scikit-network 0.33.4__cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scikit_network-0.33.4.dist-info/METADATA +122 -0
- scikit_network-0.33.4.dist-info/RECORD +229 -0
- scikit_network-0.33.4.dist-info/WHEEL +6 -0
- scikit_network-0.33.4.dist-info/licenses/AUTHORS.rst +43 -0
- scikit_network-0.33.4.dist-info/licenses/LICENSE +34 -0
- scikit_network-0.33.4.dist-info/top_level.txt +1 -0
- scikit_network.libs/libgomp-a34b3233.so.1.0.0 +0 -0
- sknetwork/__init__.py +21 -0
- sknetwork/base.py +67 -0
- sknetwork/classification/__init__.py +8 -0
- sknetwork/classification/base.py +138 -0
- sknetwork/classification/base_rank.py +129 -0
- sknetwork/classification/diffusion.py +127 -0
- sknetwork/classification/knn.py +131 -0
- sknetwork/classification/metrics.py +205 -0
- sknetwork/classification/pagerank.py +58 -0
- sknetwork/classification/propagation.py +144 -0
- sknetwork/classification/tests/__init__.py +1 -0
- sknetwork/classification/tests/test_API.py +30 -0
- sknetwork/classification/tests/test_diffusion.py +77 -0
- sknetwork/classification/tests/test_knn.py +23 -0
- sknetwork/classification/tests/test_metrics.py +53 -0
- sknetwork/classification/tests/test_pagerank.py +20 -0
- sknetwork/classification/tests/test_propagation.py +24 -0
- sknetwork/classification/vote.cpp +27593 -0
- sknetwork/classification/vote.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/classification/vote.pyx +56 -0
- sknetwork/clustering/__init__.py +8 -0
- sknetwork/clustering/base.py +168 -0
- sknetwork/clustering/kcenters.py +251 -0
- sknetwork/clustering/leiden.py +238 -0
- sknetwork/clustering/leiden_core.cpp +31928 -0
- sknetwork/clustering/leiden_core.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/clustering/leiden_core.pyx +124 -0
- sknetwork/clustering/louvain.py +282 -0
- sknetwork/clustering/louvain_core.cpp +31573 -0
- sknetwork/clustering/louvain_core.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/clustering/louvain_core.pyx +124 -0
- sknetwork/clustering/metrics.py +91 -0
- sknetwork/clustering/postprocess.py +66 -0
- sknetwork/clustering/propagation_clustering.py +100 -0
- sknetwork/clustering/tests/__init__.py +1 -0
- sknetwork/clustering/tests/test_API.py +38 -0
- sknetwork/clustering/tests/test_kcenters.py +60 -0
- sknetwork/clustering/tests/test_leiden.py +34 -0
- sknetwork/clustering/tests/test_louvain.py +135 -0
- sknetwork/clustering/tests/test_metrics.py +50 -0
- sknetwork/clustering/tests/test_postprocess.py +39 -0
- sknetwork/data/__init__.py +6 -0
- sknetwork/data/base.py +33 -0
- sknetwork/data/load.py +292 -0
- sknetwork/data/models.py +459 -0
- sknetwork/data/parse.py +644 -0
- sknetwork/data/test_graphs.py +93 -0
- sknetwork/data/tests/__init__.py +1 -0
- sknetwork/data/tests/test_API.py +30 -0
- sknetwork/data/tests/test_base.py +14 -0
- sknetwork/data/tests/test_load.py +61 -0
- sknetwork/data/tests/test_models.py +52 -0
- sknetwork/data/tests/test_parse.py +250 -0
- sknetwork/data/tests/test_test_graphs.py +29 -0
- sknetwork/data/tests/test_toy_graphs.py +68 -0
- sknetwork/data/timeout.py +38 -0
- sknetwork/data/toy_graphs.py +611 -0
- sknetwork/embedding/__init__.py +8 -0
- sknetwork/embedding/base.py +90 -0
- sknetwork/embedding/force_atlas.py +198 -0
- sknetwork/embedding/louvain_embedding.py +142 -0
- sknetwork/embedding/random_projection.py +131 -0
- sknetwork/embedding/spectral.py +137 -0
- sknetwork/embedding/spring.py +198 -0
- sknetwork/embedding/svd.py +351 -0
- sknetwork/embedding/tests/__init__.py +1 -0
- sknetwork/embedding/tests/test_API.py +49 -0
- sknetwork/embedding/tests/test_force_atlas.py +35 -0
- sknetwork/embedding/tests/test_louvain_embedding.py +33 -0
- sknetwork/embedding/tests/test_random_projection.py +28 -0
- sknetwork/embedding/tests/test_spectral.py +81 -0
- sknetwork/embedding/tests/test_spring.py +50 -0
- sknetwork/embedding/tests/test_svd.py +43 -0
- sknetwork/gnn/__init__.py +10 -0
- sknetwork/gnn/activation.py +117 -0
- sknetwork/gnn/base.py +181 -0
- sknetwork/gnn/base_activation.py +90 -0
- sknetwork/gnn/base_layer.py +109 -0
- sknetwork/gnn/gnn_classifier.py +305 -0
- sknetwork/gnn/layer.py +153 -0
- sknetwork/gnn/loss.py +180 -0
- sknetwork/gnn/neighbor_sampler.py +65 -0
- sknetwork/gnn/optimizer.py +164 -0
- sknetwork/gnn/tests/__init__.py +1 -0
- sknetwork/gnn/tests/test_activation.py +56 -0
- sknetwork/gnn/tests/test_base.py +75 -0
- sknetwork/gnn/tests/test_base_layer.py +37 -0
- sknetwork/gnn/tests/test_gnn_classifier.py +130 -0
- sknetwork/gnn/tests/test_layers.py +80 -0
- sknetwork/gnn/tests/test_loss.py +33 -0
- sknetwork/gnn/tests/test_neigh_sampler.py +23 -0
- sknetwork/gnn/tests/test_optimizer.py +43 -0
- sknetwork/gnn/tests/test_utils.py +41 -0
- sknetwork/gnn/utils.py +127 -0
- sknetwork/hierarchy/__init__.py +6 -0
- sknetwork/hierarchy/base.py +90 -0
- sknetwork/hierarchy/louvain_hierarchy.py +260 -0
- sknetwork/hierarchy/metrics.py +234 -0
- sknetwork/hierarchy/paris.cpp +37877 -0
- sknetwork/hierarchy/paris.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/hierarchy/paris.pyx +310 -0
- sknetwork/hierarchy/postprocess.py +350 -0
- sknetwork/hierarchy/tests/__init__.py +1 -0
- sknetwork/hierarchy/tests/test_API.py +24 -0
- sknetwork/hierarchy/tests/test_algos.py +34 -0
- sknetwork/hierarchy/tests/test_metrics.py +62 -0
- sknetwork/hierarchy/tests/test_postprocess.py +57 -0
- sknetwork/linalg/__init__.py +9 -0
- sknetwork/linalg/basics.py +37 -0
- sknetwork/linalg/diteration.cpp +27409 -0
- sknetwork/linalg/diteration.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/linalg/diteration.pyx +47 -0
- sknetwork/linalg/eig_solver.py +93 -0
- sknetwork/linalg/laplacian.py +15 -0
- sknetwork/linalg/normalizer.py +86 -0
- sknetwork/linalg/operators.py +225 -0
- sknetwork/linalg/polynome.py +76 -0
- sknetwork/linalg/ppr_solver.py +170 -0
- sknetwork/linalg/push.cpp +31081 -0
- sknetwork/linalg/push.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/linalg/push.pyx +71 -0
- sknetwork/linalg/sparse_lowrank.py +142 -0
- sknetwork/linalg/svd_solver.py +91 -0
- sknetwork/linalg/tests/__init__.py +1 -0
- sknetwork/linalg/tests/test_eig.py +44 -0
- sknetwork/linalg/tests/test_laplacian.py +18 -0
- sknetwork/linalg/tests/test_normalization.py +34 -0
- sknetwork/linalg/tests/test_operators.py +66 -0
- sknetwork/linalg/tests/test_polynome.py +38 -0
- sknetwork/linalg/tests/test_ppr.py +50 -0
- sknetwork/linalg/tests/test_sparse_lowrank.py +61 -0
- sknetwork/linalg/tests/test_svd.py +38 -0
- sknetwork/linkpred/__init__.py +2 -0
- sknetwork/linkpred/base.py +46 -0
- sknetwork/linkpred/nn.py +126 -0
- sknetwork/linkpred/tests/__init__.py +1 -0
- sknetwork/linkpred/tests/test_nn.py +26 -0
- sknetwork/log.py +19 -0
- sknetwork/path/__init__.py +5 -0
- sknetwork/path/dag.py +54 -0
- sknetwork/path/distances.py +98 -0
- sknetwork/path/search.py +31 -0
- sknetwork/path/shortest_path.py +61 -0
- sknetwork/path/tests/__init__.py +1 -0
- sknetwork/path/tests/test_dag.py +37 -0
- sknetwork/path/tests/test_distances.py +62 -0
- sknetwork/path/tests/test_search.py +40 -0
- sknetwork/path/tests/test_shortest_path.py +40 -0
- sknetwork/ranking/__init__.py +8 -0
- sknetwork/ranking/base.py +57 -0
- sknetwork/ranking/betweenness.cpp +9716 -0
- sknetwork/ranking/betweenness.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/ranking/betweenness.pyx +97 -0
- sknetwork/ranking/closeness.py +92 -0
- sknetwork/ranking/hits.py +90 -0
- sknetwork/ranking/katz.py +79 -0
- sknetwork/ranking/pagerank.py +106 -0
- sknetwork/ranking/postprocess.py +37 -0
- sknetwork/ranking/tests/__init__.py +1 -0
- sknetwork/ranking/tests/test_API.py +32 -0
- sknetwork/ranking/tests/test_betweenness.py +38 -0
- sknetwork/ranking/tests/test_closeness.py +30 -0
- sknetwork/ranking/tests/test_hits.py +20 -0
- sknetwork/ranking/tests/test_pagerank.py +62 -0
- sknetwork/ranking/tests/test_postprocess.py +26 -0
- sknetwork/regression/__init__.py +4 -0
- sknetwork/regression/base.py +57 -0
- sknetwork/regression/diffusion.py +204 -0
- sknetwork/regression/tests/__init__.py +1 -0
- sknetwork/regression/tests/test_API.py +32 -0
- sknetwork/regression/tests/test_diffusion.py +56 -0
- sknetwork/sknetwork.py +3 -0
- sknetwork/test_base.py +35 -0
- sknetwork/test_log.py +15 -0
- sknetwork/topology/__init__.py +8 -0
- sknetwork/topology/cliques.cpp +32574 -0
- sknetwork/topology/cliques.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/cliques.pyx +149 -0
- sknetwork/topology/core.cpp +30660 -0
- sknetwork/topology/core.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/core.pyx +90 -0
- sknetwork/topology/cycles.py +243 -0
- sknetwork/topology/minheap.cpp +27341 -0
- sknetwork/topology/minheap.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/minheap.pxd +20 -0
- sknetwork/topology/minheap.pyx +109 -0
- sknetwork/topology/structure.py +194 -0
- sknetwork/topology/tests/__init__.py +1 -0
- sknetwork/topology/tests/test_cliques.py +28 -0
- sknetwork/topology/tests/test_core.py +19 -0
- sknetwork/topology/tests/test_cycles.py +65 -0
- sknetwork/topology/tests/test_structure.py +85 -0
- sknetwork/topology/tests/test_triangles.py +38 -0
- sknetwork/topology/tests/test_wl.py +72 -0
- sknetwork/topology/triangles.cpp +8903 -0
- sknetwork/topology/triangles.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/triangles.pyx +151 -0
- sknetwork/topology/weisfeiler_lehman.py +133 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +27644 -0
- sknetwork/topology/weisfeiler_lehman_core.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/weisfeiler_lehman_core.pyx +114 -0
- sknetwork/utils/__init__.py +7 -0
- sknetwork/utils/check.py +355 -0
- sknetwork/utils/format.py +221 -0
- sknetwork/utils/membership.py +82 -0
- sknetwork/utils/neighbors.py +115 -0
- sknetwork/utils/tests/__init__.py +1 -0
- sknetwork/utils/tests/test_check.py +190 -0
- sknetwork/utils/tests/test_format.py +63 -0
- sknetwork/utils/tests/test_membership.py +24 -0
- sknetwork/utils/tests/test_neighbors.py +41 -0
- sknetwork/utils/tests/test_tfidf.py +18 -0
- sknetwork/utils/tests/test_values.py +66 -0
- sknetwork/utils/tfidf.py +37 -0
- sknetwork/utils/values.py +76 -0
- sknetwork/visualization/__init__.py +4 -0
- sknetwork/visualization/colors.py +34 -0
- sknetwork/visualization/dendrograms.py +277 -0
- sknetwork/visualization/graphs.py +1039 -0
- sknetwork/visualization/tests/__init__.py +1 -0
- sknetwork/visualization/tests/test_dendrograms.py +53 -0
- sknetwork/visualization/tests/test_graphs.py +176 -0
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for postprocessing"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
from sknetwork.ranking.postprocess import top_k
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class TestPostprocessing(unittest.TestCase):
|
|
13
|
+
|
|
14
|
+
def test_top_k(self):
|
|
15
|
+
scores = np.arange(10)
|
|
16
|
+
index = top_k(scores, 3)
|
|
17
|
+
self.assertTrue(set(index) == {7, 8, 9})
|
|
18
|
+
index = top_k(scores, 10)
|
|
19
|
+
self.assertTrue(len(index) == 10)
|
|
20
|
+
index = top_k(scores, 20)
|
|
21
|
+
self.assertTrue(len(index) == 10)
|
|
22
|
+
scores = [3, 1, 6, 2]
|
|
23
|
+
index = top_k(scores, 2)
|
|
24
|
+
self.assertTrue(set(index) == {0, 2})
|
|
25
|
+
index = top_k(scores, 2, sort=True)
|
|
26
|
+
self.assertTrue(list(index) == [2, 0])
|
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created on April 2022
|
|
5
|
+
@author: Thomas Bonald <bonald@enst.fr>
|
|
6
|
+
"""
|
|
7
|
+
from abc import ABC
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
|
|
11
|
+
from sknetwork.base import Algorithm
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class BaseRegressor(Algorithm, ABC):
|
|
15
|
+
"""Base class for regression algorithms.
|
|
16
|
+
|
|
17
|
+
Attributes
|
|
18
|
+
----------
|
|
19
|
+
values\_ : np.ndarray
|
|
20
|
+
Value of each node.
|
|
21
|
+
"""
|
|
22
|
+
def __init__(self):
|
|
23
|
+
self.values_ = None
|
|
24
|
+
|
|
25
|
+
def predict(self, columns: bool = False) -> np.ndarray:
|
|
26
|
+
"""Return the values predicted by the algorithm.
|
|
27
|
+
|
|
28
|
+
Parameters
|
|
29
|
+
----------
|
|
30
|
+
columns : bool
|
|
31
|
+
If ``True``, return the prediction for columns.
|
|
32
|
+
|
|
33
|
+
Returns
|
|
34
|
+
-------
|
|
35
|
+
values : np.ndarray
|
|
36
|
+
Values.
|
|
37
|
+
"""
|
|
38
|
+
if columns:
|
|
39
|
+
return self.values_col_
|
|
40
|
+
return self.values_
|
|
41
|
+
|
|
42
|
+
def fit_predict(self, *args, **kwargs) -> np.ndarray:
|
|
43
|
+
"""Fit algorithm to data and return the values. Same parameters as the ``fit`` method.
|
|
44
|
+
|
|
45
|
+
Returns
|
|
46
|
+
-------
|
|
47
|
+
values : np.ndarray
|
|
48
|
+
Values.
|
|
49
|
+
"""
|
|
50
|
+
self.fit(*args, **kwargs)
|
|
51
|
+
return self.values_
|
|
52
|
+
|
|
53
|
+
def _split_vars(self, shape):
|
|
54
|
+
n_row = shape[0]
|
|
55
|
+
self.values_row_ = self.values_[:n_row]
|
|
56
|
+
self.values_col_ = self.values_[n_row:]
|
|
57
|
+
self.values_ = self.values_row_
|
|
@@ -0,0 +1,204 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created in July 2019
|
|
5
|
+
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
|
+
@author: Thomas Bonald <thomas.bonald@telecom-paris.fr>
|
|
7
|
+
"""
|
|
8
|
+
from typing import Union, Optional, Tuple
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
from scipy import sparse
|
|
12
|
+
|
|
13
|
+
from sknetwork.linalg.normalizer import normalize
|
|
14
|
+
from sknetwork.regression.base import BaseRegressor
|
|
15
|
+
from sknetwork.utils import get_adjacency_values, get_degrees
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def init_temperatures(seeds: np.ndarray, init: Optional[float]) -> Tuple[np.ndarray, np.ndarray]:
|
|
19
|
+
"""Init temperatures."""
|
|
20
|
+
n = len(seeds)
|
|
21
|
+
border = (seeds >= 0)
|
|
22
|
+
if init is None:
|
|
23
|
+
temperatures = seeds[border].mean() * np.ones(n)
|
|
24
|
+
else:
|
|
25
|
+
temperatures = init * np.ones(n)
|
|
26
|
+
temperatures[border] = seeds[border]
|
|
27
|
+
return temperatures, border
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class Diffusion(BaseRegressor):
|
|
31
|
+
"""Regression by diffusion along the edges, given the temperatures of some seed nodes (heat equation).
|
|
32
|
+
|
|
33
|
+
The row vector of tempreatures :math:`T` evolves like:
|
|
34
|
+
|
|
35
|
+
:math:`T \\gets (1-\\alpha) T + \\alpha PT`
|
|
36
|
+
|
|
37
|
+
where :math:`\\alpha` is the damping factor and :math:`P` is the transition matrix of the random walk in the graph.
|
|
38
|
+
|
|
39
|
+
All values are updated, including those of seed nodes (free diffusion).
|
|
40
|
+
See ``Dirichlet`` for diffusion with boundary constraints.
|
|
41
|
+
|
|
42
|
+
Parameters
|
|
43
|
+
----------
|
|
44
|
+
n_iter : int
|
|
45
|
+
Number of iterations of the diffusion (must be positive).
|
|
46
|
+
damping_factor : float
|
|
47
|
+
Damping factor.
|
|
48
|
+
|
|
49
|
+
Attributes
|
|
50
|
+
----------
|
|
51
|
+
values\_ : np.ndarray
|
|
52
|
+
Value of each node (= temperature).
|
|
53
|
+
|
|
54
|
+
Example
|
|
55
|
+
-------
|
|
56
|
+
>>> from sknetwork.data import house
|
|
57
|
+
>>> diffusion = Diffusion(n_iter=1)
|
|
58
|
+
>>> adjacency = house()
|
|
59
|
+
>>> values = {0: 1, 2: 0}
|
|
60
|
+
>>> values_pred = diffusion.fit_predict(adjacency, values)
|
|
61
|
+
>>> np.round(values_pred, 1)
|
|
62
|
+
array([0.8, 0.5, 0.2, 0.4, 0.6])
|
|
63
|
+
|
|
64
|
+
References
|
|
65
|
+
----------
|
|
66
|
+
Chung, F. (2007). The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences.
|
|
67
|
+
"""
|
|
68
|
+
def __init__(self, n_iter: int = 3, damping_factor: float = 0.5):
|
|
69
|
+
super(Diffusion, self).__init__()
|
|
70
|
+
|
|
71
|
+
if n_iter <= 0:
|
|
72
|
+
raise ValueError('The number of iterations must be positive.')
|
|
73
|
+
else:
|
|
74
|
+
self.n_iter = n_iter
|
|
75
|
+
self.damping_factor = damping_factor
|
|
76
|
+
self.bipartite = None
|
|
77
|
+
|
|
78
|
+
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray],
|
|
79
|
+
values: Optional[Union[dict, list, np.ndarray]] = None,
|
|
80
|
+
values_row: Optional[Union[dict, list, np.ndarray]] = None,
|
|
81
|
+
values_col: Optional[Union[dict, list, np.ndarray]] = None, init: Optional[float] = None,
|
|
82
|
+
force_bipartite: bool = False) -> 'Diffusion':
|
|
83
|
+
"""Compute the diffusion (temperatures at equilibrium).
|
|
84
|
+
|
|
85
|
+
Parameters
|
|
86
|
+
----------
|
|
87
|
+
input_matrix :
|
|
88
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
89
|
+
values :
|
|
90
|
+
Temperatures of nodes in initial state (dictionary or vector). Negative temperatures ignored.
|
|
91
|
+
values_row, values_col :
|
|
92
|
+
Temperatures of rows and columns for bipartite graphs. Negative temperatures ignored.
|
|
93
|
+
init :
|
|
94
|
+
Temperature of nodes in initial state.
|
|
95
|
+
If ``None``, use the average temperature of seed nodes (default).
|
|
96
|
+
force_bipartite :
|
|
97
|
+
If ``True``, consider the input matrix as a biadjacency matrix (default = ``False``).
|
|
98
|
+
|
|
99
|
+
Returns
|
|
100
|
+
-------
|
|
101
|
+
self: :class:`Diffusion`
|
|
102
|
+
"""
|
|
103
|
+
adjacency, values, self.bipartite = get_adjacency_values(input_matrix, force_bipartite=force_bipartite,
|
|
104
|
+
values=values,
|
|
105
|
+
values_row=values_row,
|
|
106
|
+
values_col=values_col)
|
|
107
|
+
values, _ = init_temperatures(values, init)
|
|
108
|
+
diffusion = normalize(adjacency.T.tocsr())
|
|
109
|
+
degrees = get_degrees(diffusion)
|
|
110
|
+
diag = sparse.diags((degrees == 0).astype(int)).tocsr()
|
|
111
|
+
diffusion += diag
|
|
112
|
+
|
|
113
|
+
diffusion = (1 - self.damping_factor) * sparse.identity(len(degrees)).tocsr() + self.damping_factor * diffusion
|
|
114
|
+
|
|
115
|
+
for i in range(self.n_iter):
|
|
116
|
+
values = diffusion.dot(values)
|
|
117
|
+
|
|
118
|
+
self.values_ = values
|
|
119
|
+
if self.bipartite:
|
|
120
|
+
self._split_vars(input_matrix.shape)
|
|
121
|
+
|
|
122
|
+
return self
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
class Dirichlet(BaseRegressor):
|
|
126
|
+
"""Regression by the Dirichlet problem (heat diffusion with boundary constraints).
|
|
127
|
+
|
|
128
|
+
The temperatures of some seed nodes are fixed. The temperatures of other nodes are computed.
|
|
129
|
+
|
|
130
|
+
Parameters
|
|
131
|
+
----------
|
|
132
|
+
n_iter : int
|
|
133
|
+
Number of iterations of the diffusion (must be positive).
|
|
134
|
+
|
|
135
|
+
Attributes
|
|
136
|
+
----------
|
|
137
|
+
values\_ : np.ndarray
|
|
138
|
+
Value of each node (= temperature).
|
|
139
|
+
|
|
140
|
+
Example
|
|
141
|
+
-------
|
|
142
|
+
>>> from sknetwork.regression import Dirichlet
|
|
143
|
+
>>> from sknetwork.data import house
|
|
144
|
+
>>> dirichlet = Dirichlet()
|
|
145
|
+
>>> adjacency = house()
|
|
146
|
+
>>> values = {0: 1, 2: 0}
|
|
147
|
+
>>> values_pred = dirichlet.fit_predict(adjacency, values)
|
|
148
|
+
>>> np.round(values_pred, 2)
|
|
149
|
+
array([1. , 0.54, 0. , 0.31, 0.62])
|
|
150
|
+
|
|
151
|
+
References
|
|
152
|
+
----------
|
|
153
|
+
Chung, F. (2007). The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences.
|
|
154
|
+
"""
|
|
155
|
+
def __init__(self, n_iter: int = 10):
|
|
156
|
+
super(Dirichlet, self).__init__()
|
|
157
|
+
|
|
158
|
+
if n_iter <= 0:
|
|
159
|
+
raise ValueError('The number of iterations must be positive.')
|
|
160
|
+
else:
|
|
161
|
+
self.n_iter = n_iter
|
|
162
|
+
self.bipartite = None
|
|
163
|
+
|
|
164
|
+
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray],
|
|
165
|
+
values: Optional[Union[dict, list, np.ndarray]] = None,
|
|
166
|
+
values_row: Optional[Union[dict, list, np.ndarray]] = None,
|
|
167
|
+
values_col: Optional[Union[dict, list, np.ndarray]] = None, init: Optional[float] = None,
|
|
168
|
+
force_bipartite: bool = False) -> 'Dirichlet':
|
|
169
|
+
"""Compute the solution to the Dirichlet problem (temperatures at equilibrium).
|
|
170
|
+
|
|
171
|
+
Parameters
|
|
172
|
+
----------
|
|
173
|
+
input_matrix :
|
|
174
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
175
|
+
values :
|
|
176
|
+
Temperatures of nodes (dictionary or vector). Negative temperatures ignored.
|
|
177
|
+
values_row, values_col :
|
|
178
|
+
Temperatures of rows and columns for bipartite graphs. Negative temperatures ignored.
|
|
179
|
+
init :
|
|
180
|
+
Temperature of nodes in initial state.
|
|
181
|
+
If ``None``, use the average temperature of seed nodes (default).
|
|
182
|
+
force_bipartite :
|
|
183
|
+
If ``True``, consider the input matrix as a biadjacency matrix (default = ``False``).
|
|
184
|
+
|
|
185
|
+
Returns
|
|
186
|
+
-------
|
|
187
|
+
self: :class:`Dirichlet`
|
|
188
|
+
"""
|
|
189
|
+
adjacency, values, self.bipartite = get_adjacency_values(input_matrix, force_bipartite=force_bipartite,
|
|
190
|
+
values=values,
|
|
191
|
+
values_row=values_row,
|
|
192
|
+
values_col=values_col)
|
|
193
|
+
temperatures, border = init_temperatures(values, init)
|
|
194
|
+
values = temperatures.copy()
|
|
195
|
+
diffusion = normalize(adjacency)
|
|
196
|
+
for i in range(self.n_iter):
|
|
197
|
+
values = diffusion.dot(values)
|
|
198
|
+
values[border] = temperatures[border]
|
|
199
|
+
|
|
200
|
+
self.values_ = values
|
|
201
|
+
if self.bipartite:
|
|
202
|
+
self._split_vars(input_matrix.shape)
|
|
203
|
+
|
|
204
|
+
return self
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
"""tests for regression"""
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for regression API"""
|
|
4
|
+
import unittest
|
|
5
|
+
|
|
6
|
+
from sknetwork.data.test_graphs import test_bigraph, test_graph, test_digraph
|
|
7
|
+
from sknetwork.regression import *
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestAPI(unittest.TestCase):
|
|
11
|
+
|
|
12
|
+
def test_basic(self):
|
|
13
|
+
methods = [Diffusion(), Dirichlet()]
|
|
14
|
+
for adjacency in [test_graph(), test_digraph()]:
|
|
15
|
+
n = adjacency.shape[0]
|
|
16
|
+
for method in methods:
|
|
17
|
+
score = method.fit_predict(adjacency)
|
|
18
|
+
self.assertEqual(score.shape, (n, ))
|
|
19
|
+
self.assertTrue(min(score) >= 0)
|
|
20
|
+
|
|
21
|
+
def test_bipartite(self):
|
|
22
|
+
biadjacency = test_bigraph()
|
|
23
|
+
n_row, n_col = biadjacency.shape
|
|
24
|
+
|
|
25
|
+
methods = [Diffusion(), Dirichlet()]
|
|
26
|
+
for method in methods:
|
|
27
|
+
method.fit(biadjacency)
|
|
28
|
+
values_row = method.values_row_
|
|
29
|
+
values_col = method.values_col_
|
|
30
|
+
|
|
31
|
+
self.assertEqual(values_row.shape, (n_row,))
|
|
32
|
+
self.assertEqual(values_col.shape, (n_col,))
|
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for diffusion.py"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
from sknetwork.data.test_graphs import *
|
|
8
|
+
from sknetwork.regression import Diffusion, Dirichlet
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
# noinspection DuplicatedCode
|
|
12
|
+
class TestDiffusion(unittest.TestCase):
|
|
13
|
+
|
|
14
|
+
def setUp(self):
|
|
15
|
+
self.algos = [Diffusion(), Dirichlet()]
|
|
16
|
+
|
|
17
|
+
def test_predict(self):
|
|
18
|
+
adjacency = test_graph()
|
|
19
|
+
for algo in self.algos:
|
|
20
|
+
values = algo.fit_predict(adjacency, {0: 0, 1: 1, 2: 0.5})
|
|
21
|
+
values_ = algo.predict()
|
|
22
|
+
self.assertAlmostEqual(np.linalg.norm(values - values_), 0)
|
|
23
|
+
|
|
24
|
+
def test_no_iter(self):
|
|
25
|
+
with self.assertRaises(ValueError):
|
|
26
|
+
Diffusion(n_iter=-1)
|
|
27
|
+
|
|
28
|
+
def test_single_node_graph(self):
|
|
29
|
+
for algo in self.algos:
|
|
30
|
+
algo.fit(sparse.identity(1, format='csr'), {0: 1})
|
|
31
|
+
self.assertEqual(algo.values_, [1])
|
|
32
|
+
|
|
33
|
+
def test_range(self):
|
|
34
|
+
for adjacency in [test_graph(), test_digraph()]:
|
|
35
|
+
for algo in self.algos:
|
|
36
|
+
values = algo.fit_predict(adjacency, {0: 0, 1: 1, 2: 0.5})
|
|
37
|
+
self.assertTrue(np.all(values <= 1) and np.all(values >= 0))
|
|
38
|
+
|
|
39
|
+
biadjacency = test_bigraph()
|
|
40
|
+
for algo in [Diffusion(), Dirichlet()]:
|
|
41
|
+
values = algo.fit_predict(biadjacency, values_row={0: 1})
|
|
42
|
+
self.assertTrue(np.all(values <= 1) and np.all(values >= 0))
|
|
43
|
+
values = algo.fit_predict(biadjacency, values_row={0: 0.1}, values_col={1: 2}, init=0.3)
|
|
44
|
+
self.assertTrue(np.all(values <= 2) and np.all(values >= 0.1))
|
|
45
|
+
self.assertAlmostEqual(np.linalg.norm(algo.values_col_ - algo.predict(columns=True)), 0)
|
|
46
|
+
|
|
47
|
+
def test_initial_state(self):
|
|
48
|
+
for adjacency in [test_graph(), test_digraph()]:
|
|
49
|
+
for algo in self.algos:
|
|
50
|
+
values = algo.fit_predict(adjacency, {0: 0, 1: 1, 2: 0.5}, 0.3)
|
|
51
|
+
self.assertTrue(np.all(values <= 1) and np.all(values >= 0))
|
|
52
|
+
|
|
53
|
+
def test_n_iter(self):
|
|
54
|
+
with self.assertRaises(ValueError):
|
|
55
|
+
Dirichlet(n_iter=0)
|
|
56
|
+
|
sknetwork/sknetwork.py
ADDED
sknetwork/test_base.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for base.py"""
|
|
4
|
+
import unittest
|
|
5
|
+
|
|
6
|
+
from sknetwork.base import Algorithm
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class TestBase(unittest.TestCase):
|
|
10
|
+
|
|
11
|
+
def setUp(self):
|
|
12
|
+
class NewAlgo(Algorithm):
|
|
13
|
+
"""Docstring"""
|
|
14
|
+
def __init__(self, param: int, name: str):
|
|
15
|
+
self.param = param
|
|
16
|
+
self.name = name
|
|
17
|
+
|
|
18
|
+
def fit(self):
|
|
19
|
+
"""Docstring"""
|
|
20
|
+
pass
|
|
21
|
+
self.algo = NewAlgo(1, 'abc')
|
|
22
|
+
|
|
23
|
+
def test_repr(self):
|
|
24
|
+
self.assertEqual(repr(self.algo), "NewAlgo(param=1, name='abc')")
|
|
25
|
+
|
|
26
|
+
def test_get_params(self):
|
|
27
|
+
self.assertEqual(len(self.algo.get_params()), 2)
|
|
28
|
+
|
|
29
|
+
def test_set_params(self):
|
|
30
|
+
self.algo.set_params({'param': 3})
|
|
31
|
+
self.assertEqual(self.algo.param, 3)
|
|
32
|
+
|
|
33
|
+
def test_fit(self):
|
|
34
|
+
stub = Algorithm()
|
|
35
|
+
self.assertRaises(NotImplementedError, stub.fit, None)
|
sknetwork/test_log.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for verbose.py"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
from sknetwork.log import Log
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestVerbose(unittest.TestCase):
|
|
11
|
+
|
|
12
|
+
def test_prints(self):
|
|
13
|
+
logger = Log(verbose=True)
|
|
14
|
+
logger.print_log('Hello', 42)
|
|
15
|
+
self.assertEqual(str(logger.log), 'Hello 42\n')
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
"""Module on topology."""
|
|
2
|
+
from sknetwork.topology.cliques import count_cliques
|
|
3
|
+
from sknetwork.topology.core import get_core_decomposition
|
|
4
|
+
from sknetwork.topology.triangles import count_triangles, get_clustering_coefficient
|
|
5
|
+
from sknetwork.topology.structure import is_connected, is_bipartite, is_symmetric, get_connected_components, \
|
|
6
|
+
get_largest_connected_component
|
|
7
|
+
from sknetwork.topology.cycles import is_acyclic, get_cycles, break_cycles
|
|
8
|
+
from sknetwork.topology.weisfeiler_lehman import color_weisfeiler_lehman, are_isomorphic
|