scikit-survival 0.23.1__cp310-cp310-macosx_11_0_arm64.whl → 0.24.1__cp310-cp310-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {scikit_survival-0.23.1.dist-info → scikit_survival-0.24.1.dist-info}/METADATA +38 -37
- scikit_survival-0.24.1.dist-info/RECORD +57 -0
- {scikit_survival-0.23.1.dist-info → scikit_survival-0.24.1.dist-info}/WHEEL +2 -1
- sksurv/__init__.py +2 -2
- sksurv/base.py +4 -2
- sksurv/bintrees/_binarytrees.cpython-310-darwin.so +0 -0
- sksurv/datasets/__init__.py +2 -0
- sksurv/datasets/base.py +159 -6
- sksurv/datasets/data/bmt.arff +46 -0
- sksurv/datasets/data/cgvhd.arff +118 -0
- sksurv/ensemble/_coxph_loss.cpython-310-darwin.so +0 -0
- sksurv/ensemble/boosting.py +18 -12
- sksurv/ensemble/forest.py +25 -13
- sksurv/functions.py +1 -1
- sksurv/kernels/_clinical_kernel.cpython-310-darwin.so +0 -0
- sksurv/kernels/clinical.py +5 -5
- sksurv/linear_model/_coxnet.cpython-310-darwin.so +0 -0
- sksurv/linear_model/coxnet.py +9 -9
- sksurv/linear_model/coxph.py +4 -4
- sksurv/metrics.py +1 -2
- sksurv/nonparametric.py +271 -17
- sksurv/preprocessing.py +4 -4
- sksurv/svm/_minlip.cpython-310-darwin.so +0 -0
- sksurv/svm/_prsvm.cpython-310-darwin.so +0 -0
- sksurv/svm/minlip.py +7 -4
- sksurv/svm/naive_survival_svm.py +2 -3
- sksurv/svm/survival_svm.py +16 -8
- sksurv/tree/_criterion.cpython-310-darwin.so +0 -0
- sksurv/tree/tree.py +21 -20
- sksurv/util.py +33 -5
- scikit_survival-0.23.1.dist-info/RECORD +0 -55
- {scikit_survival-0.23.1.dist-info → scikit_survival-0.24.1.dist-info/licenses}/COPYING +0 -0
- {scikit_survival-0.23.1.dist-info → scikit_survival-0.24.1.dist-info}/top_level.txt +0 -0
|
@@ -1,9 +1,9 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: scikit-survival
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.24.1
|
|
4
4
|
Summary: Survival analysis built on top of scikit-learn
|
|
5
5
|
Author-email: Sebastian Pölsterl <sebp@k-d-w.org>
|
|
6
|
-
License:
|
|
6
|
+
License: GNU GENERAL PUBLIC LICENSE
|
|
7
7
|
Version 3, 29 June 2007
|
|
8
8
|
|
|
9
9
|
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
|
@@ -694,52 +694,53 @@ Classifier: Programming Language :: C++
|
|
|
694
694
|
Classifier: Programming Language :: Cython
|
|
695
695
|
Classifier: Programming Language :: Python
|
|
696
696
|
Classifier: Programming Language :: Python :: 3
|
|
697
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
698
697
|
Classifier: Programming Language :: Python :: 3.10
|
|
699
698
|
Classifier: Programming Language :: Python :: 3.11
|
|
700
699
|
Classifier: Programming Language :: Python :: 3.12
|
|
700
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
701
701
|
Classifier: Topic :: Software Development
|
|
702
702
|
Classifier: Topic :: Scientific/Engineering
|
|
703
|
-
Requires-Python: >=3.
|
|
703
|
+
Requires-Python: >=3.10
|
|
704
704
|
Description-Content-Type: text/x-rst
|
|
705
705
|
License-File: COPYING
|
|
706
706
|
Requires-Dist: ecos
|
|
707
707
|
Requires-Dist: joblib
|
|
708
708
|
Requires-Dist: numexpr
|
|
709
709
|
Requires-Dist: numpy
|
|
710
|
-
Requires-Dist: osqp
|
|
711
|
-
Requires-Dist: pandas
|
|
712
|
-
Requires-Dist: scipy
|
|
713
|
-
Requires-Dist: scikit-learn
|
|
710
|
+
Requires-Dist: osqp<1.0.0,>=0.6.3
|
|
711
|
+
Requires-Dist: pandas>=1.4.0
|
|
712
|
+
Requires-Dist: scipy>=1.3.2
|
|
713
|
+
Requires-Dist: scikit-learn<1.7,>=1.6.1
|
|
714
714
|
Provides-Extra: dev
|
|
715
|
-
Requires-Dist: black[jupyter]
|
|
716
|
-
Requires-Dist: build
|
|
717
|
-
Requires-Dist: coverage
|
|
718
|
-
Requires-Dist: Cython
|
|
719
|
-
Requires-Dist: packaging
|
|
720
|
-
Requires-Dist: pre-commit
|
|
721
|
-
Requires-Dist: pytest
|
|
722
|
-
Requires-Dist: ruff
|
|
723
|
-
Requires-Dist: setuptools-scm
|
|
724
|
-
Requires-Dist: tomli
|
|
725
|
-
Requires-Dist: tox
|
|
715
|
+
Requires-Dist: black[jupyter]; extra == "dev"
|
|
716
|
+
Requires-Dist: build; extra == "dev"
|
|
717
|
+
Requires-Dist: coverage; extra == "dev"
|
|
718
|
+
Requires-Dist: Cython>=3.0.10; extra == "dev"
|
|
719
|
+
Requires-Dist: packaging; extra == "dev"
|
|
720
|
+
Requires-Dist: pre-commit; extra == "dev"
|
|
721
|
+
Requires-Dist: pytest; extra == "dev"
|
|
722
|
+
Requires-Dist: ruff; extra == "dev"
|
|
723
|
+
Requires-Dist: setuptools-scm>=8; extra == "dev"
|
|
724
|
+
Requires-Dist: tomli; extra == "dev"
|
|
725
|
+
Requires-Dist: tox; extra == "dev"
|
|
726
726
|
Provides-Extra: docs
|
|
727
|
-
Requires-Dist: ipython
|
|
728
|
-
Requires-Dist: nbsphinx
|
|
729
|
-
Requires-Dist: docutils
|
|
730
|
-
Requires-Dist: setuptools-scm
|
|
731
|
-
Requires-Dist: sphinx
|
|
732
|
-
Requires-Dist: pydata-sphinx-theme
|
|
733
|
-
Requires-Dist: sphinxcontrib-spelling
|
|
734
|
-
Requires-Dist: sphinx-design
|
|
735
|
-
Requires-Dist: sphinx-copybutton
|
|
727
|
+
Requires-Dist: ipython!=8.7.0; extra == "docs"
|
|
728
|
+
Requires-Dist: nbsphinx>=0.9.2; extra == "docs"
|
|
729
|
+
Requires-Dist: docutils; extra == "docs"
|
|
730
|
+
Requires-Dist: setuptools-scm; extra == "docs"
|
|
731
|
+
Requires-Dist: sphinx~=8.1.3; extra == "docs"
|
|
732
|
+
Requires-Dist: pydata-sphinx-theme~=0.16.1; extra == "docs"
|
|
733
|
+
Requires-Dist: sphinxcontrib-spelling; extra == "docs"
|
|
734
|
+
Requires-Dist: sphinx-design~=0.6.1; extra == "docs"
|
|
735
|
+
Requires-Dist: sphinx-copybutton~=0.5.2; extra == "docs"
|
|
736
736
|
Provides-Extra: nbval
|
|
737
|
-
Requires-Dist: ipykernel
|
|
738
|
-
Requires-Dist: ipython
|
|
739
|
-
Requires-Dist: matplotlib
|
|
740
|
-
Requires-Dist: nbformat
|
|
741
|
-
Requires-Dist: nbval
|
|
742
|
-
Requires-Dist: seaborn
|
|
737
|
+
Requires-Dist: ipykernel; extra == "nbval"
|
|
738
|
+
Requires-Dist: ipython!=8.7.0; extra == "nbval"
|
|
739
|
+
Requires-Dist: matplotlib~=3.9.0; extra == "nbval"
|
|
740
|
+
Requires-Dist: nbformat; extra == "nbval"
|
|
741
|
+
Requires-Dist: nbval>=0.10.0; extra == "nbval"
|
|
742
|
+
Requires-Dist: seaborn~=0.13.2; extra == "nbval"
|
|
743
|
+
Dynamic: license-file
|
|
743
744
|
|
|
744
745
|
|License| |Docs| |DOI|
|
|
745
746
|
|
|
@@ -775,14 +776,14 @@ this unique characteristic of such a dataset into account.
|
|
|
775
776
|
Requirements
|
|
776
777
|
============
|
|
777
778
|
|
|
778
|
-
- Python 3.
|
|
779
|
+
- Python 3.10 or later
|
|
779
780
|
- ecos
|
|
780
781
|
- joblib
|
|
781
782
|
- numexpr
|
|
782
783
|
- numpy
|
|
783
784
|
- osqp
|
|
784
785
|
- pandas 1.4.0 or later
|
|
785
|
-
- scikit-learn 1.
|
|
786
|
+
- scikit-learn 1.6
|
|
786
787
|
- scipy
|
|
787
788
|
- C/C++ compiler
|
|
788
789
|
|
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
scikit_survival-0.24.1.dist-info/RECORD,,
|
|
2
|
+
scikit_survival-0.24.1.dist-info/WHEEL,sha256=TmyW8D9OPImQItPFLlTWg3ThBsUQjFY1sQx0hG5nmd4,136
|
|
3
|
+
scikit_survival-0.24.1.dist-info/top_level.txt,sha256=fPkcFA-XQGbwnD_ZXOvaOWmSd34Qezr26Mn99nYPvAg,7
|
|
4
|
+
scikit_survival-0.24.1.dist-info/METADATA,sha256=dg43_aZQq6kxDldl8S3mgqRvOZYxMP5UXswJqipPI14,48948
|
|
5
|
+
scikit_survival-0.24.1.dist-info/licenses/COPYING,sha256=jOtLnuWt7d5Hsx6XXB2QxzrSe2sWWh3NgMfFRetluQM,35147
|
|
6
|
+
sksurv/functions.py,sha256=Y0hmtcF1llMkS-ZZOBLDhYUnThko8PGYvYKPtFDReSg,3677
|
|
7
|
+
sksurv/metrics.py,sha256=l6WbcKkb-Ry3tYiLkLs4jMGPbDQOcNW-xG2l_Msg9gs,37358
|
|
8
|
+
sksurv/nonparametric.py,sha256=KVWiASlfNpUGvmaT4RzdQsiBrkAIB6WTjFU4slUyzqo,29020
|
|
9
|
+
sksurv/util.py,sha256=0iTd7gKP8toxQSePYqRa376P9ZVpYF7sv2bFwTNtVAo,13208
|
|
10
|
+
sksurv/__init__.py,sha256=IfdVMjYlvlXe5-Et9-1b2LyujeidQZPuLJltgbTM6ag,3591
|
|
11
|
+
sksurv/preprocessing.py,sha256=gJiMD-b_ybnb-jTpEsmQwr-4dMFeS2T2Dkw69p1Y7IQ,5204
|
|
12
|
+
sksurv/exceptions.py,sha256=CRun7zrKzcZ9zinni5b2cMaV-pU-pw1UnXpRV2h3z_4,801
|
|
13
|
+
sksurv/testing.py,sha256=2oeCsTzEiVRKDRb3iSJLKn03hBO2IrUq-2U5TfvOYK4,4295
|
|
14
|
+
sksurv/compare.py,sha256=zcWPl0rjRvMRS02r1681Q5Xbz-6WLV5fjAgPzRdquUg,4089
|
|
15
|
+
sksurv/base.py,sha256=VfCS3AcFnoVxc-h_6KYQONSelUnI0611lmMmUOb4c-Q,3771
|
|
16
|
+
sksurv/column.py,sha256=dlh1HvsXqMnIRGgm60Expp2FpinqcHbHWDNn2lxM5k0,6469
|
|
17
|
+
sksurv/tree/tree.py,sha256=_z8BtU00Xles-T8kSQV1IB74DhrI94A_AaQC6CFaLOk,26569
|
|
18
|
+
sksurv/tree/__init__.py,sha256=7RUjPZtGrVYiHY4roDXdEDM7RVBSsbY_CXWmyqZk2ts,64
|
|
19
|
+
sksurv/tree/_criterion.cpython-310-darwin.so,sha256=1oCglqO0YSRHimcz-Qgl6mki73tkZwUmlcnGvfF0Uvc,225488
|
|
20
|
+
sksurv/ensemble/boosting.py,sha256=luPw2qEOYTZaVZCC6_Sfz_tbnR0pZy6HKx457HNi-sY,62091
|
|
21
|
+
sksurv/ensemble/_coxph_loss.cpython-310-darwin.so,sha256=gAPfVfZ_8YAaihMBAwVu3eP72ekspX17Jaf14Y3bvjY,204784
|
|
22
|
+
sksurv/ensemble/__init__.py,sha256=7kZAzxFpJGtgLQfhoOqZUyGUubIs_Kw3RgyUsAd1Fq0,191
|
|
23
|
+
sksurv/ensemble/survival_loss.py,sha256=mhIbuOqz7t-nuygswZD0d0are2R0EQ3d3yHMRdxOKIk,5942
|
|
24
|
+
sksurv/ensemble/forest.py,sha256=0NgC1yUOznWCMnc5rTgVMemtfXoX3GULJoWX_xNQv3E,35981
|
|
25
|
+
sksurv/kernels/clinical.py,sha256=27U1fDAlhrZeQEANelDFPWw3aXrTIwWqxUEKo8u_t9I,10763
|
|
26
|
+
sksurv/kernels/__init__.py,sha256=_aZIFutv7kUTlkHJlP52zBDkpUXnKIlPPf3cikuAmCA,77
|
|
27
|
+
sksurv/kernels/_clinical_kernel.cpython-310-darwin.so,sha256=wPWhtEaHDohQ0L8umJldv9NtYjmhD5-WYmXkazL4hCQ,205336
|
|
28
|
+
sksurv/bintrees/__init__.py,sha256=l6Fe4PAMByrABpGzZ5W8KHieEYG-rh-DADo2QiEMLrU,727
|
|
29
|
+
sksurv/bintrees/_binarytrees.cpython-310-darwin.so,sha256=G1oCoSgjcM92VSPoYulnI88ZzBOjyrOeJ0ayLkJAv1c,111232
|
|
30
|
+
sksurv/datasets/__init__.py,sha256=EPzJ50wd-cZ6mWuHFPRRRMqgt14WzM32HGxDrlOp9Q4,361
|
|
31
|
+
sksurv/datasets/base.py,sha256=ZTJuH0SLnCQJUVB2Bw61DkhNjIoqRoc6op7rVDVXvKI,24265
|
|
32
|
+
sksurv/datasets/data/cgvhd.arff,sha256=0lxUqY74JaMpC_vWJC4RWJy6vTmQwCg1yrUxjX65VX8,5214
|
|
33
|
+
sksurv/datasets/data/GBSG2.arff,sha256=jBuh302AIWtYaV1rvJ9RKEZkqzcSThAdVt8ImFFkWwQ,26204
|
|
34
|
+
sksurv/datasets/data/actg320.arff,sha256=8GE2kIU8Nvx7m5Ns-uTJW6Rgtk3xmJzBzMEmtynq5FU,45446
|
|
35
|
+
sksurv/datasets/data/bmt.arff,sha256=yRCh87tAlsBQAocliDquyP28lsnQhCTNU0vJatgH6ns,509
|
|
36
|
+
sksurv/datasets/data/breast_cancer_GSE7390-metastasis.arff,sha256=Iz9MHAay7imf_8ug-YgfbtZqNWbMvsMLUATw0pi1JXA,264743
|
|
37
|
+
sksurv/datasets/data/flchain.arff,sha256=vyYA7EN90ZBx9zva2C3mgXgEV9EUHsNu1VGwAm5uV3M,343058
|
|
38
|
+
sksurv/datasets/data/whas500.arff,sha256=9kBAyROYh1E3gi7KMGqScgjfaJaAjNl2SvcGVyL6U9Y,27772
|
|
39
|
+
sksurv/datasets/data/veteran.arff,sha256=cdvJ4jXzzC7RCzolTjn5hcCSNG0chFc27SGxP74mNFY,5260
|
|
40
|
+
sksurv/io/arffwrite.py,sha256=68FZRU4KKJ5dIaOZwhK-L7R47gPK9oHorQVBdD0my18,4464
|
|
41
|
+
sksurv/io/__init__.py,sha256=LacpKG9UKO_RefPXc6umPaGFGPOGzA-FZra_MCRWCxk,92
|
|
42
|
+
sksurv/io/arffread.py,sha256=cQqdKoCgCcd8FHJVGnsmpRWeaGqnYiauRJ4oANOkri8,1839
|
|
43
|
+
sksurv/meta/__init__.py,sha256=VLA0VhLxZhF3z35md5Z4-nhw6BSSCfR6L7YOBGk1w1A,216
|
|
44
|
+
sksurv/meta/stacking.py,sha256=PO8Cgc1SKFCUwpIEcCuFvA3PLp-qBgkRYbNyz-7DJp0,12280
|
|
45
|
+
sksurv/meta/ensemble_selection.py,sha256=VFWGiHRXK3lfndF3etU9BJnaEK_MBSVMdVcdAyrEdiA,24031
|
|
46
|
+
sksurv/meta/base.py,sha256=mV6653v4txKKHJqcJXVT-J-ARNN9rDfzIq02xoEy93I,1437
|
|
47
|
+
sksurv/linear_model/coxph.py,sha256=gEi0otT6Vmt9Fxi_PhUWChrCJ2CtGMJhb3vA7jtWFSg,20871
|
|
48
|
+
sksurv/linear_model/__init__.py,sha256=58Lt5Tj3xGqRS4uZfVR5avKQNZubHD6RSknVDyzLTso,152
|
|
49
|
+
sksurv/linear_model/coxnet.py,sha256=v5lfcldVViB5QDGIM6bMVS1SK60CjtmTYoQXqdG0AIA,20016
|
|
50
|
+
sksurv/linear_model/_coxnet.cpython-310-darwin.so,sha256=8H3r6MftcTFLYd_A44tgv14a0aAfXo1mJAs290hvFeI,130528
|
|
51
|
+
sksurv/linear_model/aft.py,sha256=TSiYEsPwYIyHpRu-11F0-i985D2Lwi_HLJ1aztiPaoU,7411
|
|
52
|
+
sksurv/svm/naive_survival_svm.py,sha256=FaAS1_pzTSa1ivOzObJ3IFMILc7inKNUkefr7rEPNe0,7978
|
|
53
|
+
sksurv/svm/__init__.py,sha256=7BRFkatw9wbtsY-aes9cnz31VPpIjZ-383LuDmucDsw,328
|
|
54
|
+
sksurv/svm/_minlip.cpython-310-darwin.so,sha256=w1ylI4tZvYRhI3YXmMFBMRczSpYTfjHXxxgKvcon3rU,204976
|
|
55
|
+
sksurv/svm/_prsvm.cpython-310-darwin.so,sha256=Hm8kMZDnRIcwKvL9zRZvhTJAT7ix7TPOMIb0KSZQURI,204832
|
|
56
|
+
sksurv/svm/survival_svm.py,sha256=Qbpdzm3mhBI-ajGW4TonFTDxYdt8sKoDFiV5X5buqbA,43595
|
|
57
|
+
sksurv/svm/minlip.py,sha256=tDXyQaz5q4jdiiZYw_Gfc8rSyez0D8T2VbFmXv7zZdQ,21935
|
sksurv/__init__.py
CHANGED
|
@@ -19,7 +19,7 @@ def _get_version(name):
|
|
|
19
19
|
def show_versions():
|
|
20
20
|
sys_info = {
|
|
21
21
|
"Platform": platform.platform(),
|
|
22
|
-
"Python version": f"{platform.python_implementation()} {platform}",
|
|
22
|
+
"Python version": f"{platform.python_implementation()} {platform.python_version()}",
|
|
23
23
|
"Python interpreter": sys.executable,
|
|
24
24
|
}
|
|
25
25
|
|
|
@@ -44,7 +44,7 @@ def show_versions():
|
|
|
44
44
|
max(map(len, deps)),
|
|
45
45
|
max(map(len, sys_info.keys())),
|
|
46
46
|
)
|
|
47
|
-
fmt = "{0
|
|
47
|
+
fmt = f"{{0:<{minwidth}s}}: {{1}}"
|
|
48
48
|
|
|
49
49
|
print("SYSTEM")
|
|
50
50
|
print("------")
|
sksurv/base.py
CHANGED
|
@@ -99,5 +99,7 @@ class SurvivalAnalysisMixin:
|
|
|
99
99
|
result = concordance_index_censored(y[name_event], y[name_time], risk_score)
|
|
100
100
|
return result[0]
|
|
101
101
|
|
|
102
|
-
def
|
|
103
|
-
|
|
102
|
+
def __sklearn_tags__(self):
|
|
103
|
+
tags = super().__sklearn_tags__()
|
|
104
|
+
tags.target_tags.required = True
|
|
105
|
+
return tags
|
|
Binary file
|
sksurv/datasets/__init__.py
CHANGED
|
@@ -2,7 +2,9 @@ from .base import (
|
|
|
2
2
|
get_x_y, # noqa: F401
|
|
3
3
|
load_aids, # noqa: F401
|
|
4
4
|
load_arff_files_standardized, # noqa: F401
|
|
5
|
+
load_bmt, # noqa: F401
|
|
5
6
|
load_breast_cancer, # noqa: F401
|
|
7
|
+
load_cgvhd, # noqa: F401
|
|
6
8
|
load_flchain, # noqa: F401
|
|
7
9
|
load_gbsg2, # noqa: F401
|
|
8
10
|
load_veterans_lung_cancer, # noqa: F401
|
sksurv/datasets/base.py
CHANGED
|
@@ -12,6 +12,8 @@ __all__ = [
|
|
|
12
12
|
"get_x_y",
|
|
13
13
|
"load_arff_files_standardized",
|
|
14
14
|
"load_aids",
|
|
15
|
+
"load_bmt",
|
|
16
|
+
"load_cgvhd",
|
|
15
17
|
"load_breast_cancer",
|
|
16
18
|
"load_flchain",
|
|
17
19
|
"load_gbsg2",
|
|
@@ -26,13 +28,17 @@ def _get_data_path(name):
|
|
|
26
28
|
return files(__package__) / "data" / name
|
|
27
29
|
|
|
28
30
|
|
|
29
|
-
def _get_x_y_survival(dataset, col_event, col_time, val_outcome):
|
|
31
|
+
def _get_x_y_survival(dataset, col_event, col_time, val_outcome, competing_risks=False):
|
|
30
32
|
if col_event is None or col_time is None:
|
|
31
33
|
y = None
|
|
32
34
|
x_frame = dataset
|
|
33
35
|
else:
|
|
34
|
-
|
|
35
|
-
y
|
|
36
|
+
event_type = np.int64 if competing_risks else bool
|
|
37
|
+
y = np.empty(dtype=[(col_event, event_type), (col_time, np.float64)], shape=dataset.shape[0])
|
|
38
|
+
if competing_risks:
|
|
39
|
+
y[col_event] = dataset[col_event].values
|
|
40
|
+
else:
|
|
41
|
+
y[col_event] = (dataset[col_event] == val_outcome).values
|
|
36
42
|
y[col_time] = dataset[col_time].values
|
|
37
43
|
|
|
38
44
|
x_frame = dataset.drop([col_event, col_time], axis=1)
|
|
@@ -51,7 +57,7 @@ def _get_x_y_other(dataset, col_label):
|
|
|
51
57
|
return x_frame, y
|
|
52
58
|
|
|
53
59
|
|
|
54
|
-
def get_x_y(data_frame, attr_labels, pos_label=None, survival=True):
|
|
60
|
+
def get_x_y(data_frame, attr_labels, pos_label=None, survival=True, competing_risks=False):
|
|
55
61
|
"""Split data frame into features and labels.
|
|
56
62
|
|
|
57
63
|
Parameters
|
|
@@ -75,6 +81,9 @@ def get_x_y(data_frame, attr_labels, pos_label=None, survival=True):
|
|
|
75
81
|
survival : bool, optional, default: True
|
|
76
82
|
Whether to return `y` that can be used for survival analysis.
|
|
77
83
|
|
|
84
|
+
competing_risks : bool, optional, default: False
|
|
85
|
+
Whether `y` refers to competing risks situation. Only used if `survival` is True
|
|
86
|
+
|
|
78
87
|
Returns
|
|
79
88
|
-------
|
|
80
89
|
X : pandas.DataFrame, shape = (n_samples, n_columns - len(attr_labels))
|
|
@@ -89,9 +98,9 @@ def get_x_y(data_frame, attr_labels, pos_label=None, survival=True):
|
|
|
89
98
|
if survival:
|
|
90
99
|
if len(attr_labels) != 2:
|
|
91
100
|
raise ValueError(f"expected sequence of length two for attr_labels, but got {len(attr_labels)}")
|
|
92
|
-
if pos_label is None:
|
|
101
|
+
if pos_label is None and not competing_risks:
|
|
93
102
|
raise ValueError("pos_label needs to be specified if survival=True")
|
|
94
|
-
return _get_x_y_survival(data_frame, attr_labels[0], attr_labels[1], pos_label)
|
|
103
|
+
return _get_x_y_survival(data_frame, attr_labels[0], attr_labels[1], pos_label, competing_risks)
|
|
95
104
|
|
|
96
105
|
return _get_x_y_other(data_frame, attr_labels)
|
|
97
106
|
|
|
@@ -434,3 +443,147 @@ def load_flchain():
|
|
|
434
443
|
"""
|
|
435
444
|
fn = _get_data_path("flchain.arff")
|
|
436
445
|
return get_x_y(loadarff(fn), attr_labels=["death", "futime"], pos_label="dead")
|
|
446
|
+
|
|
447
|
+
|
|
448
|
+
def load_bmt():
|
|
449
|
+
"""Load and return response to hematopoietic stem cell transplantation (HSCT) for acute leukemia patients.
|
|
450
|
+
|
|
451
|
+
The dataset has 35 samples and 1 feature "dis" indicating the type of leukemia::
|
|
452
|
+
|
|
453
|
+
0=ALL (Acute Lymphoblastic Leukemia)
|
|
454
|
+
1=AML (Acute Myeloid Leukemia)
|
|
455
|
+
|
|
456
|
+
The endpoint (status) is defined as
|
|
457
|
+
|
|
458
|
+
+-------+------------------------------------+---------------------+
|
|
459
|
+
| Value | Description | Count (%) |
|
|
460
|
+
+=======+====================================+=====================+
|
|
461
|
+
| 0 | Survival (Right-censored data) | 11 patients (31.4%) |
|
|
462
|
+
+-------+------------------------------------+---------------------+
|
|
463
|
+
| 1 | Transplant related mortality (TRM) | 9 events (25.7%) |
|
|
464
|
+
+-------+------------------------------------+---------------------+
|
|
465
|
+
| 2 | Relapse | 15 events (42.8%) |
|
|
466
|
+
+-------+------------------------------------+---------------------+
|
|
467
|
+
|
|
468
|
+
See [1]_ for further description and [2]_ for the dataset.
|
|
469
|
+
|
|
470
|
+
Returns
|
|
471
|
+
-------
|
|
472
|
+
x : pandas.DataFrame
|
|
473
|
+
The measurements for each patient.
|
|
474
|
+
|
|
475
|
+
y : structured array with 2 fields
|
|
476
|
+
*status*: Integer indicating the endpoint: 0-(survival i.e. right censored data), 1-(TRM), 2-(relapse)
|
|
477
|
+
|
|
478
|
+
*ftime*: total length of follow-up or time of event.
|
|
479
|
+
|
|
480
|
+
References
|
|
481
|
+
----------
|
|
482
|
+
.. [1] https://doi.org/10.1038/sj.bmt.1705727
|
|
483
|
+
Scrucca, L., Santucci, A. & Aversa, F.:
|
|
484
|
+
"Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant 40, 381–387 (2007)"
|
|
485
|
+
|
|
486
|
+
.. [2] https://luca-scr.github.io/R/bmt.csv
|
|
487
|
+
"""
|
|
488
|
+
full_path = _get_data_path("bmt.arff")
|
|
489
|
+
data = loadarff(full_path)
|
|
490
|
+
data["ftime"] = data["ftime"].astype(int)
|
|
491
|
+
return get_x_y(data, attr_labels=["status", "ftime"], competing_risks=True)
|
|
492
|
+
|
|
493
|
+
|
|
494
|
+
def load_cgvhd():
|
|
495
|
+
r"""Load and return data from multicentre randomized clinical trial
|
|
496
|
+
initiated for patients with a myeloid malignancy who were to
|
|
497
|
+
undergo an allogeneic bone marrow transplant.
|
|
498
|
+
|
|
499
|
+
The dataset is a 100 patient subsample of the full data set. See [2]_ for further details.
|
|
500
|
+
|
|
501
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
502
|
+
| Index | Name | Description | Encoding |
|
|
503
|
+
+=======+============+==============================================+===========================================+
|
|
504
|
+
| 1 | dx | Diagnosis | | AML=acute myeloid leukaemia |
|
|
505
|
+
| | | | | CML=chronic myeloid leukaemia |
|
|
506
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
507
|
+
| 2 | tx | Randomized treatment | | BM=cell harvested from the bone marrow |
|
|
508
|
+
| | | | | PB=cell harvested from peripheral blood |
|
|
509
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
510
|
+
| 3 | extent | Extent of disease | L=limited, E=extensive |
|
|
511
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
512
|
+
| 4 | agvhdgd | Grade of acute GVHD | |
|
|
513
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
514
|
+
| 5 | age | Age | Years |
|
|
515
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
516
|
+
| 6 | survtime | Time from date of transplant to death | Years |
|
|
517
|
+
| | | or last follow-up | |
|
|
518
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
519
|
+
| 7 | reltime | Time from date of transplant to relapse | Years |
|
|
520
|
+
| | | or last follow-up | |
|
|
521
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
522
|
+
| 8 | agvhtime | Time from date of transplant to acute GVHD | Years |
|
|
523
|
+
| | | or last follow-up | |
|
|
524
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
525
|
+
| 9 | cgvhtime | Time from date of transplant to chronic GVHD | Years |
|
|
526
|
+
| | | or last follow-up | |
|
|
527
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
528
|
+
| 10 | stat | Status | 1=Dead, 0=Alive |
|
|
529
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
530
|
+
| 11 | rcens | Relapse | 1=Yes, 0=No |
|
|
531
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
532
|
+
| 12 | agvh | Acute GVHD | 1=Yes, 0=No |
|
|
533
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
534
|
+
| 13 | cgvh | Chronic GVHD | 1=Yes, 0=No |
|
|
535
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
536
|
+
| 14 | stnum | patient ID | |
|
|
537
|
+
+-------+------------+----------------------------------------------+-------------------------------------------+
|
|
538
|
+
|
|
539
|
+
Columns 6,7 and 9 contain the time to death, relapse and CGVHD
|
|
540
|
+
calculated in years (survtime, reltime, cgvhtime) and the
|
|
541
|
+
respective indicator variables are in columns 10,11 and 13 (stat,
|
|
542
|
+
rcens, cgvh). The earliest time that any of these events happened
|
|
543
|
+
is calculated by taking the minimum of the observed times. The
|
|
544
|
+
censoring variable cens is coded as 0 when no events were
|
|
545
|
+
observed, 1 if CGVHD was observed as first event, 2 if a relapse
|
|
546
|
+
was observed as the first event and 3 if death occurred before
|
|
547
|
+
either of the events: The endpoint (status) is therefore defined as
|
|
548
|
+
|
|
549
|
+
+-------+-------------------------------------------+-----------------+
|
|
550
|
+
| Value | Description | Count (%) |
|
|
551
|
+
+=======+===========================================+=================+
|
|
552
|
+
| 0 | Survival (Right-censored data) | 4 patients (4%) |
|
|
553
|
+
+-------+-------------------------------------------+-----------------+
|
|
554
|
+
| 1 | Chronic graft versus host disease (CGVHD) | 86 events (86%) |
|
|
555
|
+
+-------+-------------------------------------------+-----------------+
|
|
556
|
+
| 2 | Relapse (TRM) | 5 events (5%) |
|
|
557
|
+
+-------+-------------------------------------------+-----------------+
|
|
558
|
+
| 3 | Death | 5 events (5%) |
|
|
559
|
+
+-------+-------------------------------------------+-----------------+
|
|
560
|
+
|
|
561
|
+
The dataset has been obtained from [1]_.
|
|
562
|
+
|
|
563
|
+
Returns
|
|
564
|
+
-------
|
|
565
|
+
x : pandas.DataFrame
|
|
566
|
+
The measurements for each patient.
|
|
567
|
+
|
|
568
|
+
y : structured array with 2 fields
|
|
569
|
+
*status*: Integer indicating the endpoint: 0: right censored data; 1: CGVHD; 2: relapse; 3: death.
|
|
570
|
+
|
|
571
|
+
*ftime*: total length of follow-up or time of event.
|
|
572
|
+
|
|
573
|
+
References
|
|
574
|
+
----------
|
|
575
|
+
.. [1] https://sites.google.com/view/melaniapintiliemscstatistics/home/statistics
|
|
576
|
+
|
|
577
|
+
.. [2] Melania Pintilie: "Competing Risks: A Practical Perspective". John Wiley & Sons, 2006
|
|
578
|
+
"""
|
|
579
|
+
full_path = _get_data_path("cgvhd.arff")
|
|
580
|
+
data = loadarff(full_path)
|
|
581
|
+
data["ftime"] = data[["survtime", "reltime", "cgvhtime"]].min(axis=1)
|
|
582
|
+
data["status"] = (
|
|
583
|
+
((data["ftime"] == data["cgvhtime"]) & (data["cgvh"] == "1")).astype(int)
|
|
584
|
+
+ 2 * ((data["ftime"] == data["reltime"]) & (data["rcens"] == "1")).astype(int)
|
|
585
|
+
+ 3 * ((data["ftime"] == data["survtime"]) & (data["stat"] == "1")).astype(int)
|
|
586
|
+
)
|
|
587
|
+
data = data[["ftime", "status", "dx", "tx", "extent", "age"]]
|
|
588
|
+
|
|
589
|
+
return get_x_y(data, attr_labels=["status", "ftime"], competing_risks=True)
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
% Scrucca L., Santucci A., Aversa F. (2007)
|
|
2
|
+
% Competing risks analysis using R: an easy guide for clinicians.
|
|
3
|
+
% Bone Marrow Transplantation 40, 381-387.
|
|
4
|
+
% https://luca-scr.github.io/R/bmt.csv
|
|
5
|
+
@RELATION BMT
|
|
6
|
+
|
|
7
|
+
@ATTRIBUTE dis {0,1}
|
|
8
|
+
@ATTRIBUTE ftime NUMERIC
|
|
9
|
+
@ATTRIBUTE status {0,1,2}
|
|
10
|
+
|
|
11
|
+
@DATA
|
|
12
|
+
0,13,2
|
|
13
|
+
0,1,1
|
|
14
|
+
0,72,0
|
|
15
|
+
0,7,2
|
|
16
|
+
0,8,2
|
|
17
|
+
1,67,0
|
|
18
|
+
0,9,2
|
|
19
|
+
0,5,2
|
|
20
|
+
1,70,0
|
|
21
|
+
1,4,0
|
|
22
|
+
1,7,0
|
|
23
|
+
1,68,0
|
|
24
|
+
0,1,2
|
|
25
|
+
1,10,2
|
|
26
|
+
1,7,2
|
|
27
|
+
1,3,1
|
|
28
|
+
1,4,1
|
|
29
|
+
1,4,1
|
|
30
|
+
1,3,1
|
|
31
|
+
1,3,1
|
|
32
|
+
0,22,2
|
|
33
|
+
1,8,1
|
|
34
|
+
1,2,2
|
|
35
|
+
0,0,2
|
|
36
|
+
0,0,1
|
|
37
|
+
0,35,0
|
|
38
|
+
1,35,0
|
|
39
|
+
0,4,2
|
|
40
|
+
0,14,2
|
|
41
|
+
0,26,2
|
|
42
|
+
0,3,2
|
|
43
|
+
1,2,0
|
|
44
|
+
1,8,0
|
|
45
|
+
1,32,0
|
|
46
|
+
0,12,1
|
|
@@ -0,0 +1,118 @@
|
|
|
1
|
+
@RELATION CGVHD
|
|
2
|
+
|
|
3
|
+
@ATTRIBUTE dx {CML, AML}
|
|
4
|
+
@ATTRIBUTE tx {PB, BM}
|
|
5
|
+
@ATTRIBUTE extent {L, E}
|
|
6
|
+
@ATTRIBUTE agvhdgd NUMERIC
|
|
7
|
+
@ATTRIBUTE age NUMERIC
|
|
8
|
+
@ATTRIBUTE survtime NUMERIC
|
|
9
|
+
@ATTRIBUTE reltime NUMERIC
|
|
10
|
+
@ATTRIBUTE agvhtime NUMERIC
|
|
11
|
+
@ATTRIBUTE cgvhtime NUMERIC
|
|
12
|
+
@ATTRIBUTE stat {0, 1}
|
|
13
|
+
@ATTRIBUTE rcens {0, 1}
|
|
14
|
+
@ATTRIBUTE agvh {1, 0}
|
|
15
|
+
@ATTRIBUTE cgvh {1, 0}
|
|
16
|
+
@ATTRIBUTE stnum NUMERIC
|
|
17
|
+
|
|
18
|
+
@DATA
|
|
19
|
+
CML,PB,L,1,36,4.895,4.895,0.099,0.52,0,0,1,1,1
|
|
20
|
+
AML,PB,L,3,57,3.474,0.753,0.101,0.408,1,1,1,1,2
|
|
21
|
+
CML,PB,L,0,48,4.95,4.95,4.95,0.348,0,0,0,1,3
|
|
22
|
+
AML,PB,L,2,52,4.643,4.643,0.057,0.482,0,0,1,1,4
|
|
23
|
+
AML,PB,L,3,45,4.066,4.066,0.137,0.378,0,0,1,1,5
|
|
24
|
+
AML,PB,L,3,47,1.558,0.416,0.055,1.558,1,1,1,0,6
|
|
25
|
+
CML,PB,L,1,40,4.512,4.512,0.09,0.381,0,0,1,1,7
|
|
26
|
+
AML,PB,L,3,38,4.041,4.041,0.082,0.914,0,0,1,1,8
|
|
27
|
+
AML,PB,L,2,41,4.164,4.164,0.055,0.923,0,0,1,1,9
|
|
28
|
+
CML,PB,L,0,50,4.011,4.011,4.011,0.397,0,0,0,1,10
|
|
29
|
+
CML,PB,L,1,56,3.945,3.945,0.047,0.479,0,0,1,1,11
|
|
30
|
+
CML,PB,L,2,56,4.361,4.361,0.079,0.991,0,0,1,1,12
|
|
31
|
+
AML,PB,L,1,54,0.841,0.654,0.077,0.474,1,1,1,1,13
|
|
32
|
+
CML,PB,L,3,25,2.951,2.951,0.164,0.339,0,0,1,1,14
|
|
33
|
+
CML,PB,L,4,40,0.586,0.586,0.055,0.277,1,0,1,1,15
|
|
34
|
+
CML,PB,L,0,41,3.559,3.559,3.559,0.367,0,0,0,1,16
|
|
35
|
+
CML,PB,L,2,57,3.422,3.422,0.131,0.742,0,0,1,1,17
|
|
36
|
+
CML,PB,L,3,62,0.408,0.408,0.408,0.408,0,0,1,1,18
|
|
37
|
+
CML,PB,L,1,29,3.428,3.428,0.09,0.958,0,0,1,1,19
|
|
38
|
+
AML,PB,L,1,44,0.063,0.063,0.014,0.063,1,0,1,0,20
|
|
39
|
+
CML,PB,L,2,40,1.572,1.572,0.09,0.282,1,0,1,1,21
|
|
40
|
+
CML,PB,L,1,54,1.013,1.013,0.093,0.413,1,0,1,1,22
|
|
41
|
+
AML,PB,L,2,37,3.023,3.023,0.074,0.394,0,0,1,1,23
|
|
42
|
+
AML,PB,L,1,58,2.979,2.979,0.079,0.342,0,0,1,1,24
|
|
43
|
+
CML,PB,L,3,39,2.817,2.817,0.049,0.367,0,0,1,1,25
|
|
44
|
+
CML,PB,L,2,31,2.804,2.804,0.137,0.277,0,0,1,1,26
|
|
45
|
+
CML,PB,L,2,45,2.609,2.609,0.252,0.367,0,0,1,1,27
|
|
46
|
+
AML,PB,L,0,48,2.508,2.508,2.508,0.331,0,0,0,1,28
|
|
47
|
+
CML,PB,L,0,53,0.665,0.665,0.665,0.32,1,0,0,1,29
|
|
48
|
+
CML,PB,L,0,29,2.497,2.497,2.497,0.329,0,0,0,1,30
|
|
49
|
+
CML,PB,L,0,27,1.799,1.799,1.799,0.444,1,0,0,1,31
|
|
50
|
+
AML,PB,L,3,45,0.471,0.438,0.071,0.471,1,1,1,0,32
|
|
51
|
+
CML,PB,L,1,39,2.031,2.031,0.112,0.964,0,0,1,1,33
|
|
52
|
+
CML,PB,L,3,49,2.073,2.073,0.063,0.564,0,0,1,1,34
|
|
53
|
+
AML,PB,L,1,37,0.999,0.75,0.274,0.402,1,1,1,1,35
|
|
54
|
+
AML,PB,L,3,53,0.427,0.427,0.055,0.277,1,0,1,1,36
|
|
55
|
+
CML,PB,L,1,48,1.766,1.766,0.216,0.4,0,0,1,1,37
|
|
56
|
+
AML,PB,L,1,59,1.555,1.555,0.178,0.446,0,0,1,1,38
|
|
57
|
+
CML,PB,L,2,33,1.67,1.67,0.11,0.474,0,0,1,1,39
|
|
58
|
+
CML,PB,L,0,38,1.607,1.607,1.607,0.329,0,0,0,1,40
|
|
59
|
+
CML,PB,L,4,37,1.511,1.511,0.055,0.323,0,0,1,1,41
|
|
60
|
+
AML,PB,L,3,41,1.287,1.287,0.049,0.392,0,0,1,1,42
|
|
61
|
+
AML,PB,E,1,64,1.227,1.227,0.23,0.496,0,0,1,1,43
|
|
62
|
+
CML,PB,L,3,32,1.3,1.3,0.063,0.63,0,0,1,1,44
|
|
63
|
+
CML,PB,L,0,41,1.27,1.27,1.27,0.383,0,0,0,1,45
|
|
64
|
+
AML,PB,E,1,56,1.205,1.205,0.074,1.205,0,0,1,0,46
|
|
65
|
+
CML,PB,L,1,50,1.147,1.147,0.131,0.361,0,0,1,1,47
|
|
66
|
+
CML,PB,L,3,37,1.109,1.109,0.055,0.277,0,0,1,1,48
|
|
67
|
+
CML,PB,L,0,27,0.994,0.994,0.994,0.287,0,0,0,1,49
|
|
68
|
+
CML,BM,L,3,45,4.572,4.572,0.066,0.619,0,0,1,1,50
|
|
69
|
+
AML,BM,L,3,45,4.616,4.616,0.101,0.452,0,0,1,1,51
|
|
70
|
+
AML,BM,L,2,42,4.0,4.0,0.027,0.29,0,0,1,1,52
|
|
71
|
+
CML,BM,L,0,22,4.238,4.238,4.238,0.479,0,0,0,1,53
|
|
72
|
+
AML,BM,L,4,47,0.11,0.11,0.074,0.11,1,0,1,0,54
|
|
73
|
+
AML,BM,L,2,48,4.03,4.03,0.101,0.857,0,0,1,1,55
|
|
74
|
+
AML,BM,L,2,49,3.124,2.527,0.115,1.993,1,1,1,1,56
|
|
75
|
+
CML,BM,L,2,38,0.515,0.515,0.079,0.463,1,0,1,1,57
|
|
76
|
+
CML,BM,L,1,39,4.222,3.149,0.085,0.496,0,1,1,1,58
|
|
77
|
+
CML,BM,L,3,41,4.027,4.027,0.104,0.422,0,0,1,1,59
|
|
78
|
+
CML,BM,L,2,46,1.969,1.969,0.038,0.307,1,0,1,1,60
|
|
79
|
+
AML,BM,L,0,24,3.792,3.792,3.792,0.701,0,0,0,1,61
|
|
80
|
+
AML,BM,L,3,32,0.427,0.427,0.041,0.279,1,0,1,1,62
|
|
81
|
+
CML,BM,L,0,36,3.34,3.34,3.34,0.419,0,0,0,1,63
|
|
82
|
+
CML,BM,L,1,53,3.504,0.72,0.112,0.616,0,1,1,1,64
|
|
83
|
+
CML,BM,L,0,52,3.685,3.685,3.685,0.331,0,0,0,1,65
|
|
84
|
+
CML,BM,L,1,59,0.181,0.181,0.049,0.181,1,0,1,0,66
|
|
85
|
+
CML,BM,L,3,42,0.736,0.736,0.09,0.567,1,0,1,1,67
|
|
86
|
+
CML,BM,L,1,65,0.287,0.287,0.052,0.287,1,0,1,0,68
|
|
87
|
+
CML,BM,E,0,60,0.057,0.057,0.057,0.057,0,0,0,0,69
|
|
88
|
+
CML,BM,L,2,61,3.107,3.107,0.088,0.764,0,0,1,1,70
|
|
89
|
+
CML,BM,L,1,55,3.088,3.088,0.11,0.381,0,0,1,1,71
|
|
90
|
+
AML,BM,E,0,48,0.446,0.274,0.446,0.446,1,1,0,0,72
|
|
91
|
+
AML,BM,E,0,49,2.776,2.776,2.776,2.776,0,0,0,0,73
|
|
92
|
+
CML,BM,L,0,36,0.693,0.172,0.693,0.635,1,1,0,1,74
|
|
93
|
+
AML,BM,L,1,48,2.01,2.01,0.077,0.553,0,0,1,1,75
|
|
94
|
+
CML,BM,L,0,47,2.374,2.374,2.374,0.287,0,0,0,1,76
|
|
95
|
+
AML,BM,L,3,43,1.079,1.079,0.088,0.345,1,0,1,1,77
|
|
96
|
+
CML,BM,L,0,56,2.604,2.604,2.604,0.375,0,0,0,1,78
|
|
97
|
+
CML,BM,L,1,56,2.478,2.478,0.17,0.517,0,0,1,1,79
|
|
98
|
+
CML,BM,L,0,36,2.338,2.338,2.338,0.457,0,0,0,1,80
|
|
99
|
+
CML,BM,L,2,52,2.3,2.3,0.049,0.345,0,0,1,1,81
|
|
100
|
+
CML,BM,E,1,44,0.219,0.219,0.145,0.219,1,0,1,0,82
|
|
101
|
+
AML,BM,L,3,32,2.127,2.127,0.118,0.422,0,0,1,1,83
|
|
102
|
+
AML,BM,L,1,44,2.034,2.034,0.096,0.479,0,0,1,1,84
|
|
103
|
+
CML,BM,L,0,45,2.034,2.034,2.034,0.29,0,0,0,1,85
|
|
104
|
+
AML,BM,L,3,48,2.007,2.007,0.088,0.35,0,0,1,1,86
|
|
105
|
+
CML,BM,L,0,48,1.183,1.183,1.183,0.372,0,0,0,1,87
|
|
106
|
+
AML,BM,L,3,42,0.375,0.375,0.096,0.277,1,0,1,1,88
|
|
107
|
+
AML,BM,E,2,24,0.353,0.301,0.096,0.353,1,1,1,0,89
|
|
108
|
+
CML,BM,L,2,26,1.566,1.566,0.137,0.474,0,0,1,1,90
|
|
109
|
+
CML,BM,L,2,34,1.588,1.588,0.129,0.465,0,0,1,1,91
|
|
110
|
+
CML,BM,L,0,57,1.243,1.243,1.243,0.433,0,0,0,1,92
|
|
111
|
+
CML,BM,L,3,51,1.555,1.555,0.09,0.359,0,0,1,1,93
|
|
112
|
+
AML,BM,L,2,54,1.202,1.202,0.192,1.202,0,0,1,0,94
|
|
113
|
+
AML,BM,E,0,20,1.251,1.251,1.251,0.408,0,0,0,1,95
|
|
114
|
+
AML,BM,L,2,39,1.114,1.114,0.074,0.402,0,0,1,1,96
|
|
115
|
+
AML,BM,L,0,49,1.15,1.15,1.15,0.35,0,0,0,1,97
|
|
116
|
+
CML,BM,L,1,42,0.997,0.997,0.142,0.411,0,0,1,1,98
|
|
117
|
+
CML,BM,L,0,44,1.057,1.057,1.057,0.301,0,0,0,1,99
|
|
118
|
+
CML,BM,L,1,56,1.125,1.125,0.129,0.32,0,0,1,1,100
|
|
Binary file
|