scikit-network 0.33.3__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- scikit_network-0.33.3.dist-info/METADATA +122 -0
- scikit_network-0.33.3.dist-info/RECORD +228 -0
- scikit_network-0.33.3.dist-info/WHEEL +5 -0
- scikit_network-0.33.3.dist-info/licenses/AUTHORS.rst +43 -0
- scikit_network-0.33.3.dist-info/licenses/LICENSE +34 -0
- scikit_network-0.33.3.dist-info/top_level.txt +1 -0
- sknetwork/__init__.py +21 -0
- sknetwork/base.py +67 -0
- sknetwork/classification/__init__.py +8 -0
- sknetwork/classification/base.py +142 -0
- sknetwork/classification/base_rank.py +133 -0
- sknetwork/classification/diffusion.py +134 -0
- sknetwork/classification/knn.py +139 -0
- sknetwork/classification/metrics.py +205 -0
- sknetwork/classification/pagerank.py +66 -0
- sknetwork/classification/propagation.py +152 -0
- sknetwork/classification/tests/__init__.py +1 -0
- sknetwork/classification/tests/test_API.py +30 -0
- sknetwork/classification/tests/test_diffusion.py +77 -0
- sknetwork/classification/tests/test_knn.py +23 -0
- sknetwork/classification/tests/test_metrics.py +53 -0
- sknetwork/classification/tests/test_pagerank.py +20 -0
- sknetwork/classification/tests/test_propagation.py +24 -0
- sknetwork/classification/vote.cp313-win_amd64.pyd +0 -0
- sknetwork/classification/vote.cpp +27584 -0
- sknetwork/classification/vote.pyx +56 -0
- sknetwork/clustering/__init__.py +8 -0
- sknetwork/clustering/base.py +172 -0
- sknetwork/clustering/kcenters.py +253 -0
- sknetwork/clustering/leiden.py +242 -0
- sknetwork/clustering/leiden_core.cp313-win_amd64.pyd +0 -0
- sknetwork/clustering/leiden_core.cpp +31575 -0
- sknetwork/clustering/leiden_core.pyx +124 -0
- sknetwork/clustering/louvain.py +286 -0
- sknetwork/clustering/louvain_core.cp313-win_amd64.pyd +0 -0
- sknetwork/clustering/louvain_core.cpp +31220 -0
- sknetwork/clustering/louvain_core.pyx +124 -0
- sknetwork/clustering/metrics.py +91 -0
- sknetwork/clustering/postprocess.py +66 -0
- sknetwork/clustering/propagation_clustering.py +104 -0
- sknetwork/clustering/tests/__init__.py +1 -0
- sknetwork/clustering/tests/test_API.py +38 -0
- sknetwork/clustering/tests/test_kcenters.py +60 -0
- sknetwork/clustering/tests/test_leiden.py +34 -0
- sknetwork/clustering/tests/test_louvain.py +135 -0
- sknetwork/clustering/tests/test_metrics.py +50 -0
- sknetwork/clustering/tests/test_postprocess.py +39 -0
- sknetwork/data/__init__.py +6 -0
- sknetwork/data/base.py +33 -0
- sknetwork/data/load.py +406 -0
- sknetwork/data/models.py +459 -0
- sknetwork/data/parse.py +644 -0
- sknetwork/data/test_graphs.py +84 -0
- sknetwork/data/tests/__init__.py +1 -0
- sknetwork/data/tests/test_API.py +30 -0
- sknetwork/data/tests/test_base.py +14 -0
- sknetwork/data/tests/test_load.py +95 -0
- sknetwork/data/tests/test_models.py +52 -0
- sknetwork/data/tests/test_parse.py +250 -0
- sknetwork/data/tests/test_test_graphs.py +29 -0
- sknetwork/data/tests/test_toy_graphs.py +68 -0
- sknetwork/data/timeout.py +38 -0
- sknetwork/data/toy_graphs.py +611 -0
- sknetwork/embedding/__init__.py +8 -0
- sknetwork/embedding/base.py +94 -0
- sknetwork/embedding/force_atlas.py +198 -0
- sknetwork/embedding/louvain_embedding.py +148 -0
- sknetwork/embedding/random_projection.py +135 -0
- sknetwork/embedding/spectral.py +141 -0
- sknetwork/embedding/spring.py +198 -0
- sknetwork/embedding/svd.py +359 -0
- sknetwork/embedding/tests/__init__.py +1 -0
- sknetwork/embedding/tests/test_API.py +49 -0
- sknetwork/embedding/tests/test_force_atlas.py +35 -0
- sknetwork/embedding/tests/test_louvain_embedding.py +33 -0
- sknetwork/embedding/tests/test_random_projection.py +28 -0
- sknetwork/embedding/tests/test_spectral.py +81 -0
- sknetwork/embedding/tests/test_spring.py +50 -0
- sknetwork/embedding/tests/test_svd.py +43 -0
- sknetwork/gnn/__init__.py +10 -0
- sknetwork/gnn/activation.py +117 -0
- sknetwork/gnn/base.py +181 -0
- sknetwork/gnn/base_activation.py +90 -0
- sknetwork/gnn/base_layer.py +109 -0
- sknetwork/gnn/gnn_classifier.py +305 -0
- sknetwork/gnn/layer.py +153 -0
- sknetwork/gnn/loss.py +180 -0
- sknetwork/gnn/neighbor_sampler.py +65 -0
- sknetwork/gnn/optimizer.py +164 -0
- sknetwork/gnn/tests/__init__.py +1 -0
- sknetwork/gnn/tests/test_activation.py +56 -0
- sknetwork/gnn/tests/test_base.py +75 -0
- sknetwork/gnn/tests/test_base_layer.py +37 -0
- sknetwork/gnn/tests/test_gnn_classifier.py +130 -0
- sknetwork/gnn/tests/test_layers.py +80 -0
- sknetwork/gnn/tests/test_loss.py +33 -0
- sknetwork/gnn/tests/test_neigh_sampler.py +23 -0
- sknetwork/gnn/tests/test_optimizer.py +43 -0
- sknetwork/gnn/tests/test_utils.py +41 -0
- sknetwork/gnn/utils.py +127 -0
- sknetwork/hierarchy/__init__.py +6 -0
- sknetwork/hierarchy/base.py +96 -0
- sknetwork/hierarchy/louvain_hierarchy.py +272 -0
- sknetwork/hierarchy/metrics.py +234 -0
- sknetwork/hierarchy/paris.cp313-win_amd64.pyd +0 -0
- sknetwork/hierarchy/paris.cpp +37868 -0
- sknetwork/hierarchy/paris.pyx +316 -0
- sknetwork/hierarchy/postprocess.py +350 -0
- sknetwork/hierarchy/tests/__init__.py +1 -0
- sknetwork/hierarchy/tests/test_API.py +24 -0
- sknetwork/hierarchy/tests/test_algos.py +34 -0
- sknetwork/hierarchy/tests/test_metrics.py +62 -0
- sknetwork/hierarchy/tests/test_postprocess.py +57 -0
- sknetwork/linalg/__init__.py +9 -0
- sknetwork/linalg/basics.py +37 -0
- sknetwork/linalg/diteration.cp313-win_amd64.pyd +0 -0
- sknetwork/linalg/diteration.cpp +27400 -0
- sknetwork/linalg/diteration.pyx +47 -0
- sknetwork/linalg/eig_solver.py +93 -0
- sknetwork/linalg/laplacian.py +15 -0
- sknetwork/linalg/normalizer.py +86 -0
- sknetwork/linalg/operators.py +225 -0
- sknetwork/linalg/polynome.py +76 -0
- sknetwork/linalg/ppr_solver.py +170 -0
- sknetwork/linalg/push.cp313-win_amd64.pyd +0 -0
- sknetwork/linalg/push.cpp +31072 -0
- sknetwork/linalg/push.pyx +71 -0
- sknetwork/linalg/sparse_lowrank.py +142 -0
- sknetwork/linalg/svd_solver.py +91 -0
- sknetwork/linalg/tests/__init__.py +1 -0
- sknetwork/linalg/tests/test_eig.py +44 -0
- sknetwork/linalg/tests/test_laplacian.py +18 -0
- sknetwork/linalg/tests/test_normalization.py +34 -0
- sknetwork/linalg/tests/test_operators.py +66 -0
- sknetwork/linalg/tests/test_polynome.py +38 -0
- sknetwork/linalg/tests/test_ppr.py +50 -0
- sknetwork/linalg/tests/test_sparse_lowrank.py +61 -0
- sknetwork/linalg/tests/test_svd.py +38 -0
- sknetwork/linkpred/__init__.py +2 -0
- sknetwork/linkpred/base.py +46 -0
- sknetwork/linkpred/nn.py +126 -0
- sknetwork/linkpred/tests/__init__.py +1 -0
- sknetwork/linkpred/tests/test_nn.py +27 -0
- sknetwork/log.py +19 -0
- sknetwork/path/__init__.py +5 -0
- sknetwork/path/dag.py +54 -0
- sknetwork/path/distances.py +98 -0
- sknetwork/path/search.py +31 -0
- sknetwork/path/shortest_path.py +61 -0
- sknetwork/path/tests/__init__.py +1 -0
- sknetwork/path/tests/test_dag.py +37 -0
- sknetwork/path/tests/test_distances.py +62 -0
- sknetwork/path/tests/test_search.py +40 -0
- sknetwork/path/tests/test_shortest_path.py +40 -0
- sknetwork/ranking/__init__.py +8 -0
- sknetwork/ranking/base.py +61 -0
- sknetwork/ranking/betweenness.cp313-win_amd64.pyd +0 -0
- sknetwork/ranking/betweenness.cpp +9707 -0
- sknetwork/ranking/betweenness.pyx +97 -0
- sknetwork/ranking/closeness.py +92 -0
- sknetwork/ranking/hits.py +94 -0
- sknetwork/ranking/katz.py +83 -0
- sknetwork/ranking/pagerank.py +110 -0
- sknetwork/ranking/postprocess.py +37 -0
- sknetwork/ranking/tests/__init__.py +1 -0
- sknetwork/ranking/tests/test_API.py +32 -0
- sknetwork/ranking/tests/test_betweenness.py +38 -0
- sknetwork/ranking/tests/test_closeness.py +30 -0
- sknetwork/ranking/tests/test_hits.py +20 -0
- sknetwork/ranking/tests/test_pagerank.py +62 -0
- sknetwork/ranking/tests/test_postprocess.py +26 -0
- sknetwork/regression/__init__.py +4 -0
- sknetwork/regression/base.py +61 -0
- sknetwork/regression/diffusion.py +210 -0
- sknetwork/regression/tests/__init__.py +1 -0
- sknetwork/regression/tests/test_API.py +32 -0
- sknetwork/regression/tests/test_diffusion.py +56 -0
- sknetwork/sknetwork.py +3 -0
- sknetwork/test_base.py +35 -0
- sknetwork/test_log.py +15 -0
- sknetwork/topology/__init__.py +8 -0
- sknetwork/topology/cliques.cp313-win_amd64.pyd +0 -0
- sknetwork/topology/cliques.cpp +32565 -0
- sknetwork/topology/cliques.pyx +149 -0
- sknetwork/topology/core.cp313-win_amd64.pyd +0 -0
- sknetwork/topology/core.cpp +30651 -0
- sknetwork/topology/core.pyx +90 -0
- sknetwork/topology/cycles.py +243 -0
- sknetwork/topology/minheap.cp313-win_amd64.pyd +0 -0
- sknetwork/topology/minheap.cpp +27332 -0
- sknetwork/topology/minheap.pxd +20 -0
- sknetwork/topology/minheap.pyx +109 -0
- sknetwork/topology/structure.py +194 -0
- sknetwork/topology/tests/__init__.py +1 -0
- sknetwork/topology/tests/test_cliques.py +28 -0
- sknetwork/topology/tests/test_core.py +19 -0
- sknetwork/topology/tests/test_cycles.py +65 -0
- sknetwork/topology/tests/test_structure.py +85 -0
- sknetwork/topology/tests/test_triangles.py +38 -0
- sknetwork/topology/tests/test_wl.py +72 -0
- sknetwork/topology/triangles.cp313-win_amd64.pyd +0 -0
- sknetwork/topology/triangles.cpp +8894 -0
- sknetwork/topology/triangles.pyx +151 -0
- sknetwork/topology/weisfeiler_lehman.py +133 -0
- sknetwork/topology/weisfeiler_lehman_core.cp313-win_amd64.pyd +0 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +27635 -0
- sknetwork/topology/weisfeiler_lehman_core.pyx +114 -0
- sknetwork/utils/__init__.py +7 -0
- sknetwork/utils/check.py +355 -0
- sknetwork/utils/format.py +221 -0
- sknetwork/utils/membership.py +82 -0
- sknetwork/utils/neighbors.py +115 -0
- sknetwork/utils/tests/__init__.py +1 -0
- sknetwork/utils/tests/test_check.py +190 -0
- sknetwork/utils/tests/test_format.py +63 -0
- sknetwork/utils/tests/test_membership.py +24 -0
- sknetwork/utils/tests/test_neighbors.py +41 -0
- sknetwork/utils/tests/test_tfidf.py +18 -0
- sknetwork/utils/tests/test_values.py +66 -0
- sknetwork/utils/tfidf.py +37 -0
- sknetwork/utils/values.py +76 -0
- sknetwork/visualization/__init__.py +4 -0
- sknetwork/visualization/colors.py +34 -0
- sknetwork/visualization/dendrograms.py +277 -0
- sknetwork/visualization/graphs.py +1039 -0
- sknetwork/visualization/tests/__init__.py +1 -0
- sknetwork/visualization/tests/test_dendrograms.py +53 -0
- sknetwork/visualization/tests/test_graphs.py +176 -0
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
# distutils: language = c++
|
|
2
|
+
# cython: language_level=3
|
|
3
|
+
"""
|
|
4
|
+
Created in April 2020
|
|
5
|
+
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
|
+
"""
|
|
7
|
+
from libcpp.set cimport set
|
|
8
|
+
from libcpp.vector cimport vector
|
|
9
|
+
|
|
10
|
+
cimport cython
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@cython.boundscheck(False)
|
|
14
|
+
@cython.wraparound(False)
|
|
15
|
+
def vote_update(int[:] indptr, int[:] indices, float[:] data, int[:] labels, int[:] index):
|
|
16
|
+
"""One pass of label updates over the graph by majority vote among neighbors."""
|
|
17
|
+
cdef int i
|
|
18
|
+
cdef int ii
|
|
19
|
+
cdef int j
|
|
20
|
+
cdef int jj
|
|
21
|
+
cdef int n_indices = index.shape[0]
|
|
22
|
+
cdef int label
|
|
23
|
+
cdef int label_neigh_size
|
|
24
|
+
cdef float best_score
|
|
25
|
+
|
|
26
|
+
cdef vector[int] labels_neigh
|
|
27
|
+
cdef vector[float] votes_neigh, votes
|
|
28
|
+
cdef set[int] labels_unique = ()
|
|
29
|
+
|
|
30
|
+
cdef int n = labels.shape[0]
|
|
31
|
+
for i in range(n):
|
|
32
|
+
votes.push_back(0)
|
|
33
|
+
|
|
34
|
+
for ii in range(n_indices):
|
|
35
|
+
i = index[ii]
|
|
36
|
+
labels_neigh.clear()
|
|
37
|
+
for j in range(indptr[i], indptr[i + 1]):
|
|
38
|
+
jj = indices[j]
|
|
39
|
+
labels_neigh.push_back(labels[jj])
|
|
40
|
+
votes_neigh.push_back(data[jj])
|
|
41
|
+
|
|
42
|
+
labels_unique.clear()
|
|
43
|
+
label_neigh_size = labels_neigh.size()
|
|
44
|
+
for jj in range(label_neigh_size):
|
|
45
|
+
label = labels_neigh[jj]
|
|
46
|
+
if label >= 0:
|
|
47
|
+
labels_unique.insert(label)
|
|
48
|
+
votes[label] += votes_neigh[jj]
|
|
49
|
+
|
|
50
|
+
best_score = -1
|
|
51
|
+
for label in labels_unique:
|
|
52
|
+
if votes[label] > best_score:
|
|
53
|
+
labels[i] = label
|
|
54
|
+
best_score = votes[label]
|
|
55
|
+
votes[label] = 0
|
|
56
|
+
return labels
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
"""clustering module"""
|
|
2
|
+
from sknetwork.clustering.base import BaseClustering
|
|
3
|
+
from sknetwork.clustering.louvain import Louvain
|
|
4
|
+
from sknetwork.clustering.leiden import Leiden
|
|
5
|
+
from sknetwork.clustering.propagation_clustering import PropagationClustering
|
|
6
|
+
from sknetwork.clustering.metrics import get_modularity
|
|
7
|
+
from sknetwork.clustering.postprocess import reindex_labels, aggregate_graph
|
|
8
|
+
from sknetwork.clustering.kcenters import KCenters
|
|
@@ -0,0 +1,172 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created on Nov, 2019
|
|
5
|
+
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
|
+
"""
|
|
7
|
+
from abc import ABC
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
from scipy import sparse
|
|
11
|
+
|
|
12
|
+
from sknetwork.linalg.normalizer import normalize
|
|
13
|
+
from sknetwork.base import Algorithm
|
|
14
|
+
from sknetwork.utils.membership import get_membership
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class BaseClustering(Algorithm, ABC):
|
|
18
|
+
"""Base class for clustering algorithms.
|
|
19
|
+
|
|
20
|
+
Attributes
|
|
21
|
+
----------
|
|
22
|
+
labels_ : np.ndarray, shape (n_labels,)
|
|
23
|
+
Label of each node.
|
|
24
|
+
probs_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
25
|
+
Probability distribution over labels.
|
|
26
|
+
labels_row_, labels_col_ : np.ndarray
|
|
27
|
+
Labels of rows and columns, for bipartite graphs.
|
|
28
|
+
probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
29
|
+
Probability distributions over labels for rows and columns (for bipartite graphs).
|
|
30
|
+
aggregate_ : sparse.csr_matrix
|
|
31
|
+
Aggregate adjacency matrix or biadjacency matrix between clusters.
|
|
32
|
+
"""
|
|
33
|
+
def __init__(self, sort_clusters: bool = True, return_probs: bool = False, return_aggregate: bool = False):
|
|
34
|
+
self.sort_clusters = sort_clusters
|
|
35
|
+
self.return_probs = return_probs
|
|
36
|
+
self.return_aggregate = return_aggregate
|
|
37
|
+
self._init_vars()
|
|
38
|
+
|
|
39
|
+
def predict(self, columns=False) -> np.ndarray:
|
|
40
|
+
"""Return the labels predicted by the algorithm.
|
|
41
|
+
|
|
42
|
+
Parameters
|
|
43
|
+
----------
|
|
44
|
+
columns : bool
|
|
45
|
+
If ``True``, return the prediction for columns.
|
|
46
|
+
|
|
47
|
+
Returns
|
|
48
|
+
-------
|
|
49
|
+
labels : np.ndarray
|
|
50
|
+
Labels.
|
|
51
|
+
"""
|
|
52
|
+
if columns:
|
|
53
|
+
return self.labels_col_
|
|
54
|
+
return self.labels_
|
|
55
|
+
|
|
56
|
+
def fit_predict(self, *args, **kwargs) -> np.ndarray:
|
|
57
|
+
"""Fit algorithm to the data and return the labels. Same parameters as the ``fit`` method.
|
|
58
|
+
|
|
59
|
+
Returns
|
|
60
|
+
-------
|
|
61
|
+
labels : np.ndarray
|
|
62
|
+
Labels.
|
|
63
|
+
"""
|
|
64
|
+
self.fit(*args, **kwargs)
|
|
65
|
+
return self.predict()
|
|
66
|
+
|
|
67
|
+
def predict_proba(self, columns=False) -> np.ndarray:
|
|
68
|
+
"""Return the probability distribution over labels as predicted by the algorithm.
|
|
69
|
+
|
|
70
|
+
Parameters
|
|
71
|
+
----------
|
|
72
|
+
columns : bool
|
|
73
|
+
If ``True``, return the prediction for columns.
|
|
74
|
+
|
|
75
|
+
Returns
|
|
76
|
+
-------
|
|
77
|
+
probs : np.ndarray
|
|
78
|
+
Probability distribution over labels.
|
|
79
|
+
"""
|
|
80
|
+
if columns:
|
|
81
|
+
return self.probs_col_.toarray()
|
|
82
|
+
return self.probs_.toarray()
|
|
83
|
+
|
|
84
|
+
def fit_predict_proba(self, *args, **kwargs) -> np.ndarray:
|
|
85
|
+
"""Fit algorithm to the data and return the probability distribution over labels.
|
|
86
|
+
Same parameters as the ``fit`` method.
|
|
87
|
+
|
|
88
|
+
Returns
|
|
89
|
+
-------
|
|
90
|
+
probs : np.ndarray
|
|
91
|
+
Probability of each label.
|
|
92
|
+
"""
|
|
93
|
+
self.fit(*args, **kwargs)
|
|
94
|
+
return self.predict_proba()
|
|
95
|
+
|
|
96
|
+
def transform(self, columns=False) -> sparse.csr_matrix:
|
|
97
|
+
"""Return the probability distribution over labels in sparse format.
|
|
98
|
+
|
|
99
|
+
Parameters
|
|
100
|
+
----------
|
|
101
|
+
columns : bool
|
|
102
|
+
If ``True``, return the prediction for columns.
|
|
103
|
+
|
|
104
|
+
Returns
|
|
105
|
+
-------
|
|
106
|
+
probs : sparse.csr_matrix
|
|
107
|
+
Probability distribution over labels.
|
|
108
|
+
"""
|
|
109
|
+
if columns:
|
|
110
|
+
return self.probs_col_
|
|
111
|
+
return self.probs_
|
|
112
|
+
|
|
113
|
+
def fit_transform(self, *args, **kwargs) -> np.ndarray:
|
|
114
|
+
"""Fit algorithm to the data and return the membership matrix. Same parameters as the ``fit`` method.
|
|
115
|
+
|
|
116
|
+
Returns
|
|
117
|
+
-------
|
|
118
|
+
membership : np.ndarray
|
|
119
|
+
Membership matrix (distribution over clusters).
|
|
120
|
+
"""
|
|
121
|
+
self.fit(*args, **kwargs)
|
|
122
|
+
return self.transform()
|
|
123
|
+
|
|
124
|
+
def _init_vars(self):
|
|
125
|
+
"""Init variables."""
|
|
126
|
+
self.labels_ = None
|
|
127
|
+
self.labels_row_ = None
|
|
128
|
+
self.labels_col_ = None
|
|
129
|
+
self.probs_ = None
|
|
130
|
+
self.probs_row_ = None
|
|
131
|
+
self.probs_col_ = None
|
|
132
|
+
self.aggregate_ = None
|
|
133
|
+
self.bipartite = None
|
|
134
|
+
return self
|
|
135
|
+
|
|
136
|
+
def _split_vars(self, shape):
|
|
137
|
+
"""Split labels_ into labels_row_ and labels_col_"""
|
|
138
|
+
n_row = shape[0]
|
|
139
|
+
self.labels_row_ = self.labels_[:n_row]
|
|
140
|
+
self.labels_col_ = self.labels_[n_row:]
|
|
141
|
+
self.labels_ = self.labels_row_
|
|
142
|
+
return self
|
|
143
|
+
|
|
144
|
+
def _secondary_outputs(self, input_matrix: sparse.csr_matrix):
|
|
145
|
+
"""Compute different variables from labels_."""
|
|
146
|
+
if self.return_probs or self.return_aggregate:
|
|
147
|
+
input_matrix = input_matrix.astype(float)
|
|
148
|
+
if not self.bipartite:
|
|
149
|
+
probs = get_membership(self.labels_)
|
|
150
|
+
if self.return_probs:
|
|
151
|
+
self.probs_ = normalize(input_matrix.dot(probs))
|
|
152
|
+
if self.return_aggregate:
|
|
153
|
+
self.aggregate_ = sparse.csr_matrix(probs.T.dot(input_matrix.dot(probs)))
|
|
154
|
+
else:
|
|
155
|
+
if self.labels_col_ is None:
|
|
156
|
+
n_labels = max(self.labels_) + 1
|
|
157
|
+
probs_row = get_membership(self.labels_, n_labels=n_labels)
|
|
158
|
+
probs_col = normalize(input_matrix.T.dot(probs_row))
|
|
159
|
+
else:
|
|
160
|
+
n_labels = max(max(self.labels_row_), max(self.labels_col_)) + 1
|
|
161
|
+
probs_row = get_membership(self.labels_row_, n_labels=n_labels)
|
|
162
|
+
probs_col = get_membership(self.labels_col_, n_labels=n_labels)
|
|
163
|
+
if self.return_probs:
|
|
164
|
+
self.probs_row_ = normalize(input_matrix.dot(probs_col))
|
|
165
|
+
self.probs_col_ = normalize(input_matrix.T.dot(probs_row))
|
|
166
|
+
self.probs_ = self.probs_row_
|
|
167
|
+
if self.return_aggregate:
|
|
168
|
+
aggregate_ = sparse.csr_matrix(probs_row.T.dot(input_matrix))
|
|
169
|
+
aggregate_ = aggregate_.dot(probs_col)
|
|
170
|
+
self.aggregate_ = aggregate_
|
|
171
|
+
|
|
172
|
+
return self
|
|
@@ -0,0 +1,253 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Created in March 2024
|
|
3
|
+
@author: Laurène David <laurene.david@ip-paris.fr>
|
|
4
|
+
@author: Thomas Bonald <bonald@enst.fr>
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
from typing import Union
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
from scipy import sparse
|
|
11
|
+
|
|
12
|
+
from sknetwork.clustering import BaseClustering
|
|
13
|
+
from sknetwork.ranking import PageRank
|
|
14
|
+
from sknetwork.clustering import get_modularity
|
|
15
|
+
from sknetwork.classification.pagerank import PageRankClassifier
|
|
16
|
+
from sknetwork.utils.format import get_adjacency, directed2undirected
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class KCenters(BaseClustering):
|
|
20
|
+
"""K-center clustering algorithm. The center of each cluster is obtained by the PageRank algorithm.
|
|
21
|
+
|
|
22
|
+
Parameters
|
|
23
|
+
----------
|
|
24
|
+
n_clusters : int
|
|
25
|
+
Number of clusters.
|
|
26
|
+
directed : bool, default False
|
|
27
|
+
If ``True``, the graph is considered directed.
|
|
28
|
+
center_position : str, default "row"
|
|
29
|
+
Force centers to correspond to the nodes on the rows or columns of the biadjacency matrix.
|
|
30
|
+
Can be ``row``, ``col`` or ``both``. Only considered for bipartite graphs.
|
|
31
|
+
n_init : int, default 5
|
|
32
|
+
Number of reruns of the k-centers algorithm with different centers.
|
|
33
|
+
The run that produce the best modularity is chosen as the final result.
|
|
34
|
+
max_iter : int, default 20
|
|
35
|
+
Maximum number of iterations of the k-centers algorithm for a single run.
|
|
36
|
+
|
|
37
|
+
Attributes
|
|
38
|
+
----------
|
|
39
|
+
labels_ : np.ndarray, shape (n_nodes,)
|
|
40
|
+
Label of each node.
|
|
41
|
+
labels_row_, labels_col_ : np.ndarray
|
|
42
|
+
Labels of rows and columns, for bipartite graphs.
|
|
43
|
+
centers_ : np.ndarray, shape (n_nodes,)
|
|
44
|
+
Cluster centers.
|
|
45
|
+
centers_row_, centers_col_ : np.ndarray
|
|
46
|
+
Cluster centers of rows and columns, for bipartite graphs.
|
|
47
|
+
|
|
48
|
+
Example
|
|
49
|
+
-------
|
|
50
|
+
>>> from sknetwork.clustering import KCenters
|
|
51
|
+
>>> from sknetwork.data import karate_club
|
|
52
|
+
>>> kcenters = KCenters(n_clusters=2)
|
|
53
|
+
>>> adjacency = karate_club()
|
|
54
|
+
>>> labels = kcenters.fit_predict(adjacency)
|
|
55
|
+
>>> len(set(labels))
|
|
56
|
+
2
|
|
57
|
+
|
|
58
|
+
"""
|
|
59
|
+
def __init__(self, n_clusters: int, directed: bool = False, center_position: str = "row", n_init: int = 5,
|
|
60
|
+
max_iter: int = 20):
|
|
61
|
+
super(BaseClustering, self).__init__()
|
|
62
|
+
self.n_clusters = n_clusters
|
|
63
|
+
self.directed = directed
|
|
64
|
+
self.bipartite = None
|
|
65
|
+
self.center_position = center_position
|
|
66
|
+
self.n_init = n_init
|
|
67
|
+
self.max_iter = max_iter
|
|
68
|
+
self.labels_ = None
|
|
69
|
+
self.centers_ = None
|
|
70
|
+
self.centers_row_ = None
|
|
71
|
+
self.centers_col_ = None
|
|
72
|
+
|
|
73
|
+
def _compute_mask_centers(self, input_matrix: Union[sparse.csr_matrix, np.ndarray]):
|
|
74
|
+
"""Generate mask to filter nodes that can be cluster centers.
|
|
75
|
+
|
|
76
|
+
Parameters
|
|
77
|
+
----------
|
|
78
|
+
input_matrix :
|
|
79
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
80
|
+
|
|
81
|
+
Return
|
|
82
|
+
------
|
|
83
|
+
mask : np.array, shape (n_nodes,)
|
|
84
|
+
Mask for possible cluster centers.
|
|
85
|
+
|
|
86
|
+
"""
|
|
87
|
+
n_row, n_col = input_matrix.shape
|
|
88
|
+
if self.bipartite:
|
|
89
|
+
n_nodes = n_row + n_col
|
|
90
|
+
mask = np.zeros(n_nodes, dtype=bool)
|
|
91
|
+
if self.center_position == "row":
|
|
92
|
+
mask[:n_row] = True
|
|
93
|
+
elif self.center_position == "col":
|
|
94
|
+
mask[n_row:] = True
|
|
95
|
+
elif self.center_position == "both":
|
|
96
|
+
mask[:] = True
|
|
97
|
+
else:
|
|
98
|
+
raise ValueError('Unknown center position')
|
|
99
|
+
else:
|
|
100
|
+
mask = np.ones(n_row, dtype=bool)
|
|
101
|
+
|
|
102
|
+
return mask
|
|
103
|
+
|
|
104
|
+
@staticmethod
|
|
105
|
+
def _init_centers(adjacency: Union[sparse.csr_matrix, np.ndarray], mask: np.ndarray, n_clusters: int):
|
|
106
|
+
"""
|
|
107
|
+
Kcenters++ initialization to select cluster centers.
|
|
108
|
+
This algorithm is an adaptation of the Kmeans++ algorithm to graphs.
|
|
109
|
+
|
|
110
|
+
Parameters
|
|
111
|
+
----------
|
|
112
|
+
adjacency :
|
|
113
|
+
Adjacency matrix of the graph.
|
|
114
|
+
mask :
|
|
115
|
+
Initial mask for allowed positions of centers.
|
|
116
|
+
n_clusters : int
|
|
117
|
+
Number of centers to initialize.
|
|
118
|
+
|
|
119
|
+
Returns
|
|
120
|
+
---------
|
|
121
|
+
centers : np.array, shape (n_clusters,)
|
|
122
|
+
Initial cluster centers.
|
|
123
|
+
"""
|
|
124
|
+
mask = mask.copy()
|
|
125
|
+
n_nodes = adjacency.shape[0]
|
|
126
|
+
nodes = np.arange(n_nodes)
|
|
127
|
+
centers = []
|
|
128
|
+
|
|
129
|
+
# Choose the first center uniformly at random
|
|
130
|
+
center = np.random.choice(nodes[mask])
|
|
131
|
+
mask[center] = 0
|
|
132
|
+
centers.append(center)
|
|
133
|
+
|
|
134
|
+
pagerank = PageRank()
|
|
135
|
+
weights = {center: 1}
|
|
136
|
+
|
|
137
|
+
for k in range(n_clusters - 1):
|
|
138
|
+
# select nodes that are far from existing centers
|
|
139
|
+
ppr_scores = pagerank.fit_predict(adjacency, weights)
|
|
140
|
+
ppr_scores = ppr_scores[mask]
|
|
141
|
+
|
|
142
|
+
if min(ppr_scores) == 0:
|
|
143
|
+
center = np.random.choice(nodes[mask][ppr_scores == 0])
|
|
144
|
+
else:
|
|
145
|
+
probs = 1 / ppr_scores
|
|
146
|
+
probs = probs / np.sum(probs)
|
|
147
|
+
center = np.random.choice(nodes[mask], p=probs)
|
|
148
|
+
|
|
149
|
+
mask[center] = 0
|
|
150
|
+
centers.append(center)
|
|
151
|
+
weights.update({center: 1})
|
|
152
|
+
|
|
153
|
+
centers = np.array(centers)
|
|
154
|
+
return centers
|
|
155
|
+
|
|
156
|
+
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], force_bipartite: bool = False) -> "KCenters":
|
|
157
|
+
"""Compute the clustering of the graph by k-centers.
|
|
158
|
+
|
|
159
|
+
Parameters
|
|
160
|
+
----------
|
|
161
|
+
input_matrix :
|
|
162
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
163
|
+
force_bipartite :
|
|
164
|
+
If ``True``, force the input matrix to be considered as a biadjacency matrix even if square.
|
|
165
|
+
|
|
166
|
+
Returns
|
|
167
|
+
-------
|
|
168
|
+
self : :class:`KCenters`
|
|
169
|
+
"""
|
|
170
|
+
|
|
171
|
+
if self.n_clusters < 2:
|
|
172
|
+
raise ValueError("The number of clusters must be at least 2.")
|
|
173
|
+
|
|
174
|
+
if self.n_init < 1:
|
|
175
|
+
raise ValueError("The n_init parameter must be at least 1.")
|
|
176
|
+
|
|
177
|
+
if self.directed:
|
|
178
|
+
input_matrix = directed2undirected(input_matrix)
|
|
179
|
+
|
|
180
|
+
adjacency, self.bipartite = get_adjacency(input_matrix, force_bipartite=force_bipartite)
|
|
181
|
+
n_row = input_matrix.shape[0]
|
|
182
|
+
n_nodes = adjacency.shape[0]
|
|
183
|
+
nodes = np.arange(n_nodes)
|
|
184
|
+
|
|
185
|
+
mask = self._compute_mask_centers(input_matrix)
|
|
186
|
+
if self.n_clusters > np.sum(mask):
|
|
187
|
+
raise ValueError("The number of clusters is to high. This might be due to the center_position parameter.")
|
|
188
|
+
|
|
189
|
+
pagerank_clf = PageRankClassifier()
|
|
190
|
+
pagerank = PageRank()
|
|
191
|
+
|
|
192
|
+
labels_ = []
|
|
193
|
+
centers_ = []
|
|
194
|
+
modularity_ = []
|
|
195
|
+
|
|
196
|
+
# Restarts
|
|
197
|
+
for i in range(self.n_init):
|
|
198
|
+
|
|
199
|
+
# Initialization
|
|
200
|
+
centers = self._init_centers(adjacency, mask, self.n_clusters)
|
|
201
|
+
prev_centers = None
|
|
202
|
+
labels = None
|
|
203
|
+
n_iter = 0
|
|
204
|
+
|
|
205
|
+
while not np.equal(prev_centers, centers).all() and (n_iter < self.max_iter):
|
|
206
|
+
|
|
207
|
+
# Assign nodes to centers
|
|
208
|
+
labels_center = {center: label for label, center in enumerate(centers)}
|
|
209
|
+
labels = pagerank_clf.fit_predict(adjacency, labels_center)
|
|
210
|
+
|
|
211
|
+
# Find new centers
|
|
212
|
+
prev_centers = centers.copy()
|
|
213
|
+
new_centers = []
|
|
214
|
+
|
|
215
|
+
for label in np.unique(labels):
|
|
216
|
+
mask_cluster = labels == label
|
|
217
|
+
mask_cluster &= mask
|
|
218
|
+
scores = pagerank.fit_predict(adjacency, weights=mask_cluster)
|
|
219
|
+
scores[~mask_cluster] = 0
|
|
220
|
+
new_centers.append(nodes[np.argmax(scores)])
|
|
221
|
+
|
|
222
|
+
n_iter += 1
|
|
223
|
+
|
|
224
|
+
# Store results
|
|
225
|
+
if self.bipartite:
|
|
226
|
+
labels_row = labels[:n_row]
|
|
227
|
+
labels_col = labels[n_row:]
|
|
228
|
+
modularity = get_modularity(input_matrix, labels_row, labels_col)
|
|
229
|
+
else:
|
|
230
|
+
modularity = get_modularity(adjacency, labels)
|
|
231
|
+
|
|
232
|
+
labels_.append(labels)
|
|
233
|
+
centers_.append(centers)
|
|
234
|
+
modularity_.append(modularity)
|
|
235
|
+
|
|
236
|
+
# Select restart with the highest modularity
|
|
237
|
+
idx_max = np.argmax(modularity_)
|
|
238
|
+
self.labels_ = np.array(labels_[idx_max])
|
|
239
|
+
self.centers_ = np.array(centers_[idx_max])
|
|
240
|
+
|
|
241
|
+
if self.bipartite:
|
|
242
|
+
self._split_vars(input_matrix.shape)
|
|
243
|
+
|
|
244
|
+
# Define centers based on center position
|
|
245
|
+
if self.center_position == "row":
|
|
246
|
+
self.centers_row_ = self.centers_
|
|
247
|
+
elif self.center_position == "col":
|
|
248
|
+
self.centers_col_ = self.centers_ - n_row
|
|
249
|
+
else:
|
|
250
|
+
self.centers_row_ = self.centers_[self.centers_ < n_row]
|
|
251
|
+
self.centers_col_ = self.centers_[~np.isin(self.centers_, self.centers_row_)] - n_row
|
|
252
|
+
|
|
253
|
+
return self
|