scikit-network 0.33.0__cp39-cp39-win_amd64.whl → 0.33.1__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (43) hide show
  1. scikit_network-0.33.1.dist-info/METADATA +120 -0
  2. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/RECORD +42 -42
  3. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/WHEEL +1 -1
  4. sknetwork/classification/diffusion.py +1 -1
  5. sknetwork/classification/knn.py +1 -1
  6. sknetwork/classification/metrics.py +3 -3
  7. sknetwork/classification/pagerank.py +1 -1
  8. sknetwork/classification/propagation.py +1 -1
  9. sknetwork/classification/vote.cp39-win_amd64.pyd +0 -0
  10. sknetwork/classification/vote.cpp +684 -677
  11. sknetwork/clustering/leiden_core.cp39-win_amd64.pyd +0 -0
  12. sknetwork/clustering/leiden_core.cpp +713 -702
  13. sknetwork/clustering/louvain.py +3 -3
  14. sknetwork/clustering/louvain_core.cp39-win_amd64.pyd +0 -0
  15. sknetwork/clustering/louvain_core.cpp +713 -702
  16. sknetwork/clustering/metrics.py +1 -1
  17. sknetwork/clustering/tests/test_louvain.py +6 -0
  18. sknetwork/gnn/gnn_classifier.py +1 -1
  19. sknetwork/hierarchy/metrics.py +3 -3
  20. sknetwork/hierarchy/paris.cp39-win_amd64.pyd +0 -0
  21. sknetwork/hierarchy/paris.cpp +1775 -1153
  22. sknetwork/linalg/diteration.cp39-win_amd64.pyd +0 -0
  23. sknetwork/linalg/diteration.cpp +684 -677
  24. sknetwork/linalg/push.cp39-win_amd64.pyd +0 -0
  25. sknetwork/linalg/push.cpp +1769 -1153
  26. sknetwork/linalg/sparse_lowrank.py +1 -1
  27. sknetwork/ranking/betweenness.cp39-win_amd64.pyd +0 -0
  28. sknetwork/ranking/betweenness.cpp +563 -557
  29. sknetwork/topology/cliques.cp39-win_amd64.pyd +0 -0
  30. sknetwork/topology/cliques.cpp +1729 -1110
  31. sknetwork/topology/core.cp39-win_amd64.pyd +0 -0
  32. sknetwork/topology/core.cpp +1755 -1139
  33. sknetwork/topology/cycles.py +1 -1
  34. sknetwork/topology/minheap.cp39-win_amd64.pyd +0 -0
  35. sknetwork/topology/minheap.cpp +687 -677
  36. sknetwork/topology/triangles.cp39-win_amd64.pyd +0 -0
  37. sknetwork/topology/triangles.cpp +437 -432
  38. sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd +0 -0
  39. sknetwork/topology/weisfeiler_lehman_core.cpp +684 -677
  40. scikit_network-0.33.0.dist-info/METADATA +0 -517
  41. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/AUTHORS.rst +0 -0
  42. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/LICENSE +0 -0
  43. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,120 @@
1
+ Metadata-Version: 2.1
2
+ Name: scikit-network
3
+ Version: 0.33.1
4
+ Summary: Graph algorithms
5
+ Author: Scikit-network team
6
+ Maintainer-email: Thomas Bonald <bonald@enst.fr>
7
+ License: BSD License
8
+ Project-URL: Repository, https://github.com/sknetwork-team/scikit-network
9
+ Project-URL: Documentation, https://scikit-network.readthedocs.io/
10
+ Project-URL: Changelog, https://github.com/sknetwork-team/scikit-network/blob/master/HISTORY.rst
11
+ Keywords: sknetwork
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Information Technology
15
+ Classifier: Intended Audience :: Education
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: License :: OSI Approved :: BSD License
18
+ Classifier: Natural Language :: English
19
+ Classifier: Programming Language :: Cython
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Requires-Python: >=3.9
25
+ Description-Content-Type: text/x-rst
26
+ License-File: LICENSE
27
+ License-File: AUTHORS.rst
28
+ Requires-Dist: numpy >=1.22.4
29
+ Requires-Dist: scipy >=1.7.3
30
+ Provides-Extra: test
31
+ Requires-Dist: pytest ; extra == 'test'
32
+ Requires-Dist: note ; extra == 'test'
33
+ Requires-Dist: pluggy >=0.7.1 ; extra == 'test'
34
+
35
+ .. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
36
+ :align: right
37
+ :width: 150px
38
+ :alt: logo sknetwork
39
+
40
+
41
+
42
+ .. image:: https://img.shields.io/pypi/v/scikit-network.svg
43
+ :target: https://pypi.python.org/pypi/scikit-network
44
+
45
+ .. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
46
+ :target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
47
+
48
+ .. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
49
+ :target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
50
+ :alt: Documentation Status
51
+
52
+ .. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
53
+ :target: https://codecov.io/gh/sknetwork-team/scikit-network
54
+
55
+ .. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
56
+ :target: https://pypi.python.org/pypi/scikit-network
57
+
58
+ Free software library in Python for machine learning on graphs:
59
+
60
+ * Memory-efficient representation of graphs as sparse matrices in scipy_ format
61
+ * Fast algorithms
62
+ * Simple API inspired by scikit-learn_
63
+
64
+ .. _scipy: https://www.scipy.org
65
+ .. _scikit-learn: https://scikit-learn.org/
66
+
67
+ Resources
68
+ ---------
69
+
70
+ * Free software: BSD license
71
+ * GitHub: https://github.com/sknetwork-team/scikit-network
72
+ * Documentation: https://scikit-network.readthedocs.io
73
+
74
+ Quick start
75
+ -----------
76
+
77
+ Install scikit-network:
78
+
79
+ .. code-block:: console
80
+
81
+ $ pip install scikit-network
82
+
83
+ Import scikit-network::
84
+
85
+ import sknetwork
86
+
87
+ Overview
88
+ --------
89
+
90
+ An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
91
+
92
+ Documentation
93
+ -------------
94
+
95
+ The documentation is structured as follows:
96
+
97
+ * `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
98
+ * `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
99
+ * `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
100
+ * `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
101
+ * `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
102
+
103
+ Citing
104
+ ------
105
+
106
+ If you want to cite scikit-network, please refer to the publication in
107
+ the `Journal of Machine Learning Research <https://jmlr.org>`_:
108
+
109
+ .. code::
110
+
111
+ @article{JMLR:v21:20-412,
112
+ author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
113
+ title = {Scikit-network: Graph Analysis in Python},
114
+ journal = {Journal of Machine Learning Research},
115
+ year = {2020},
116
+ volume = {21},
117
+ number = {185},
118
+ pages = {1-6},
119
+ url = {http://jmlr.org/papers/v21/20-412.html}
120
+ }
@@ -7,13 +7,13 @@ sknetwork/test_log.py,sha256=ucX3w138eDyD0Wnpk9QEsPoQgAPTJNPy9twzMf5TjQ8,334
7
7
  sknetwork/classification/__init__.py,sha256=QoS3fTnCZ0nFdlDkEphEYqj1NDEf23_aqsfP0G4zLMM,483
8
8
  sknetwork/classification/base.py,sha256=a6JczKf23arkC4Xx6rUEI0gLFAPoyPXKTXCdhV6_bWI,4432
9
9
  sknetwork/classification/base_rank.py,sha256=BChHu6sDkdq_M6coJsC3hac3HWPE2lholi3g97J6lWw,4655
10
- sknetwork/classification/diffusion.py,sha256=WPNeSya95g3X3wEG_X-7aTIvAoBFIGQcXHMts58i1ts,5698
11
- sknetwork/classification/knn.py,sha256=OHKNzFQlSPtkdi8Ih7HgiIh2fn6fv0T7-Eu66CsdBHg,5472
12
- sknetwork/classification/metrics.py,sha256=S_Ze1gqsC9KMZs2K81BDtxRpsv6YvwEss3-v-ekdqmM,7011
13
- sknetwork/classification/pagerank.py,sha256=Nvmj-Y1YFXQxCZpcUhXfKlc6S5BebnIkJZ8DRsyzDTs,2652
14
- sknetwork/classification/propagation.py,sha256=jH5UOM2JkjW-1oxBLx7NaceOwKDBw0hiYKp415Hc8q4,5945
15
- sknetwork/classification/vote.cp39-win_amd64.pyd,sha256=0attXwO5fM1gQInDFgli8Xk7KWSjJX5D4ZWJg5ZNzaE,157184
16
- sknetwork/classification/vote.cpp,sha256=3XvHCgPlMgRdRWEkw9uDk8-HgtPc5__bNdXxb_7oCwU,1023080
10
+ sknetwork/classification/diffusion.py,sha256=YcPTJKZDw9xraZSWraxIBh8x0RmOD1ANsg2lseotQXY,5705
11
+ sknetwork/classification/knn.py,sha256=RIlLqksGOWLCAhgQ3X8KqCVD6Qcj9C0Tgrz4spk_LDE,5479
12
+ sknetwork/classification/metrics.py,sha256=BY3RPwnFCCX3HYmHJiZtNWSzKPtVTACUVX3u1TMGe2c,7032
13
+ sknetwork/classification/pagerank.py,sha256=GTbTSplrDoxpKb-LZmjibEHPgjeicGInCBEOI_bwVu4,2659
14
+ sknetwork/classification/propagation.py,sha256=soL5zmSIohmJw-song-2liwXuPB40N0_R4w6W1-tlIE,5952
15
+ sknetwork/classification/vote.cp39-win_amd64.pyd,sha256=r4W1wCiUF_Ud2IZd8N5V6V_Kiig1zulOROlb65VPhSI,156672
16
+ sknetwork/classification/vote.cpp,sha256=NAF4CFBwWAiNpKzXlyDlLab0fe6p_il_orDbwKo5eRE,1020435
17
17
  sknetwork/classification/vote.pyx,sha256=-mNsL96aaA1UL-qfeUgZlbdvKZUK9R4MLmq0BNFWVKA,1640
18
18
  sknetwork/classification/tests/__init__.py,sha256=Per0oy1Frnm5jB7dnpod1g_xbgYhqkNteWQV5cemcH0,32
19
19
  sknetwork/classification/tests/test_API.py,sha256=WV5cY8yhTHBHYRbDE3InZ4v-agymxLPMKxa2NqjbWZo,1154
@@ -26,21 +26,21 @@ sknetwork/clustering/__init__.py,sha256=Ju06e1zwMUfOn_1soTOlxJJu1F5u9VNxFXWN8TTP
26
26
  sknetwork/clustering/base.py,sha256=LsH_wlP19lDnIZWVUXbKwSta05ii5dWMqS-J-AkY6HE,6104
27
27
  sknetwork/clustering/kcenters.py,sha256=MKmsR7zWTITeEAqFyRDKpglU7yZZEjR8H0TLJXdDjtw,8942
28
28
  sknetwork/clustering/leiden.py,sha256=THQdYR_DhGF8xJLTEiSmd8cx0Y70ms5nZ1emnoqcxBg,9924
29
- sknetwork/clustering/leiden_core.cp39-win_amd64.pyd,sha256=xK91ZXqXJNHO5bi7y4BqHxRcejXTARG9YRN6WeyT7G0,201728
30
- sknetwork/clustering/leiden_core.cpp,sha256=WTVPqmwEQ02Qt5l1Yt8RvuIe5qsWfRDFHrbfj1Woc4g,1205016
29
+ sknetwork/clustering/leiden_core.cp39-win_amd64.pyd,sha256=5QczfqIoKTXbLyEKBvzMN2hjme_NTvAUUQ6lRb2eN3Q,201216
30
+ sknetwork/clustering/leiden_core.cpp,sha256=9UHZm7dm_mkvWXNCSMCxSYclLJpE2zdo3e30QRCByJE,1202445
31
31
  sknetwork/clustering/leiden_core.pyx,sha256=kEppO0iSs0UqK3ybtSVIHRSojJ4KNfe6pUNo9sShh7E,4424
32
- sknetwork/clustering/louvain.py,sha256=BjBlOw70MVgZHwpIWYo4CmLlzC58jALSTqbRE7x8z4I,11111
33
- sknetwork/clustering/louvain_core.cp39-win_amd64.pyd,sha256=KVtWS5N6K9vV21TJdNAtXSW73c_QfHw83nJm_LMJuRA,197632
34
- sknetwork/clustering/louvain_core.cpp,sha256=TRftGdCtrOj9PtEFQGGi1nGaJn20b_KoOrW6LSB55Bw,1185580
32
+ sknetwork/clustering/louvain.py,sha256=RMIPR068mPNkB4SzubwMhKZSUepnaju8ORr-SHUKe2g,11111
33
+ sknetwork/clustering/louvain_core.cp39-win_amd64.pyd,sha256=PAcDMBRjdAX5slmy-9nHvfG_rTqmBrdYWWt0B4NAvX8,197120
34
+ sknetwork/clustering/louvain_core.cpp,sha256=6jKgE4XLVTWenufZ296BwfuxPMzQjUK_FNY6KYaLhEE,1183009
35
35
  sknetwork/clustering/louvain_core.pyx,sha256=2KPnBhBeSlIxmoScZW7jwsmVxJyAyHQs3pcH9AfBM2Y,4213
36
- sknetwork/clustering/metrics.py,sha256=ptLLtUpFtdKLZ4lcx_MN-PpOrzv--PWhAcEFoFghccM,3151
36
+ sknetwork/clustering/metrics.py,sha256=yBvtH97m66OTkgZnwcoMYFReMFdi9di37NDyMn56CxU,3158
37
37
  sknetwork/clustering/postprocess.py,sha256=uynPXvjYXiFNShxGZyLkpIwRl5nIlIVEm-auMCNZA0o,2105
38
38
  sknetwork/clustering/propagation_clustering.py,sha256=s-Y7EQEqGM2wdl1zAOQzfmy-8LGab1eB00u_AOkYzl0,3885
39
39
  sknetwork/clustering/tests/__init__.py,sha256=tCA27jkL3pdstka9XWQEA1NbC6ZqL7Rf-1V1UcySCEE,28
40
40
  sknetwork/clustering/tests/test_API.py,sha256=PKxuTh49IyKzwkLfgFAmJiuBhWJQBEYtNxzOEYgc5uE,1566
41
41
  sknetwork/clustering/tests/test_kcenters.py,sha256=BWvcTo8iNDFbKawVrRe8N6q4ujS0Co4MHpkT-P8_A9U,2037
42
42
  sknetwork/clustering/tests/test_leiden.py,sha256=oEN0Dz9popCEYE-qqEdmTEqqr3af9TB3WDmRNWYAidE,1189
43
- sknetwork/clustering/tests/test_louvain.py,sha256=rYZLrb8Ld_F2KDCos5RP9-1szkVXHnXLWHd4SbOwvAY,4807
43
+ sknetwork/clustering/tests/test_louvain.py,sha256=rnW-WGa9YA0u__JdXlODqbqAgPadeMlyu40VZ1ri29c,5006
44
44
  sknetwork/clustering/tests/test_metrics.py,sha256=ZTr4T-d-g6kQJinei9VH6Teb_rOScmj5XLG168EI5LQ,1868
45
45
  sknetwork/clustering/tests/test_postprocess.py,sha256=41l4coS_1CHqGOCnnucqxU6UkXws89YVMjef162ZTEQ,1417
46
46
  sknetwork/data/__init__.py,sha256=qt9xm8RuVQqJQct_A2aCytKjTkMmegnPaRFcHqFbyDY,261
@@ -80,7 +80,7 @@ sknetwork/gnn/activation.py,sha256=rhvEXgrIix4nZ9I3WYZ0e1MID_DESCCC_XlVcOa4Wpo,3
80
80
  sknetwork/gnn/base.py,sha256=qHnKsfsUW4LIdwm3vzfAahBjweCkIDRzk62i4piNBuc,5889
81
81
  sknetwork/gnn/base_activation.py,sha256=Kxs_d4aPOpMRXZMBAW7WKkA_uWLXRM7XM-JqE4nFHhc,2395
82
82
  sknetwork/gnn/base_layer.py,sha256=_zL_SyVYvhxch9N1i44Qkgar_M5xVRz7JcxqUjVwDjY,4057
83
- sknetwork/gnn/gnn_classifier.py,sha256=RmqgyRgKkdU1Bht5i390xulBzLkuvFwqFkUnZGx7r9c,12915
83
+ sknetwork/gnn/gnn_classifier.py,sha256=OSy6BURNFW1-5AmwPnJYYcrAc_eH1pS_99pu8V2vyy4,12922
84
84
  sknetwork/gnn/layer.py,sha256=JBNFABBgGtMeXdQaS8wGnsSd7Jqs18jbIguITTOCQRE,5679
85
85
  sknetwork/gnn/loss.py,sha256=FwULPjbUe3OFIhIBKJoNfdYX41ALckX2ANKvC69yyoI,5342
86
86
  sknetwork/gnn/neighbor_sampler.py,sha256=l5OkylbRQsDpmkfeHAaSA7gHi5l7OUKtL4YvH-YTMWM,1929
@@ -99,9 +99,9 @@ sknetwork/gnn/tests/test_utils.py,sha256=MJvOXEWouRiIVaPM76W0hizt3jFb-1_BXHLd1zk
99
99
  sknetwork/hierarchy/__init__.py,sha256=-2-y7iBVQRanXLSl9kY8VASJVqx37trYmVNcz74QsUc,418
100
100
  sknetwork/hierarchy/base.py,sha256=DvVUNgJgfaFlWyl4QbdHmp-VldPMFLPx9irt74kpyrU,2789
101
101
  sknetwork/hierarchy/louvain_hierarchy.py,sha256=MoO0mlvuFUFNYssl1zOAWlcyg-2OLzJI6VFPjIS1FiA,10118
102
- sknetwork/hierarchy/metrics.py,sha256=5WZLsSLYKifLIQ9aPrXyzvPtTFN5ROSlNivhV-n9VuY,8280
103
- sknetwork/hierarchy/paris.cp39-win_amd64.pyd,sha256=3X5c7LHsX56UEjA1ThqriaQ3TgWeY0LW5tm6VTSLhgo,226816
104
- sknetwork/hierarchy/paris.cpp,sha256=vYkuRGN-BYv411ym2455Y_8qnnqvh_k5-rh2dT5wYSI,1472503
102
+ sknetwork/hierarchy/metrics.py,sha256=UzfTDFZExTn6j3wQQ_FXF7frHGNvfS5mpj1ZtlR63iQ,8301
103
+ sknetwork/hierarchy/paris.cp39-win_amd64.pyd,sha256=7XSpEJBWATR2Ox9nZIhGzvM69demTDoh8a37CZd9SF4,226816
104
+ sknetwork/hierarchy/paris.cpp,sha256=FWRoayF-rM63bft1HpoR-wNpLNIMo2kqmFbD5tKOtco,1494314
105
105
  sknetwork/hierarchy/paris.pyx,sha256=CSr7eJBGPQoHff3czQpDuaW3V16ZsgdnVoFQ_rkFWBk,12129
106
106
  sknetwork/hierarchy/postprocess.py,sha256=81Hj7eCHvU_2mdq0FTeYuZAqk4FIudZfZbvU39_sqyM,12422
107
107
  sknetwork/hierarchy/tests/__init__.py,sha256=jRlC4pbyKuxaiXvByYK-4ix7DwYWxpjwKNvSXZ7rQJE,27
@@ -111,8 +111,8 @@ sknetwork/hierarchy/tests/test_metrics.py,sha256=sljCTCIXNvanQ3Bf-g0x0jyjXs05EBl
111
111
  sknetwork/hierarchy/tests/test_postprocess.py,sha256=Bm1_XU6OgwZr_1B28IA5m_HZRqI7GMwlTLpzkXux__Y,2266
112
112
  sknetwork/linalg/__init__.py,sha256=COkAHs_EsxWzd_tHl6qq8laEfSsjoMuWVx3VbNFEgzU,542
113
113
  sknetwork/linalg/basics.py,sha256=WDlylrkBTCQpjXGtzs8kshJYfpo0h3uM8TMhHmnAnnM,1179
114
- sknetwork/linalg/diteration.cp39-win_amd64.pyd,sha256=R_98AOBum-W_xsfAIw_xe2Jyo49F24Z6KhUm0W6TDMs,147456
115
- sknetwork/linalg/diteration.cpp,sha256=zX2-YycRqpq2eEmijzkFuM9aA0M9nxxf11Ax5Gvse6k,1019890
114
+ sknetwork/linalg/diteration.cp39-win_amd64.pyd,sha256=KRp3STHL6mX-RrsF7M4kNnEgLFoasgmOPIK1qltM4w8,146944
115
+ sknetwork/linalg/diteration.cpp,sha256=AIt__AFZ-ZeDUYMiA5fxtrtj5Kek5sSrlRdjmc7fhto,1017245
116
116
  sknetwork/linalg/diteration.pyx,sha256=1r7a1usqftiBNTPOAwHFQPK__nZ67J-87wQLM25GqEU,1431
117
117
  sknetwork/linalg/eig_solver.py,sha256=lMqxTg66_T-LsgGqc9oo_ngxpTceekavnCFOANWEpPA,2793
118
118
  sknetwork/linalg/laplacian.py,sha256=qifd-8iltcTKCQW-7fG5z3XfwVrrrCeaBqbViBQCLf0,416
@@ -120,10 +120,10 @@ sknetwork/linalg/normalizer.py,sha256=Z0-paMHwp51aY_ssCP2RfXNVQqTFA9gsIHfy-fhG5Q
120
120
  sknetwork/linalg/operators.py,sha256=nNTtdI_I0HEhnpHOxUYRHmEzUDcz9CbwjDc5eEKzlNQ,7657
121
121
  sknetwork/linalg/polynome.py,sha256=qnIhfpRk26JMinuNCrZO1EDj5ci65ZLxkKJyhO7HxpE,2201
122
122
  sknetwork/linalg/ppr_solver.py,sha256=D7LUMQgFAtnGhh8pxpKrISH1H9d5MknFpHib8bPA5x4,6703
123
- sknetwork/linalg/push.cp39-win_amd64.pyd,sha256=WIS0rDozRZmDk2LPOEohAOOQib8SNXanzDm9nDZNNEc,165376
124
- sknetwork/linalg/push.cpp,sha256=_a7JhhX0vQE1EhZ62zvbpPb5rKDagdnX89xtkZyQnPE,1156787
123
+ sknetwork/linalg/push.cp39-win_amd64.pyd,sha256=MTcUoiCeyz-_oeVm7KyRbSwwb2q3zsz5pbNm2KqiZg0,165376
124
+ sknetwork/linalg/push.cpp,sha256=CjMqebxOyDmfp_Fw2n_5Utk-otDS9VliDTqcCW_Gy5Q,1178421
125
125
  sknetwork/linalg/push.pyx,sha256=79ycseJ1jOznzc1_KSexTGy_0dlX1jQVnf_WI8Ufvgc,2429
126
- sknetwork/linalg/sparse_lowrank.py,sha256=-6-cNRs6tpiNqA8ah3mBKWap3Nh9GQHTFIarPjIiC7U,5170
126
+ sknetwork/linalg/sparse_lowrank.py,sha256=rfyg9lg4HmWdce3eFi1IPaTPsd2SAWR_pAdqDOyvYyA,5177
127
127
  sknetwork/linalg/svd_solver.py,sha256=XxP4AyKQInBQN3imcbtahXseZ4YyKj4ZI2UAJK1mDs4,2772
128
128
  sknetwork/linalg/tests/__init__.py,sha256=i2cO6oXoryXdEJ-HdSFZsY7LZdNit7W3GC8J8LAUMU4,24
129
129
  sknetwork/linalg/tests/test_eig.py,sha256=c_BpjP_S7xCwYgk2N7kaFfsjV1-nfUYCu3Rys07bPeo,1548
@@ -151,8 +151,8 @@ sknetwork/path/tests/test_search.py,sha256=wJzwbbe86axJRmausJp-KcsNTB9n7kpo6YBd7
151
151
  sknetwork/path/tests/test_shortest_path.py,sha256=zeM-qgbTs3i29gvF568otKOKgv_pbryV_yGefThLEIY,1422
152
152
  sknetwork/ranking/__init__.py,sha256=lbkUSZ3alkLK0xGiUx5ptPqhQKIjIKK80uPk0KymJPc,356
153
153
  sknetwork/ranking/base.py,sha256=W3gw9j_ikhyETr3dpEYo9RINUUHlSn8Dez_eAnlIsDg,1573
154
- sknetwork/ranking/betweenness.cp39-win_amd64.pyd,sha256=uZ8dSy2HhO-UMGMR0OyeWl1eW3idGAGl0qfIOFghST8,74752
155
- sknetwork/ranking/betweenness.cpp,sha256=6OQrJJYyq7Ba7rCmvDVdcC-YyGzNTB1mVdM55a-WIrk,380616
154
+ sknetwork/ranking/betweenness.cp39-win_amd64.pyd,sha256=mmK00DFZzP0_3fEz2a7LDl2PbP1Zl3BFyX6k3oVc-Rc,75264
155
+ sknetwork/ranking/betweenness.cpp,sha256=9b3mAyRWHWMUEQdSLd0eivKvLcdKoy9MfAVliNyg4Jk,378992
156
156
  sknetwork/ranking/betweenness.pyx,sha256=fe5_gwRQ0TaFi_0-vUGfy6XC5kW5un5xly7-xVDgxrU,3184
157
157
  sknetwork/ranking/closeness.py,sha256=CvdAaqsM8HvAi6zGCuLcVF0BUu9n9UPBz_YxZhFF_sM,2932
158
158
  sknetwork/ranking/hits.py,sha256=uhGJH2C0U9hLsVRutI6M1ulbEIM7L6dCeYqiAhtTD9A,2855
@@ -173,24 +173,24 @@ sknetwork/regression/tests/__init__.py,sha256=GvqvsSMbqMYwRmWw4VrZntwccz1jOPqrqu
173
173
  sknetwork/regression/tests/test_API.py,sha256=7x_n8bG8hUcJVRYDbdC6GvPmwW5cE7HmASlu5SHnwFI,1056
174
174
  sknetwork/regression/tests/test_diffusion.py,sha256=_ivBfsfmRQyiFChMS8N1J7HoJDhZtKdeydBIu7SuSvU,2117
175
175
  sknetwork/topology/__init__.py,sha256=Ho06JPdSeiy5sq-Cv3e9y4AiFVMUQ_RUNUDDpKegWnM,542
176
- sknetwork/topology/cliques.cp39-win_amd64.pyd,sha256=2hOtZmCEC3cA9dkKg0weU75yMsrcOnT7L7rPMKvHlG8,186368
177
- sknetwork/topology/cliques.cpp,sha256=AuIbIJg8O1Dq77fy69Qr2slR5wthrB4mohPuJL1j6MI,1223582
176
+ sknetwork/topology/cliques.cp39-win_amd64.pyd,sha256=1jomJ_9AbhQYs1iUCcCzyNu2ftMV8ZuwD25IZNVMV6w,186368
177
+ sknetwork/topology/cliques.cpp,sha256=bq7OAa03o1vxDGMz7Z2xm2frgtjc5WnS7H3pdrUYjyM,1245289
178
178
  sknetwork/topology/cliques.pyx,sha256=y6Ee5oaX7IdVhXXjSOazqT5dYo4gSTQ8Mq0u1Abg0vw,4659
179
- sknetwork/topology/core.cp39-win_amd64.pyd,sha256=iWolxUSFutEUMoTADIR7Q9xFTkNMsizNgav9Z6s6Cdc,156672
180
- sknetwork/topology/core.cpp,sha256=jj7E1c67E65ccw-Ts_6QdPPyR8QIZ3FePVsvjoVcTbg,1132865
179
+ sknetwork/topology/core.cp39-win_amd64.pyd,sha256=fEgeVw7LqaJ-I4YeT8wPOqO1hRYqkFCoVm8cSrLOSpE,156672
180
+ sknetwork/topology/core.cpp,sha256=ik7paitjPFffdPHJY2L1a1Y0vI1Q1d-TPgvDOSIkdgo,1154504
181
181
  sknetwork/topology/core.pyx,sha256=0PO4HnOYivjrFY1NMlXHd7wscu0R5Fg-Toj3YVRwXDo,2555
182
- sknetwork/topology/cycles.py,sha256=EgVtANHvY-MBcIe3yRVaBYzz1amsiV6GfuDEMIO3Kl0,9246
183
- sknetwork/topology/minheap.cp39-win_amd64.pyd,sha256=7IGqlJplPox-qu9IBJ-rcS9gL7FdJSSXzm4172K56uI,134656
184
- sknetwork/topology/minheap.cpp,sha256=YJHIv7zPKiL4r4GexZcGnU6A13pGu4QsFMdOcKccPnA,1016262
182
+ sknetwork/topology/cycles.py,sha256=Z4T65j4TuO0IKgPYzxESDF8g_CkmoUWaZS3U4qIcmtY,9286
183
+ sknetwork/topology/minheap.cp39-win_amd64.pyd,sha256=hFXCexiz7iVZUJeGSFVzEr_bWQnGop_te0q0wVProZU,134144
184
+ sknetwork/topology/minheap.cpp,sha256=CYDTDM1RNDUKEabu05T1n28xD8kUV7aub6r_CMa5TUk,1013687
185
185
  sknetwork/topology/minheap.pxd,sha256=AHeBNN8wGzT429K6AyhbrFUoBkWVwbkyUIY6TkeJ80g,584
186
186
  sknetwork/topology/minheap.pyx,sha256=KOmjjlljgkGUJNL8PQ6WaNzx-Ro84QoSve_8baDN1B0,3419
187
187
  sknetwork/topology/structure.py,sha256=28mSnrukLU_GDil8e5ouLZ9PuoQyJ0UmQ4WgMu9Wzew,7479
188
- sknetwork/topology/triangles.cp39-win_amd64.pyd,sha256=01xwaUZafAS4hBLhYP9c4yuO-uYMxbw1Qm4HNywIqmg,60416
189
- sknetwork/topology/triangles.cpp,sha256=t-ixPvaku_VWclQD3f5qWDzFG6ltyLfhCLQyPc0WJNE,354316
188
+ sknetwork/topology/triangles.cp39-win_amd64.pyd,sha256=7flP2_xUq7vzdDV9cTKzAzwNybB6NuYqCjjvjeidnZE,60416
189
+ sknetwork/topology/triangles.cpp,sha256=KAyCp274y03wMzVxjwHsq15u0VlQ4cOI85QYN1ujmio,352670
190
190
  sknetwork/topology/triangles.pyx,sha256=q_f23ZidyizvR9P4X4OIX8o8bAZZTtV7tnjXqmyYZuY,4500
191
191
  sknetwork/topology/weisfeiler_lehman.py,sha256=U5b5RoTFtqBeFwkuBXs4g0Px2UWRFePyneu-tfgnY_I,4441
192
- sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd,sha256=aU379Kqs0hAgXKwm5k6Qc-TAzmW1srD6QovgAjEPBwo,156672
193
- sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=tUPW6EiP44seR-oLmXmQKxpGwHu9t-FC9cVoG_x0dBc,1027132
192
+ sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd,sha256=lj0kEBb311PPZTo7kaKK9XEAHtHZzbC2zFuVnsas9Wg,156672
193
+ sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=1oc1YPT0n6bdMpGhGn9_02irQ4QRN2zKxhYLP9ZVGYw,1024487
194
194
  sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=lpUV1BpxtedsGBfOl19b8OFXCIbyaAA4ZYlW6BzSxbw,3148
195
195
  sknetwork/topology/tests/__init__.py,sha256=84T-xv8JCFeA9D7Rxw9gy3_dNAoE8CY1k1pYcuG8K3s,26
196
196
  sknetwork/topology/tests/test_cliques.py,sha256=vdRMDmF8AKkIWE-LnU2yGzk1wzwzq9PdggpeS-8wfRw,866
@@ -220,9 +220,9 @@ sknetwork/visualization/graphs.py,sha256=vLsuL2AUyrc8B5nxM2K713QPRjf7i1PRaoRXYbY
220
220
  sknetwork/visualization/tests/__init__.py,sha256=hrso2pNVzMWn4D2pRyWA_xAMib-xacKjm-rf91MyGGk,31
221
221
  sknetwork/visualization/tests/test_dendrograms.py,sha256=e0u3qL9SlWlrQiVAeCVXxq7P6-mU0GaCz3FBu6cm_HA,2519
222
222
  sknetwork/visualization/tests/test_graphs.py,sha256=FPZcgGj9asTjOvtkXpENYjeE8xtwh1ES4XYWcYe56Jo,9597
223
- scikit_network-0.33.0.dist-info/AUTHORS.rst,sha256=_GVYaZmiOIOk8o_2X2dGicyCy-1seStrLAZdsk8zKEI,966
224
- scikit_network-0.33.0.dist-info/LICENSE,sha256=BJ1Hth1QjBmjIfHcp1sVxlkEqHYM58Vn5bcpYcggMZE,1656
225
- scikit_network-0.33.0.dist-info/METADATA,sha256=PzTdCbvlCrvHqifMwdHv1PYO6hV3Z5SlhJFXu883PgU,14992
226
- scikit_network-0.33.0.dist-info/WHEEL,sha256=IOiaTK2n2qfpcM4gTpfQdKcMwVKZrIq4mlPd3WeRras,99
227
- scikit_network-0.33.0.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
228
- scikit_network-0.33.0.dist-info/RECORD,,
223
+ scikit_network-0.33.1.dist-info/AUTHORS.rst,sha256=_GVYaZmiOIOk8o_2X2dGicyCy-1seStrLAZdsk8zKEI,966
224
+ scikit_network-0.33.1.dist-info/LICENSE,sha256=BJ1Hth1QjBmjIfHcp1sVxlkEqHYM58Vn5bcpYcggMZE,1656
225
+ scikit_network-0.33.1.dist-info/METADATA,sha256=dvTU-9SmoSsqZhmqCCwHwbQgB08J4wdyQWJKQ-rYhYs,4524
226
+ scikit_network-0.33.1.dist-info/WHEEL,sha256=vq7bX_I37ZJK2gZz_HGA8eCPjBDKQSfb_9FNjesTNkk,99
227
+ scikit_network-0.33.1.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
228
+ scikit_network-0.33.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.3.0)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp39-cp39-win_amd64
5
5
 
@@ -55,7 +55,7 @@ class DiffusionClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = diffusion.fit_predict(adjacency, labels)
58
- >>> round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.97
60
60
 
61
61
  References
@@ -55,7 +55,7 @@ class NNClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = classifier.fit_predict(adjacency, labels)
58
- >>> round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.82
60
60
  """
61
61
  def __init__(self, n_neighbors: int = 3, embedding_method: Optional[BaseEmbedding] = None, normalize: bool = True):
@@ -34,7 +34,7 @@ def get_accuracy_score(labels_true: np.ndarray, labels_pred: np.ndarray) -> floa
34
34
  >>> import numpy as np
35
35
  >>> labels_true = np.array([0, 0, 1, 1])
36
36
  >>> labels_pred = np.array([0, 0, 0, 1])
37
- >>> round(get_accuracy_score(labels_true, labels_pred), 2)
37
+ >>> float(round(get_accuracy_score(labels_true, labels_pred), 2))
38
38
  0.75
39
39
  """
40
40
  check_vector_format(labels_true, labels_pred)
@@ -105,7 +105,7 @@ def get_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, return_precis
105
105
  >>> import numpy as np
106
106
  >>> labels_true = np.array([0, 0, 1, 1])
107
107
  >>> labels_pred = np.array([0, 0, 0, 1])
108
- >>> round(get_f1_score(labels_true, labels_pred), 2)
108
+ >>> float(round(get_f1_score(labels_true, labels_pred), 2))
109
109
  0.67
110
110
  """
111
111
  values = set(labels_true[labels_true >= 0]) | set(labels_pred[labels_pred >= 0])
@@ -188,7 +188,7 @@ def get_average_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, avera
188
188
  >>> import numpy as np
189
189
  >>> labels_true = np.array([0, 0, 1, 1])
190
190
  >>> labels_pred = np.array([0, 0, 0, 1])
191
- >>> round(get_average_f1_score(labels_true, labels_pred), 2)
191
+ >>> float(round(get_average_f1_score(labels_true, labels_pred), 2))
192
192
  0.73
193
193
  """
194
194
  if average == 'micro':
@@ -51,7 +51,7 @@ class PageRankClassifier(RankClassifier):
51
51
  >>> labels_true = graph.labels
52
52
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
53
53
  >>> labels_pred = pagerank.fit_predict(adjacency, labels)
54
- >>> np.round(np.mean(labels_pred == labels_true), 2)
54
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
55
55
  0.97
56
56
 
57
57
  References
@@ -58,7 +58,7 @@ class Propagation(BaseClassifier):
58
58
  >>> labels_true = graph.labels
59
59
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
60
60
  >>> labels_pred = propagation.fit_predict(adjacency, labels)
61
- >>> np.round(np.mean(labels_pred == labels_true), 2)
61
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
62
62
  0.94
63
63
 
64
64
  References