scikit-network 0.33.3__cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (229) hide show
  1. scikit_network-0.33.3.dist-info/METADATA +122 -0
  2. scikit_network-0.33.3.dist-info/RECORD +229 -0
  3. scikit_network-0.33.3.dist-info/WHEEL +6 -0
  4. scikit_network-0.33.3.dist-info/licenses/AUTHORS.rst +43 -0
  5. scikit_network-0.33.3.dist-info/licenses/LICENSE +34 -0
  6. scikit_network-0.33.3.dist-info/top_level.txt +1 -0
  7. scikit_network.libs/libgomp-d22c30c5.so.1.0.0 +0 -0
  8. sknetwork/__init__.py +21 -0
  9. sknetwork/base.py +67 -0
  10. sknetwork/classification/__init__.py +8 -0
  11. sknetwork/classification/base.py +142 -0
  12. sknetwork/classification/base_rank.py +133 -0
  13. sknetwork/classification/diffusion.py +134 -0
  14. sknetwork/classification/knn.py +139 -0
  15. sknetwork/classification/metrics.py +205 -0
  16. sknetwork/classification/pagerank.py +66 -0
  17. sknetwork/classification/propagation.py +152 -0
  18. sknetwork/classification/tests/__init__.py +1 -0
  19. sknetwork/classification/tests/test_API.py +30 -0
  20. sknetwork/classification/tests/test_diffusion.py +77 -0
  21. sknetwork/classification/tests/test_knn.py +23 -0
  22. sknetwork/classification/tests/test_metrics.py +53 -0
  23. sknetwork/classification/tests/test_pagerank.py +20 -0
  24. sknetwork/classification/tests/test_propagation.py +24 -0
  25. sknetwork/classification/vote.cpp +27587 -0
  26. sknetwork/classification/vote.cpython-39-aarch64-linux-gnu.so +0 -0
  27. sknetwork/classification/vote.pyx +56 -0
  28. sknetwork/clustering/__init__.py +8 -0
  29. sknetwork/clustering/base.py +172 -0
  30. sknetwork/clustering/kcenters.py +253 -0
  31. sknetwork/clustering/leiden.py +242 -0
  32. sknetwork/clustering/leiden_core.cpp +31578 -0
  33. sknetwork/clustering/leiden_core.cpython-39-aarch64-linux-gnu.so +0 -0
  34. sknetwork/clustering/leiden_core.pyx +124 -0
  35. sknetwork/clustering/louvain.py +286 -0
  36. sknetwork/clustering/louvain_core.cpp +31223 -0
  37. sknetwork/clustering/louvain_core.cpython-39-aarch64-linux-gnu.so +0 -0
  38. sknetwork/clustering/louvain_core.pyx +124 -0
  39. sknetwork/clustering/metrics.py +91 -0
  40. sknetwork/clustering/postprocess.py +66 -0
  41. sknetwork/clustering/propagation_clustering.py +104 -0
  42. sknetwork/clustering/tests/__init__.py +1 -0
  43. sknetwork/clustering/tests/test_API.py +38 -0
  44. sknetwork/clustering/tests/test_kcenters.py +60 -0
  45. sknetwork/clustering/tests/test_leiden.py +34 -0
  46. sknetwork/clustering/tests/test_louvain.py +135 -0
  47. sknetwork/clustering/tests/test_metrics.py +50 -0
  48. sknetwork/clustering/tests/test_postprocess.py +39 -0
  49. sknetwork/data/__init__.py +6 -0
  50. sknetwork/data/base.py +33 -0
  51. sknetwork/data/load.py +406 -0
  52. sknetwork/data/models.py +459 -0
  53. sknetwork/data/parse.py +644 -0
  54. sknetwork/data/test_graphs.py +84 -0
  55. sknetwork/data/tests/__init__.py +1 -0
  56. sknetwork/data/tests/test_API.py +30 -0
  57. sknetwork/data/tests/test_base.py +14 -0
  58. sknetwork/data/tests/test_load.py +95 -0
  59. sknetwork/data/tests/test_models.py +52 -0
  60. sknetwork/data/tests/test_parse.py +250 -0
  61. sknetwork/data/tests/test_test_graphs.py +29 -0
  62. sknetwork/data/tests/test_toy_graphs.py +68 -0
  63. sknetwork/data/timeout.py +38 -0
  64. sknetwork/data/toy_graphs.py +611 -0
  65. sknetwork/embedding/__init__.py +8 -0
  66. sknetwork/embedding/base.py +94 -0
  67. sknetwork/embedding/force_atlas.py +198 -0
  68. sknetwork/embedding/louvain_embedding.py +148 -0
  69. sknetwork/embedding/random_projection.py +135 -0
  70. sknetwork/embedding/spectral.py +141 -0
  71. sknetwork/embedding/spring.py +198 -0
  72. sknetwork/embedding/svd.py +359 -0
  73. sknetwork/embedding/tests/__init__.py +1 -0
  74. sknetwork/embedding/tests/test_API.py +49 -0
  75. sknetwork/embedding/tests/test_force_atlas.py +35 -0
  76. sknetwork/embedding/tests/test_louvain_embedding.py +33 -0
  77. sknetwork/embedding/tests/test_random_projection.py +28 -0
  78. sknetwork/embedding/tests/test_spectral.py +81 -0
  79. sknetwork/embedding/tests/test_spring.py +50 -0
  80. sknetwork/embedding/tests/test_svd.py +43 -0
  81. sknetwork/gnn/__init__.py +10 -0
  82. sknetwork/gnn/activation.py +117 -0
  83. sknetwork/gnn/base.py +181 -0
  84. sknetwork/gnn/base_activation.py +90 -0
  85. sknetwork/gnn/base_layer.py +109 -0
  86. sknetwork/gnn/gnn_classifier.py +305 -0
  87. sknetwork/gnn/layer.py +153 -0
  88. sknetwork/gnn/loss.py +180 -0
  89. sknetwork/gnn/neighbor_sampler.py +65 -0
  90. sknetwork/gnn/optimizer.py +164 -0
  91. sknetwork/gnn/tests/__init__.py +1 -0
  92. sknetwork/gnn/tests/test_activation.py +56 -0
  93. sknetwork/gnn/tests/test_base.py +75 -0
  94. sknetwork/gnn/tests/test_base_layer.py +37 -0
  95. sknetwork/gnn/tests/test_gnn_classifier.py +130 -0
  96. sknetwork/gnn/tests/test_layers.py +80 -0
  97. sknetwork/gnn/tests/test_loss.py +33 -0
  98. sknetwork/gnn/tests/test_neigh_sampler.py +23 -0
  99. sknetwork/gnn/tests/test_optimizer.py +43 -0
  100. sknetwork/gnn/tests/test_utils.py +41 -0
  101. sknetwork/gnn/utils.py +127 -0
  102. sknetwork/hierarchy/__init__.py +6 -0
  103. sknetwork/hierarchy/base.py +96 -0
  104. sknetwork/hierarchy/louvain_hierarchy.py +272 -0
  105. sknetwork/hierarchy/metrics.py +234 -0
  106. sknetwork/hierarchy/paris.cpp +37889 -0
  107. sknetwork/hierarchy/paris.cpython-39-aarch64-linux-gnu.so +0 -0
  108. sknetwork/hierarchy/paris.pyx +316 -0
  109. sknetwork/hierarchy/postprocess.py +350 -0
  110. sknetwork/hierarchy/tests/__init__.py +1 -0
  111. sknetwork/hierarchy/tests/test_API.py +24 -0
  112. sknetwork/hierarchy/tests/test_algos.py +34 -0
  113. sknetwork/hierarchy/tests/test_metrics.py +62 -0
  114. sknetwork/hierarchy/tests/test_postprocess.py +57 -0
  115. sknetwork/linalg/__init__.py +9 -0
  116. sknetwork/linalg/basics.py +37 -0
  117. sknetwork/linalg/diteration.cpp +27403 -0
  118. sknetwork/linalg/diteration.cpython-39-aarch64-linux-gnu.so +0 -0
  119. sknetwork/linalg/diteration.pyx +47 -0
  120. sknetwork/linalg/eig_solver.py +93 -0
  121. sknetwork/linalg/laplacian.py +15 -0
  122. sknetwork/linalg/normalizer.py +86 -0
  123. sknetwork/linalg/operators.py +225 -0
  124. sknetwork/linalg/polynome.py +76 -0
  125. sknetwork/linalg/ppr_solver.py +170 -0
  126. sknetwork/linalg/push.cpp +31093 -0
  127. sknetwork/linalg/push.cpython-39-aarch64-linux-gnu.so +0 -0
  128. sknetwork/linalg/push.pyx +71 -0
  129. sknetwork/linalg/sparse_lowrank.py +142 -0
  130. sknetwork/linalg/svd_solver.py +91 -0
  131. sknetwork/linalg/tests/__init__.py +1 -0
  132. sknetwork/linalg/tests/test_eig.py +44 -0
  133. sknetwork/linalg/tests/test_laplacian.py +18 -0
  134. sknetwork/linalg/tests/test_normalization.py +34 -0
  135. sknetwork/linalg/tests/test_operators.py +66 -0
  136. sknetwork/linalg/tests/test_polynome.py +38 -0
  137. sknetwork/linalg/tests/test_ppr.py +50 -0
  138. sknetwork/linalg/tests/test_sparse_lowrank.py +61 -0
  139. sknetwork/linalg/tests/test_svd.py +38 -0
  140. sknetwork/linkpred/__init__.py +2 -0
  141. sknetwork/linkpred/base.py +46 -0
  142. sknetwork/linkpred/nn.py +126 -0
  143. sknetwork/linkpred/tests/__init__.py +1 -0
  144. sknetwork/linkpred/tests/test_nn.py +27 -0
  145. sknetwork/log.py +19 -0
  146. sknetwork/path/__init__.py +5 -0
  147. sknetwork/path/dag.py +54 -0
  148. sknetwork/path/distances.py +98 -0
  149. sknetwork/path/search.py +31 -0
  150. sknetwork/path/shortest_path.py +61 -0
  151. sknetwork/path/tests/__init__.py +1 -0
  152. sknetwork/path/tests/test_dag.py +37 -0
  153. sknetwork/path/tests/test_distances.py +62 -0
  154. sknetwork/path/tests/test_search.py +40 -0
  155. sknetwork/path/tests/test_shortest_path.py +40 -0
  156. sknetwork/ranking/__init__.py +8 -0
  157. sknetwork/ranking/base.py +61 -0
  158. sknetwork/ranking/betweenness.cpp +9710 -0
  159. sknetwork/ranking/betweenness.cpython-39-aarch64-linux-gnu.so +0 -0
  160. sknetwork/ranking/betweenness.pyx +97 -0
  161. sknetwork/ranking/closeness.py +92 -0
  162. sknetwork/ranking/hits.py +94 -0
  163. sknetwork/ranking/katz.py +83 -0
  164. sknetwork/ranking/pagerank.py +110 -0
  165. sknetwork/ranking/postprocess.py +37 -0
  166. sknetwork/ranking/tests/__init__.py +1 -0
  167. sknetwork/ranking/tests/test_API.py +32 -0
  168. sknetwork/ranking/tests/test_betweenness.py +38 -0
  169. sknetwork/ranking/tests/test_closeness.py +30 -0
  170. sknetwork/ranking/tests/test_hits.py +20 -0
  171. sknetwork/ranking/tests/test_pagerank.py +62 -0
  172. sknetwork/ranking/tests/test_postprocess.py +26 -0
  173. sknetwork/regression/__init__.py +4 -0
  174. sknetwork/regression/base.py +61 -0
  175. sknetwork/regression/diffusion.py +210 -0
  176. sknetwork/regression/tests/__init__.py +1 -0
  177. sknetwork/regression/tests/test_API.py +32 -0
  178. sknetwork/regression/tests/test_diffusion.py +56 -0
  179. sknetwork/sknetwork.py +3 -0
  180. sknetwork/test_base.py +35 -0
  181. sknetwork/test_log.py +15 -0
  182. sknetwork/topology/__init__.py +8 -0
  183. sknetwork/topology/cliques.cpp +32586 -0
  184. sknetwork/topology/cliques.cpython-39-aarch64-linux-gnu.so +0 -0
  185. sknetwork/topology/cliques.pyx +149 -0
  186. sknetwork/topology/core.cpp +30672 -0
  187. sknetwork/topology/core.cpython-39-aarch64-linux-gnu.so +0 -0
  188. sknetwork/topology/core.pyx +90 -0
  189. sknetwork/topology/cycles.py +243 -0
  190. sknetwork/topology/minheap.cpp +27335 -0
  191. sknetwork/topology/minheap.cpython-39-aarch64-linux-gnu.so +0 -0
  192. sknetwork/topology/minheap.pxd +20 -0
  193. sknetwork/topology/minheap.pyx +109 -0
  194. sknetwork/topology/structure.py +194 -0
  195. sknetwork/topology/tests/__init__.py +1 -0
  196. sknetwork/topology/tests/test_cliques.py +28 -0
  197. sknetwork/topology/tests/test_core.py +19 -0
  198. sknetwork/topology/tests/test_cycles.py +65 -0
  199. sknetwork/topology/tests/test_structure.py +85 -0
  200. sknetwork/topology/tests/test_triangles.py +38 -0
  201. sknetwork/topology/tests/test_wl.py +72 -0
  202. sknetwork/topology/triangles.cpp +8897 -0
  203. sknetwork/topology/triangles.cpython-39-aarch64-linux-gnu.so +0 -0
  204. sknetwork/topology/triangles.pyx +151 -0
  205. sknetwork/topology/weisfeiler_lehman.py +133 -0
  206. sknetwork/topology/weisfeiler_lehman_core.cpp +27638 -0
  207. sknetwork/topology/weisfeiler_lehman_core.cpython-39-aarch64-linux-gnu.so +0 -0
  208. sknetwork/topology/weisfeiler_lehman_core.pyx +114 -0
  209. sknetwork/utils/__init__.py +7 -0
  210. sknetwork/utils/check.py +355 -0
  211. sknetwork/utils/format.py +221 -0
  212. sknetwork/utils/membership.py +82 -0
  213. sknetwork/utils/neighbors.py +115 -0
  214. sknetwork/utils/tests/__init__.py +1 -0
  215. sknetwork/utils/tests/test_check.py +190 -0
  216. sknetwork/utils/tests/test_format.py +63 -0
  217. sknetwork/utils/tests/test_membership.py +24 -0
  218. sknetwork/utils/tests/test_neighbors.py +41 -0
  219. sknetwork/utils/tests/test_tfidf.py +18 -0
  220. sknetwork/utils/tests/test_values.py +66 -0
  221. sknetwork/utils/tfidf.py +37 -0
  222. sknetwork/utils/values.py +76 -0
  223. sknetwork/visualization/__init__.py +4 -0
  224. sknetwork/visualization/colors.py +34 -0
  225. sknetwork/visualization/dendrograms.py +277 -0
  226. sknetwork/visualization/graphs.py +1039 -0
  227. sknetwork/visualization/tests/__init__.py +1 -0
  228. sknetwork/visualization/tests/test_dendrograms.py +53 -0
  229. sknetwork/visualization/tests/test_graphs.py +176 -0
@@ -0,0 +1,242 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ Created in March 2024
5
+ @author: Thomas Bonald <bonald@enst.fr>
6
+ @author: Ahmed Zaiou <ahmed.zaiou@capgemini.com>
7
+ """
8
+ from typing import Union, Optional
9
+
10
+ import numpy as np
11
+ from scipy import sparse
12
+
13
+ from sknetwork.clustering import Louvain
14
+ from sknetwork.clustering.louvain_core import optimize_core
15
+ from sknetwork.clustering.leiden_core import optimize_refine_core
16
+ from sknetwork.utils.membership import get_membership
17
+ from sknetwork.utils.check import check_random_state
18
+ from sknetwork.log import Log
19
+
20
+
21
+ class Leiden(Louvain):
22
+ """Leiden algorithm for clustering graphs by maximization of modularity.
23
+ Compared to the Louvain algorithm, the partition is refined before each aggregation.
24
+
25
+ For bipartite graphs, the algorithm maximizes Barber's modularity by default.
26
+
27
+ Parameters
28
+ ----------
29
+ resolution :
30
+ Resolution parameter.
31
+ modularity : str
32
+ Type of modularity to maximize. Can be ``'Dugue'``, ``'Newman'`` or ``'Potts'`` (default = ``'dugue'``).
33
+ tol_optimization :
34
+ Minimum increase in modularity to enter a new optimization pass in the local search.
35
+ tol_aggregation :
36
+ Minimum increase in modularity to enter a new aggregation pass.
37
+ n_aggregations :
38
+ Maximum number of aggregations.
39
+ A negative value is interpreted as no limit.
40
+ shuffle_nodes :
41
+ Enables node shuffling before optimization.
42
+ sort_clusters :
43
+ If ``True``, sort labels in decreasing order of cluster size.
44
+ return_probs :
45
+ If ``True``, return the probability distribution over clusters (soft clustering).
46
+ return_aggregate :
47
+ If ``True``, return the adjacency matrix of the graph between clusters.
48
+ random_state :
49
+ Random number generator or random seed. If None, numpy.random is used.
50
+ verbose :
51
+ Verbose mode.
52
+
53
+ Attributes
54
+ ----------
55
+ labels_ : np.ndarray, shape (n_labels,)
56
+ Label of each node.
57
+ probs_ : sparse.csr_matrix, shape (n_row, n_labels)
58
+ Probability distribution over labels.
59
+ labels_row_, labels_col_ : np.ndarray
60
+ Labels of rows and columns, for bipartite graphs.
61
+ probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
62
+ Probability distributions over labels for rows and columns (for bipartite graphs).
63
+ aggregate_ : sparse.csr_matrix
64
+ Aggregate adjacency matrix or biadjacency matrix between clusters.
65
+
66
+ Example
67
+ -------
68
+ >>> from sknetwork.clustering import Leiden
69
+ >>> from sknetwork.data import karate_club
70
+ >>> leiden = Leiden()
71
+ >>> adjacency = karate_club()
72
+ >>> labels = leiden.fit_predict(adjacency)
73
+ >>> len(set(labels))
74
+ 4
75
+
76
+ References
77
+ ----------
78
+ * Traag, V. A., Waltman, L., & Van Eck, N. J. (2019).
79
+ `From Louvain to Leiden: guaranteeing well-connected communities`, Scientific reports.
80
+
81
+ """
82
+
83
+ def __init__(self, resolution: float = 1, modularity: str = 'dugue', tol_optimization: float = 1e-3,
84
+ tol_aggregation: float = 1e-3, n_aggregations: int = -1, shuffle_nodes: bool = False,
85
+ sort_clusters: bool = True, return_probs: bool = True, return_aggregate: bool = True,
86
+ random_state: Optional[Union[np.random.RandomState, int]] = None, verbose: bool = False):
87
+ super(Leiden, self).__init__(sort_clusters=sort_clusters, return_probs=return_probs,
88
+ return_aggregate=return_aggregate)
89
+ Log.__init__(self, verbose)
90
+
91
+ self.labels_ = None
92
+ self.resolution = resolution
93
+ self.modularity = modularity.lower()
94
+ self.tol_optimization = tol_optimization
95
+ self.tol_aggregation = tol_aggregation
96
+ self.n_aggregations = n_aggregations
97
+ self.shuffle_nodes = shuffle_nodes
98
+ self.random_state = check_random_state(random_state)
99
+ self.bipartite = None
100
+
101
+ def _optimize(self, labels, adjacency, out_weights, in_weights):
102
+ """One optimization pass of the Leiden algorithm.
103
+
104
+ Parameters
105
+ ----------
106
+ labels :
107
+ Labels of nodes.
108
+ adjacency :
109
+ Adjacency matrix.
110
+ out_weights :
111
+ Out-weights of nodes.
112
+ in_weights :
113
+ In-weights of nodes
114
+
115
+ Returns
116
+ -------
117
+ labels :
118
+ Labels of nodes after optimization.
119
+ increase :
120
+ Gain in modularity after optimization.
121
+ """
122
+ indices = adjacency.indices
123
+ indptr = adjacency.indptr
124
+ data = adjacency.data.astype(np.float32)
125
+ out_weights = out_weights.astype(np.float32)
126
+ in_weights = in_weights.astype(np.float32)
127
+ membership = get_membership(labels)
128
+ out_cluster_weights = membership.T.dot(out_weights)
129
+ in_cluster_weights = membership.T.dot(in_weights)
130
+ cluster_weights = np.zeros_like(out_cluster_weights).astype(np.float32)
131
+ labels = labels.astype(np.int32)
132
+ self_loops = adjacency.diagonal().astype(np.float32)
133
+ return optimize_core(labels, indices, indptr, data, out_weights, in_weights, out_cluster_weights,
134
+ in_cluster_weights, cluster_weights, self_loops, self.resolution, self.tol_optimization)
135
+
136
+ def _optimize_refine(self, labels, labels_refined, adjacency, out_weights, in_weights):
137
+ """Get the refined partition optimizing modularity.
138
+
139
+ Parameters
140
+ ----------
141
+ labels :
142
+ Labels of nodes.
143
+ labels_refined :
144
+ Refined labels of nodes.
145
+ adjacency :
146
+ Adjacency matrix.
147
+ out_weights :
148
+ Out-weights of nodes.
149
+ in_weights :
150
+ In-weights of nodes
151
+
152
+ Returns
153
+ -------
154
+ labels_refined :
155
+ Refined labels of nodes.
156
+ """
157
+ indices = adjacency.indices
158
+ indptr = adjacency.indptr
159
+ data = adjacency.data.astype(np.float32)
160
+ out_weights = out_weights.astype(np.float32)
161
+ in_weights = in_weights.astype(np.float32)
162
+ membership = get_membership(labels_refined)
163
+ out_cluster_weights = membership.T.dot(out_weights)
164
+ in_cluster_weights = membership.T.dot(in_weights)
165
+ cluster_weights = np.zeros_like(out_cluster_weights).astype(np.float32)
166
+ self_loops = adjacency.diagonal().astype(np.float32)
167
+ labels = labels.astype(np.int32)
168
+ labels_refined = labels_refined.astype(np.int32)
169
+ return optimize_refine_core(labels, labels_refined, indices, indptr, data, out_weights, in_weights,
170
+ out_cluster_weights, in_cluster_weights, cluster_weights, self_loops,
171
+ self.resolution)
172
+
173
+ @staticmethod
174
+ def _aggregate_refine(labels, labels_refined, adjacency, out_weights, in_weights):
175
+ """Aggregate nodes according to refined labels.
176
+
177
+ Parameters
178
+ ----------
179
+ labels :
180
+ Labels of nodes.
181
+ labels_refined :
182
+ Refined labels of nodes.
183
+ adjacency :
184
+ Adjacency matrix.
185
+ out_weights :
186
+ Out-weights of nodes.
187
+ in_weights :
188
+ In-weights of nodes.
189
+
190
+ Returns
191
+ -------
192
+ Aggregate graph (labels, adjacency matrix, out-weights, in-weights).
193
+ """
194
+ membership = get_membership(labels)
195
+ membership_refined = get_membership(labels_refined)
196
+ adjacency_ = membership_refined.T.tocsr().dot(adjacency.dot(membership_refined))
197
+ out_weights_ = membership_refined.T.dot(out_weights)
198
+ in_weights_ = membership_refined.T.dot(in_weights)
199
+ labels_ = membership_refined.T.tocsr().dot(membership).indices
200
+ return labels_, adjacency_, out_weights_, in_weights_
201
+
202
+ def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], force_bipartite: bool = False) -> 'Leiden':
203
+ """Fit algorithm to data.
204
+
205
+ Parameters
206
+ ----------
207
+ input_matrix :
208
+ Adjacency matrix or biadjacency matrix of the graph.
209
+ force_bipartite :
210
+ If ``True``, force the input matrix to be considered as a biadjacency matrix even if square.
211
+
212
+ Returns
213
+ -------
214
+ self : :class:`Leiden`
215
+ """
216
+ adjacency, out_weights, in_weights, membership, index = self._pre_processing(input_matrix, force_bipartite)
217
+ n = adjacency.shape[0]
218
+ labels = np.arange(n)
219
+ count = 0
220
+ stop = False
221
+ while not stop:
222
+ count += 1
223
+ labels, increase = self._optimize(labels, adjacency, out_weights, in_weights)
224
+ _, labels = np.unique(labels, return_inverse=True)
225
+ labels_original = labels.copy()
226
+ labels_refined = np.arange(len(labels))
227
+ labels_refined = self._optimize_refine(labels, labels_refined, adjacency, out_weights, in_weights)
228
+ _, labels_refined = np.unique(labels_refined, return_inverse=True)
229
+ labels, adjacency, out_weights, in_weights = self._aggregate_refine(labels, labels_refined, adjacency,
230
+ out_weights, in_weights)
231
+ n = adjacency.shape[0]
232
+ stop = n == 1
233
+ stop |= increase <= self.tol_aggregation
234
+ stop |= count == self.n_aggregations
235
+ if stop:
236
+ membership = membership.dot(get_membership(labels_original))
237
+ else:
238
+ membership = membership.dot(get_membership(labels_refined))
239
+ self.print_log("Aggregation:", count, " Clusters:", n, " Increase:", increase)
240
+
241
+ self._post_processing(input_matrix, membership, index)
242
+ return self