
116
|
-
for params in param_combos:
|
117
|
-
if self.use_gpu:
|
118
|
-
params['tree_method'] = 'hist'
|
119
|
-
params['device'] = 'cuda'
|
120
|
-
model = XGBRegressor(**params)
|
121
|
-
model.fit(window, y)
|
122
|
-
preds = model.predict(window).reshape(-1, 1)
|
123
|
-
new_features.append(preds)
|
124
|
-
return np.hstack(new_features) if new_features else X
|
125
|
-
|
126
|
-
def _apply_forget_gate(self, X, layer_index):
|
127
|
-
forget_weights = np.random.rand(X.shape[1]) * self.forget_factor
|
128
|
-
return X * (1 - forget_weights)
|
129
|
-
|
130
|
-
def _fit_layer(self, X, y, X_val=None, y_val=None, layer_index=0):
|
131
|
-
layer = []
|
132
|
-
layer_outputs = []
|
133
|
-
param_combos = self._get_param_combinations()
|
134
|
-
X = self._apply_forget_gate(X, layer_index)
|
135
|
-
|
136
|
-
for i in range(self.n_estimators_per_layer):
|
137
|
-
best_rmse = float('inf')
|
138
|
-
best_model = None
|
139
|
-
|
140
|
-
for params in param_combos:
|
141
|
-
if self.use_gpu:
|
142
|
-
params['tree_method'] = 'hist'
|
143
|
-
params['device'] = 'cuda'
|
144
|
-
|
145
|
-
|
146
|
-
model
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
no_improve_rounds
|
195
|
-
if
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
return
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
'
|
243
|
-
'
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
1
|
+
import numpy as np
|
2
|
+
import copy
|
3
|
+
import itertools
|
4
|
+
import warnings
|
5
|
+
from xgboost import XGBRegressor
|
6
|
+
from sklearn.metrics import mean_squared_error
|
7
|
+
from sklearn.model_selection import train_test_split
|
8
|
+
|
9
|
+
class SmartForest:
|
10
|
+
"""
|
11
|
+
SmartForest: A deep, intelligent decision forest model for complex sequential and tabular data.
|
12
|
+
|
13
|
+
SmartForest blends ideas from deep forests (cascade forest structures), LSTM-style forget gates,
|
14
|
+
and ensemble learning using XGBoost. It is especially suited for time series or structured tabular data
|
15
|
+
where layer-wise feature expansion and memory-inspired filtering can enhance performance.
|
16
|
+
|
17
|
+
Key Features:
|
18
|
+
-------------
|
19
|
+
- Deep cascade of XGBoost regressors
|
20
|
+
- Optional Multi-Grained Scanning (MGS) for local feature extraction
|
21
|
+
- Forget-gate-inspired mechanism to regulate information flow across layers
|
22
|
+
- Early stopping to prevent overfitting
|
23
|
+
- Full retention of best-performing model (lowest validation RMSE)
|
24
|
+
|
25
|
+
Parameters:
|
26
|
+
-----------
|
27
|
+
n_estimators_per_layer : int
|
28
|
+
Number of XGBoost regressors per layer.
|
29
|
+
|
30
|
+
max_layers : int
|
31
|
+
Maximum number of layers (depth) in the model.
|
32
|
+
|
33
|
+
early_stopping_rounds : int
|
34
|
+
Number of layers with no improvement before early stopping is triggered.
|
35
|
+
|
36
|
+
param_grid : dict
|
37
|
+
Grid of XGBoost hyperparameters to search over.
|
38
|
+
|
39
|
+
use_gpu : bool
|
40
|
+
If True, use GPU-accelerated training (CUDA required).
|
41
|
+
|
42
|
+
gpu_id : int
|
43
|
+
ID of GPU to use (if use_gpu=True).
|
44
|
+
|
45
|
+
window_sizes : list of int
|
46
|
+
Enables Multi-Grained Scanning if non-empty, with specified sliding window sizes.
|
47
|
+
|
48
|
+
forget_factor : float in [0, 1]
|
49
|
+
Simulates LSTM-style forget gate; higher values forget more past information.
|
50
|
+
|
51
|
+
verbose : int
|
52
|
+
Verbosity level (0 = silent, 1 = progress updates).
|
53
|
+
|
54
|
+
Methods:
|
55
|
+
--------
|
56
|
+
fit(X, y, X_val=None, y_val=None):
|
57
|
+
Train the SmartForest model layer by layer, using optional validation for early stopping.
|
58
|
+
|
59
|
+
predict(X):
|
60
|
+
Make predictions on new data using the trained cascade structure.
|
61
|
+
|
62
|
+
get_best_model():
|
63
|
+
Returns a copy of the best model and the corresponding RMSE from validation.
|
64
|
+
|
65
|
+
Example:
|
66
|
+
--------
|
67
|
+
>>> model = SmartForest(n_estimators_per_layer=5, max_layers=10, window_sizes=[2, 3], forget_factor=0.2)
|
68
|
+
>>> model.fit(X_train, y_train, X_val, y_val)
|
69
|
+
>>> y_pred = model.predict(X_val)
|
70
|
+
>>> best_model, best_rmse = model.get_best_model()
|
71
|
+
"""
|
72
|
+
def __init__(self, n_estimators_per_layer = 5, max_layers = 10, early_stopping_rounds = 3, param_grid = None,
|
73
|
+
use_gpu = False, gpu_id = 0, window_sizes = [], forget_factor = 0, verbose = 1):
|
74
|
+
self.n_estimators_per_layer = n_estimators_per_layer
|
75
|
+
self.max_layers = max_layers
|
76
|
+
self.early_stopping_rounds = early_stopping_rounds
|
77
|
+
self.param_grid = param_grid or {
|
78
|
+
"objective": ["reg:squarederror"],
|
79
|
+
"random_state": [42],
|
80
|
+
'seed': [0],
|
81
|
+
'n_estimators': [100],
|
82
|
+
'max_depth': [6],
|
83
|
+
'min_child_weight': [4],
|
84
|
+
'subsample': [0.8],
|
85
|
+
'colsample_bytree': [0.8],
|
86
|
+
'gamma': [0],
|
87
|
+
'reg_alpha': [0],
|
88
|
+
'reg_lambda': [1],
|
89
|
+
'learning_rate': [0.05],
|
90
|
+
}
|
91
|
+
self.use_gpu = use_gpu
|
92
|
+
self.gpu_id = gpu_id
|
93
|
+
self.window_sizes = window_sizes
|
94
|
+
self.forget_factor = forget_factor
|
95
|
+
self.layers = []
|
96
|
+
self.best_model = None
|
97
|
+
self.best_rmse = float("inf")
|
98
|
+
self.verbose = verbose
|
99
|
+
|
100
|
+
def _get_param_combinations(self):
|
101
|
+
keys, values = zip(*self.param_grid.items())
|
102
|
+
return [dict(zip(keys, v)) for v in itertools.product(*values)]
|
103
|
+
|
104
|
+
def _multi_grained_scanning(self, X, y):
|
105
|
+
new_features = []
|
106
|
+
for window_size in self.window_sizes:
|
107
|
+
if X.shape[1] < window_size:
|
108
|
+
continue
|
109
|
+
for start in range(X.shape[1] - window_size + 1):
|
110
|
+
window = X[:, start:start + window_size]
|
111
|
+
if y is None:
|
112
|
+
new_features.append(window)
|
113
|
+
continue
|
114
|
+
|
115
|
+
param_combos = self._get_param_combinations()
|
116
|
+
for params in param_combos:
|
117
|
+
if self.use_gpu:
|
118
|
+
params['tree_method'] = 'hist'
|
119
|
+
params['device'] = 'cuda'
|
120
|
+
model = XGBRegressor(**params)
|
121
|
+
model.fit(window, y)
|
122
|
+
preds = model.predict(window).reshape(-1, 1)
|
123
|
+
new_features.append(preds)
|
124
|
+
return np.hstack(new_features) if new_features else X
|
125
|
+
|
126
|
+
def _apply_forget_gate(self, X, layer_index):
|
127
|
+
forget_weights = np.random.rand(X.shape[1]) * self.forget_factor
|
128
|
+
return X * (1 - forget_weights)
|
129
|
+
|
130
|
+
def _fit_layer(self, X, y, X_val=None, y_val=None, layer_index=0):
|
131
|
+
layer = []
|
132
|
+
layer_outputs = []
|
133
|
+
param_combos = self._get_param_combinations()
|
134
|
+
X = self._apply_forget_gate(X, layer_index)
|
135
|
+
|
136
|
+
for i in range(self.n_estimators_per_layer):
|
137
|
+
best_rmse = float('inf')
|
138
|
+
best_model = None
|
139
|
+
|
140
|
+
for params in param_combos:
|
141
|
+
if self.use_gpu:
|
142
|
+
params['tree_method'] = 'hist'
|
143
|
+
params['device'] = 'cuda'
|
144
|
+
|
145
|
+
params = params.copy() # Prevent modification from affecting the next loop iteration
|
146
|
+
params['random_state'] = i # Use a different random seed for each model to enhance diversity
|
147
|
+
|
148
|
+
model = XGBRegressor(**params)
|
149
|
+
model.fit(X, y)
|
150
|
+
|
151
|
+
if X_val is not None:
|
152
|
+
preds_val = model.predict(X_val)
|
153
|
+
rmse = np.sqrt(mean_squared_error(y_val, preds_val))
|
154
|
+
if rmse < best_rmse:
|
155
|
+
best_rmse = rmse
|
156
|
+
best_model = model
|
157
|
+
else:
|
158
|
+
best_model = model
|
159
|
+
|
160
|
+
preds = best_model.predict(X).reshape(-1, 1)
|
161
|
+
layer.append(best_model)
|
162
|
+
layer_outputs.append(preds)
|
163
|
+
|
164
|
+
output = np.hstack(layer_outputs)
|
165
|
+
return layer, output
|
166
|
+
|
167
|
+
def fit(self, X, y, X_val=None, y_val=None):
|
168
|
+
X_current = self._multi_grained_scanning(X, y)
|
169
|
+
X_val_current = self._multi_grained_scanning(X_val, y_val) if X_val is not None else None
|
170
|
+
no_improve_rounds = 0
|
171
|
+
|
172
|
+
for layer_index in range(self.max_layers):
|
173
|
+
if self.verbose: print(f"Training Layer {layer_index + 1}")
|
174
|
+
layer, output = self._fit_layer(X_current, y, X_val_current, y_val, layer_index)
|
175
|
+
self.layers.append(layer)
|
176
|
+
X_current = np.hstack([X_current, output])
|
177
|
+
|
178
|
+
if X_val is not None:
|
179
|
+
val_outputs = []
|
180
|
+
for reg in layer:
|
181
|
+
n_features = reg.n_features_in_
|
182
|
+
preds = reg.predict(X_val_current[:, :n_features]).reshape(-1, 1)
|
183
|
+
val_outputs.append(preds)
|
184
|
+
val_output = np.hstack(val_outputs)
|
185
|
+
X_val_current = np.hstack([X_val_current, val_output])
|
186
|
+
|
187
|
+
y_pred = self.predict(X_val)
|
188
|
+
rmse = np.sqrt(mean_squared_error(y_val, y_pred))
|
189
|
+
if self.verbose: print(f"Validation RMSE: {rmse:.4f}")
|
190
|
+
|
191
|
+
if rmse < self.best_rmse:
|
192
|
+
self.best_rmse = rmse
|
193
|
+
self.best_model = copy.deepcopy(self.layers)
|
194
|
+
no_improve_rounds = 0
|
195
|
+
if self.verbose: print(f"✅ New best RMSE: {self.best_rmse:.4f}")
|
196
|
+
else:
|
197
|
+
no_improve_rounds += 1
|
198
|
+
if no_improve_rounds >= self.early_stopping_rounds:
|
199
|
+
if self.verbose: print("Early stopping triggered.")
|
200
|
+
break
|
201
|
+
|
202
|
+
def predict(self, X):
|
203
|
+
X_current = self._multi_grained_scanning(X, None)
|
204
|
+
X_current = self._apply_forget_gate(X_current, layer_index=-1)
|
205
|
+
|
206
|
+
for layer in self.layers:
|
207
|
+
layer_outputs = []
|
208
|
+
for reg in layer:
|
209
|
+
n_features = reg.n_features_in_
|
210
|
+
preds = reg.predict(X_current[:, :n_features]).reshape(-1, 1)
|
211
|
+
layer_outputs.append(preds)
|
212
|
+
output = np.hstack(layer_outputs)
|
213
|
+
X_current = np.hstack([X_current, output])
|
214
|
+
|
215
|
+
final_outputs = []
|
216
|
+
for reg in self.layers[-1]:
|
217
|
+
n_features = reg.n_features_in_
|
218
|
+
final_outputs.append(reg.predict(X_current[:, :n_features]).reshape(-1, 1))
|
219
|
+
return np.mean(np.hstack(final_outputs), axis=1)
|
220
|
+
|
221
|
+
def get_best_model(self):
|
222
|
+
return self.best_model, self.best_rmse
|
223
|
+
|
224
|
+
"""
|
225
|
+
# ============================== Test Example ==============================
|
226
|
+
from sklearn.datasets import load_diabetes
|
227
|
+
from sklearn.datasets import fetch_california_housing
|
228
|
+
from sklearn.model_selection import train_test_split
|
229
|
+
|
230
|
+
|
231
|
+
|
232
|
+
warnings.simplefilter('ignore')
|
233
|
+
|
234
|
+
# X, y = load_diabetes(return_X_y=True) # Using diabetes dataset
|
235
|
+
X, y = fetch_california_housing(return_X_y=True) # Using house price dataset
|
236
|
+
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=42)
|
237
|
+
|
238
|
+
# Hyperparameter grid
|
239
|
+
param_grid = {
|
240
|
+
"objective": ["reg:squarederror"],
|
241
|
+
"random_state": [42],
|
242
|
+
'seed': [0],
|
243
|
+
'n_estimators': [100],
|
244
|
+
'max_depth': [6],
|
245
|
+
'min_child_weight': [4],
|
246
|
+
'subsample': [0.8],
|
247
|
+
'colsample_bytree': [0.8],
|
248
|
+
'gamma': [0],
|
249
|
+
'reg_alpha': [0],
|
250
|
+
'reg_lambda': [1],
|
251
|
+
'learning_rate': [0.05],
|
252
|
+
}
|
253
|
+
|
254
|
+
# Create the model with Multi-Grained Scanning enabled (with window sizes 2 and 3)
|
255
|
+
regr = SmartForest(
|
256
|
+
n_estimators_per_layer = 5,
|
257
|
+
max_layers = 10,
|
258
|
+
early_stopping_rounds = 5,
|
259
|
+
param_grid = param_grid,
|
260
|
+
use_gpu = False,
|
261
|
+
gpu_id = 0,
|
262
|
+
window_sizes = [], # Enables MGS if e.g., [2, 3], else empty disables MGS.
|
263
|
+
forget_factor = 0., # Set forget factor to simulate forget gate behavior
|
264
|
+
verbose = 1
|
265
|
+
)
|
266
|
+
|
267
|
+
regr.fit(X_train, y_train, X_val, y_val)
|
268
|
+
|
269
|
+
# Predict on validation set and evaluate
|
270
|
+
y_pred = regr.predict(X_val)
|
271
|
+
rmse = np.sqrt(mean_squared_error(y_val, y_pred))
|
272
|
+
print("\nFinal RMSE:", rmse)
|
273
|
+
|
274
|
+
# Output best model and RMSE
|
275
|
+
best_model, best_rmse = regr.get_best_model()
|
276
|
+
print("\nBest validation RMSE:", best_rmse)
|
269
277
|
"""
|