scikit-survival 0.23.1__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scikit_survival-0.23.1.dist-info/COPYING +674 -0
- scikit_survival-0.23.1.dist-info/METADATA +888 -0
- scikit_survival-0.23.1.dist-info/RECORD +55 -0
- scikit_survival-0.23.1.dist-info/WHEEL +5 -0
- scikit_survival-0.23.1.dist-info/top_level.txt +1 -0
- sksurv/__init__.py +138 -0
- sksurv/base.py +103 -0
- sksurv/bintrees/__init__.py +15 -0
- sksurv/bintrees/_binarytrees.cp313-win_amd64.pyd +0 -0
- sksurv/column.py +201 -0
- sksurv/compare.py +123 -0
- sksurv/datasets/__init__.py +10 -0
- sksurv/datasets/base.py +436 -0
- sksurv/datasets/data/GBSG2.arff +700 -0
- sksurv/datasets/data/actg320.arff +1169 -0
- sksurv/datasets/data/breast_cancer_GSE7390-metastasis.arff +283 -0
- sksurv/datasets/data/flchain.arff +7887 -0
- sksurv/datasets/data/veteran.arff +148 -0
- sksurv/datasets/data/whas500.arff +520 -0
- sksurv/ensemble/__init__.py +2 -0
- sksurv/ensemble/_coxph_loss.cp313-win_amd64.pyd +0 -0
- sksurv/ensemble/boosting.py +1610 -0
- sksurv/ensemble/forest.py +947 -0
- sksurv/ensemble/survival_loss.py +151 -0
- sksurv/exceptions.py +18 -0
- sksurv/functions.py +114 -0
- sksurv/io/__init__.py +2 -0
- sksurv/io/arffread.py +58 -0
- sksurv/io/arffwrite.py +145 -0
- sksurv/kernels/__init__.py +1 -0
- sksurv/kernels/_clinical_kernel.cp313-win_amd64.pyd +0 -0
- sksurv/kernels/clinical.py +328 -0
- sksurv/linear_model/__init__.py +3 -0
- sksurv/linear_model/_coxnet.cp313-win_amd64.pyd +0 -0
- sksurv/linear_model/aft.py +205 -0
- sksurv/linear_model/coxnet.py +543 -0
- sksurv/linear_model/coxph.py +618 -0
- sksurv/meta/__init__.py +4 -0
- sksurv/meta/base.py +35 -0
- sksurv/meta/ensemble_selection.py +642 -0
- sksurv/meta/stacking.py +349 -0
- sksurv/metrics.py +996 -0
- sksurv/nonparametric.py +588 -0
- sksurv/preprocessing.py +155 -0
- sksurv/svm/__init__.py +11 -0
- sksurv/svm/_minlip.cp313-win_amd64.pyd +0 -0
- sksurv/svm/_prsvm.cp313-win_amd64.pyd +0 -0
- sksurv/svm/minlip.py +606 -0
- sksurv/svm/naive_survival_svm.py +221 -0
- sksurv/svm/survival_svm.py +1228 -0
- sksurv/testing.py +108 -0
- sksurv/tree/__init__.py +1 -0
- sksurv/tree/_criterion.cp313-win_amd64.pyd +0 -0
- sksurv/tree/tree.py +703 -0
- sksurv/util.py +333 -0
|
@@ -0,0 +1,221 @@
|
|
|
1
|
+
# This program is free software: you can redistribute it and/or modify
|
|
2
|
+
# it under the terms of the GNU General Public License as published by
|
|
3
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
4
|
+
# (at your option) any later version.
|
|
5
|
+
#
|
|
6
|
+
# This program is distributed in the hope that it will be useful,
|
|
7
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
8
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
9
|
+
# GNU General Public License for more details.
|
|
10
|
+
#
|
|
11
|
+
# You should have received a copy of the GNU General Public License
|
|
12
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
13
|
+
import itertools
|
|
14
|
+
|
|
15
|
+
import numpy as np
|
|
16
|
+
import pandas as pd
|
|
17
|
+
from scipy.special import comb
|
|
18
|
+
from sklearn.svm import LinearSVC
|
|
19
|
+
from sklearn.utils import check_random_state
|
|
20
|
+
from sklearn.utils.validation import _get_feature_names
|
|
21
|
+
|
|
22
|
+
from ..base import SurvivalAnalysisMixin
|
|
23
|
+
from ..exceptions import NoComparablePairException
|
|
24
|
+
from ..util import check_array_survival
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class NaiveSurvivalSVM(SurvivalAnalysisMixin, LinearSVC):
|
|
28
|
+
"""Naive version of linear Survival Support Vector Machine.
|
|
29
|
+
|
|
30
|
+
Uses regular linear support vector classifier (liblinear).
|
|
31
|
+
A new set of samples is created by building the difference between any two feature
|
|
32
|
+
vectors in the original data, thus this version requires :math:`O(\\text{n_samples}^2)` space.
|
|
33
|
+
|
|
34
|
+
See :class:`sksurv.svm.HingeLossSurvivalSVM` for the kernel naive survival SVM.
|
|
35
|
+
|
|
36
|
+
.. math::
|
|
37
|
+
|
|
38
|
+
\\min_{\\mathbf{w}}\\quad
|
|
39
|
+
\\frac{1}{2} \\lVert \\mathbf{w} \\rVert_2^2
|
|
40
|
+
+ \\gamma \\sum_{i = 1}^n \\xi_i \\\\
|
|
41
|
+
\\text{subject to}\\quad
|
|
42
|
+
\\mathbf{w}^\\top \\mathbf{x}_i - \\mathbf{w}^\\top \\mathbf{x}_j \\geq 1 - \\xi_{ij},\\quad
|
|
43
|
+
\\forall (i, j) \\in \\mathcal{P}, \\\\
|
|
44
|
+
\\xi_i \\geq 0,\\quad \\forall (i, j) \\in \\mathcal{P}.
|
|
45
|
+
|
|
46
|
+
\\mathcal{P} = \\{ (i, j) \\mid y_i > y_j \\land \\delta_j = 1 \\}_{i,j=1,\\dots,n}.
|
|
47
|
+
|
|
48
|
+
See [1]_, [2]_ for further description.
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
alpha : float, positive, default: 1.0
|
|
53
|
+
Weight of penalizing the squared hinge loss in the objective function.
|
|
54
|
+
|
|
55
|
+
loss : {'hinge', 'squared_hinge'}, default: 'squared_hinge'
|
|
56
|
+
Specifies the loss function. 'hinge' is the standard SVM loss
|
|
57
|
+
(used e.g. by the SVC class) while 'squared_hinge' is the
|
|
58
|
+
square of the hinge loss.
|
|
59
|
+
|
|
60
|
+
penalty : {'l1', 'l2'}, default: 'l2'
|
|
61
|
+
Specifies the norm used in the penalization. The 'l2'
|
|
62
|
+
penalty is the standard used in SVC. The 'l1' leads to `coef_`
|
|
63
|
+
vectors that are sparse.
|
|
64
|
+
|
|
65
|
+
dual : bool, default: True
|
|
66
|
+
Select the algorithm to either solve the dual or primal
|
|
67
|
+
optimization problem. Prefer dual=False when n_samples > n_features.
|
|
68
|
+
|
|
69
|
+
tol : float, optional, default: 1e-4
|
|
70
|
+
Tolerance for stopping criteria.
|
|
71
|
+
|
|
72
|
+
verbose : int, default: 0
|
|
73
|
+
Enable verbose output. Note that this setting takes advantage of a
|
|
74
|
+
per-process runtime setting in liblinear that, if enabled, may not work
|
|
75
|
+
properly in a multithreaded context.
|
|
76
|
+
|
|
77
|
+
random_state : int seed, RandomState instance, or None, default: None
|
|
78
|
+
The seed of the pseudo random number generator to use when
|
|
79
|
+
shuffling the data.
|
|
80
|
+
|
|
81
|
+
max_iter : int, default: 1000
|
|
82
|
+
The maximum number of iterations to be run.
|
|
83
|
+
|
|
84
|
+
Attributes
|
|
85
|
+
----------
|
|
86
|
+
n_iter_ : int
|
|
87
|
+
Number of iterations run by the optimization routine to fit the model.
|
|
88
|
+
|
|
89
|
+
See also
|
|
90
|
+
--------
|
|
91
|
+
sksurv.svm.FastSurvivalSVM
|
|
92
|
+
Alternative implementation with reduced time complexity for training.
|
|
93
|
+
|
|
94
|
+
References
|
|
95
|
+
----------
|
|
96
|
+
.. [1] Van Belle, V., Pelckmans, K., Suykens, J. A., & Van Huffel, S.
|
|
97
|
+
Support Vector Machines for Survival Analysis. In Proc. of the 3rd Int. Conf.
|
|
98
|
+
on Computational Intelligence in Medicine and Healthcare (CIMED). 1-8. 2007
|
|
99
|
+
|
|
100
|
+
.. [2] Evers, L., Messow, C.M.,
|
|
101
|
+
"Sparse kernel methods for high-dimensional survival data",
|
|
102
|
+
Bioinformatics 24(14), 1632-8, 2008.
|
|
103
|
+
|
|
104
|
+
"""
|
|
105
|
+
|
|
106
|
+
_parameter_constraints = {
|
|
107
|
+
"penalty": LinearSVC._parameter_constraints["penalty"],
|
|
108
|
+
"loss": LinearSVC._parameter_constraints["loss"],
|
|
109
|
+
"dual": LinearSVC._parameter_constraints["dual"],
|
|
110
|
+
"tol": LinearSVC._parameter_constraints["tol"],
|
|
111
|
+
"alpha": LinearSVC._parameter_constraints["C"],
|
|
112
|
+
"verbose": LinearSVC._parameter_constraints["verbose"],
|
|
113
|
+
"random_state": LinearSVC._parameter_constraints["random_state"],
|
|
114
|
+
"max_iter": LinearSVC._parameter_constraints["max_iter"],
|
|
115
|
+
}
|
|
116
|
+
|
|
117
|
+
def __init__(
|
|
118
|
+
self,
|
|
119
|
+
penalty="l2",
|
|
120
|
+
loss="squared_hinge",
|
|
121
|
+
*,
|
|
122
|
+
dual=False,
|
|
123
|
+
tol=1e-4,
|
|
124
|
+
alpha=1.0,
|
|
125
|
+
verbose=0,
|
|
126
|
+
random_state=None,
|
|
127
|
+
max_iter=1000,
|
|
128
|
+
):
|
|
129
|
+
super().__init__(
|
|
130
|
+
penalty=penalty,
|
|
131
|
+
loss=loss,
|
|
132
|
+
dual=dual,
|
|
133
|
+
tol=tol,
|
|
134
|
+
verbose=verbose,
|
|
135
|
+
random_state=random_state,
|
|
136
|
+
max_iter=max_iter,
|
|
137
|
+
fit_intercept=False,
|
|
138
|
+
)
|
|
139
|
+
self.alpha = alpha
|
|
140
|
+
|
|
141
|
+
def _get_survival_pairs(self, X, y, random_state): # pylint: disable=no-self-use
|
|
142
|
+
feature_names = _get_feature_names(X)
|
|
143
|
+
|
|
144
|
+
X = self._validate_data(X, ensure_min_samples=2)
|
|
145
|
+
event, time = check_array_survival(X, y)
|
|
146
|
+
|
|
147
|
+
idx = np.arange(X.shape[0], dtype=int)
|
|
148
|
+
random_state.shuffle(idx)
|
|
149
|
+
|
|
150
|
+
n_pairs = int(comb(X.shape[0], 2))
|
|
151
|
+
x_pairs = np.empty((n_pairs, X.shape[1]), dtype=float)
|
|
152
|
+
y_pairs = np.empty(n_pairs, dtype=np.int8)
|
|
153
|
+
k = 0
|
|
154
|
+
for xi, xj in itertools.combinations(idx, 2):
|
|
155
|
+
if time[xi] > time[xj] and event[xj]:
|
|
156
|
+
np.subtract(X[xi, :], X[xj, :], out=x_pairs[k, :])
|
|
157
|
+
y_pairs[k] = 1
|
|
158
|
+
k += 1
|
|
159
|
+
elif time[xi] < time[xj] and event[xi]:
|
|
160
|
+
np.subtract(X[xi, :], X[xj, :], out=x_pairs[k, :])
|
|
161
|
+
y_pairs[k] = -1
|
|
162
|
+
k += 1
|
|
163
|
+
elif time[xi] == time[xj] and (event[xi] or event[xj]):
|
|
164
|
+
np.subtract(X[xi, :], X[xj, :], out=x_pairs[k, :])
|
|
165
|
+
y_pairs[k] = 1 if event[xj] else -1
|
|
166
|
+
k += 1
|
|
167
|
+
|
|
168
|
+
x_pairs.resize((k, X.shape[1]), refcheck=False)
|
|
169
|
+
y_pairs.resize(k, refcheck=False)
|
|
170
|
+
|
|
171
|
+
if feature_names is not None:
|
|
172
|
+
x_pairs = pd.DataFrame(x_pairs, columns=feature_names)
|
|
173
|
+
return x_pairs, y_pairs
|
|
174
|
+
|
|
175
|
+
def fit(self, X, y, sample_weight=None):
|
|
176
|
+
"""Build a survival support vector machine model from training data.
|
|
177
|
+
|
|
178
|
+
Parameters
|
|
179
|
+
----------
|
|
180
|
+
X : array-like, shape = (n_samples, n_features)
|
|
181
|
+
Data matrix.
|
|
182
|
+
|
|
183
|
+
y : structured array, shape = (n_samples,)
|
|
184
|
+
A structured array containing the binary event indicator
|
|
185
|
+
as first field, and time of event or time of censoring as
|
|
186
|
+
second field.
|
|
187
|
+
|
|
188
|
+
sample_weight : array-like, shape = (n_samples,), optional
|
|
189
|
+
Array of weights that are assigned to individual
|
|
190
|
+
samples. If not provided,
|
|
191
|
+
then each sample is given unit weight.
|
|
192
|
+
|
|
193
|
+
Returns
|
|
194
|
+
-------
|
|
195
|
+
self
|
|
196
|
+
"""
|
|
197
|
+
random_state = check_random_state(self.random_state)
|
|
198
|
+
|
|
199
|
+
x_pairs, y_pairs = self._get_survival_pairs(X, y, random_state)
|
|
200
|
+
if x_pairs.shape[0] == 0:
|
|
201
|
+
raise NoComparablePairException("Data has no comparable pairs, cannot fit model.")
|
|
202
|
+
|
|
203
|
+
self.C = self.alpha
|
|
204
|
+
return super().fit(x_pairs, y_pairs, sample_weight=sample_weight)
|
|
205
|
+
|
|
206
|
+
def predict(self, X):
|
|
207
|
+
"""Rank samples according to survival times
|
|
208
|
+
|
|
209
|
+
Lower ranks indicate shorter survival, higher ranks longer survival.
|
|
210
|
+
|
|
211
|
+
Parameters
|
|
212
|
+
----------
|
|
213
|
+
X : array-like, shape = (n_samples, n_features,)
|
|
214
|
+
The input samples.
|
|
215
|
+
|
|
216
|
+
Returns
|
|
217
|
+
-------
|
|
218
|
+
y : ndarray, shape = (n_samples,)
|
|
219
|
+
Predicted ranks.
|
|
220
|
+
"""
|
|
221
|
+
return -self.decision_function(X)
|