scikit-network 0.33.0__cp39-cp39-macosx_11_0_arm64.whl → 0.33.3__cp39-cp39-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- scikit_network-0.33.3.dist-info/METADATA +122 -0
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/RECORD +44 -32
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/WHEEL +2 -1
- sknetwork/classification/diffusion.py +1 -1
- sknetwork/classification/knn.py +1 -1
- sknetwork/classification/metrics.py +3 -3
- sknetwork/classification/pagerank.py +1 -1
- sknetwork/classification/propagation.py +1 -1
- sknetwork/classification/vote.cpp +27581 -0
- sknetwork/classification/vote.cpython-39-darwin.so +0 -0
- sknetwork/clustering/leiden_core.cpp +31572 -0
- sknetwork/clustering/leiden_core.cpython-39-darwin.so +0 -0
- sknetwork/clustering/louvain.py +3 -3
- sknetwork/clustering/louvain_core.cpp +31217 -0
- sknetwork/clustering/louvain_core.cpython-39-darwin.so +0 -0
- sknetwork/clustering/metrics.py +1 -1
- sknetwork/clustering/tests/test_louvain.py +6 -0
- sknetwork/gnn/base_activation.py +1 -0
- sknetwork/gnn/gnn_classifier.py +1 -1
- sknetwork/hierarchy/metrics.py +3 -3
- sknetwork/hierarchy/paris.cpp +37883 -0
- sknetwork/hierarchy/paris.cpython-39-darwin.so +0 -0
- sknetwork/linalg/diteration.cpp +27397 -0
- sknetwork/linalg/diteration.cpython-39-darwin.so +0 -0
- sknetwork/linalg/push.cpp +31087 -0
- sknetwork/linalg/push.cpython-39-darwin.so +0 -0
- sknetwork/linalg/sparse_lowrank.py +1 -1
- sknetwork/ranking/betweenness.cpp +9704 -0
- sknetwork/ranking/betweenness.cpython-39-darwin.so +0 -0
- sknetwork/topology/cliques.cpp +32580 -0
- sknetwork/topology/cliques.cpython-39-darwin.so +0 -0
- sknetwork/topology/core.cpp +30666 -0
- sknetwork/topology/core.cpython-39-darwin.so +0 -0
- sknetwork/topology/cycles.py +2 -2
- sknetwork/topology/minheap.cpp +27329 -0
- sknetwork/topology/minheap.cpython-39-darwin.so +0 -0
- sknetwork/topology/triangles.cpp +8891 -0
- sknetwork/topology/triangles.cpython-39-darwin.so +0 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +27632 -0
- sknetwork/topology/weisfeiler_lehman_core.cpython-39-darwin.so +0 -0
- sknetwork/visualization/graphs.py +1 -1
- scikit_network-0.33.0.dist-info/METADATA +0 -517
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/AUTHORS.rst +0 -0
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/LICENSE +0 -0
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,122 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: scikit-network
|
|
3
|
+
Version: 0.33.3
|
|
4
|
+
Summary: Graph algorithms
|
|
5
|
+
Author: Scikit-network team
|
|
6
|
+
Maintainer-email: Thomas Bonald <bonald@enst.fr>
|
|
7
|
+
License: BSD License
|
|
8
|
+
Project-URL: Repository, https://github.com/sknetwork-team/scikit-network
|
|
9
|
+
Project-URL: Documentation, https://scikit-network.readthedocs.io/
|
|
10
|
+
Project-URL: Changelog, https://github.com/sknetwork-team/scikit-network/blob/master/HISTORY.rst
|
|
11
|
+
Keywords: sknetwork
|
|
12
|
+
Classifier: Development Status :: 3 - Alpha
|
|
13
|
+
Classifier: Intended Audience :: Developers
|
|
14
|
+
Classifier: Intended Audience :: Information Technology
|
|
15
|
+
Classifier: Intended Audience :: Education
|
|
16
|
+
Classifier: Intended Audience :: Science/Research
|
|
17
|
+
Classifier: License :: OSI Approved :: BSD License
|
|
18
|
+
Classifier: Natural Language :: English
|
|
19
|
+
Classifier: Programming Language :: Cython
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
22
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
23
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
24
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
25
|
+
Requires-Python: >=3.9
|
|
26
|
+
Description-Content-Type: text/x-rst
|
|
27
|
+
License-File: LICENSE
|
|
28
|
+
License-File: AUTHORS.rst
|
|
29
|
+
Requires-Dist: numpy>=1.22.4
|
|
30
|
+
Requires-Dist: scipy>=1.7.3
|
|
31
|
+
Provides-Extra: test
|
|
32
|
+
Requires-Dist: pytest; extra == "test"
|
|
33
|
+
Requires-Dist: note; extra == "test"
|
|
34
|
+
Requires-Dist: pluggy>=0.7.1; extra == "test"
|
|
35
|
+
Dynamic: license-file
|
|
36
|
+
|
|
37
|
+
.. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
|
|
38
|
+
:align: right
|
|
39
|
+
:width: 150px
|
|
40
|
+
:alt: logo sknetwork
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
.. image:: https://img.shields.io/pypi/v/scikit-network.svg
|
|
45
|
+
:target: https://pypi.python.org/pypi/scikit-network
|
|
46
|
+
|
|
47
|
+
.. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
|
|
48
|
+
:target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
|
|
49
|
+
|
|
50
|
+
.. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
|
|
51
|
+
:target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
|
|
52
|
+
:alt: Documentation Status
|
|
53
|
+
|
|
54
|
+
.. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
|
|
55
|
+
:target: https://codecov.io/gh/sknetwork-team/scikit-network
|
|
56
|
+
|
|
57
|
+
.. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
|
|
58
|
+
:target: https://pypi.python.org/pypi/scikit-network
|
|
59
|
+
|
|
60
|
+
Free software library in Python for machine learning on graphs:
|
|
61
|
+
|
|
62
|
+
* Memory-efficient representation of graphs as sparse matrices in scipy_ format
|
|
63
|
+
* Fast algorithms
|
|
64
|
+
* Simple API inspired by scikit-learn_
|
|
65
|
+
|
|
66
|
+
.. _scipy: https://www.scipy.org
|
|
67
|
+
.. _scikit-learn: https://scikit-learn.org/
|
|
68
|
+
|
|
69
|
+
Resources
|
|
70
|
+
---------
|
|
71
|
+
|
|
72
|
+
* Free software: BSD license
|
|
73
|
+
* GitHub: https://github.com/sknetwork-team/scikit-network
|
|
74
|
+
* Documentation: https://scikit-network.readthedocs.io
|
|
75
|
+
|
|
76
|
+
Quick start
|
|
77
|
+
-----------
|
|
78
|
+
|
|
79
|
+
Install scikit-network:
|
|
80
|
+
|
|
81
|
+
.. code-block:: console
|
|
82
|
+
|
|
83
|
+
$ pip install scikit-network
|
|
84
|
+
|
|
85
|
+
Import scikit-network::
|
|
86
|
+
|
|
87
|
+
import sknetwork
|
|
88
|
+
|
|
89
|
+
Overview
|
|
90
|
+
--------
|
|
91
|
+
|
|
92
|
+
An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
|
|
93
|
+
|
|
94
|
+
Documentation
|
|
95
|
+
-------------
|
|
96
|
+
|
|
97
|
+
The documentation is structured as follows:
|
|
98
|
+
|
|
99
|
+
* `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
|
|
100
|
+
* `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
|
|
101
|
+
* `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
|
|
102
|
+
* `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
|
|
103
|
+
* `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
|
|
104
|
+
|
|
105
|
+
Citing
|
|
106
|
+
------
|
|
107
|
+
|
|
108
|
+
If you want to cite scikit-network, please refer to the publication in
|
|
109
|
+
the `Journal of Machine Learning Research <https://jmlr.org>`_:
|
|
110
|
+
|
|
111
|
+
.. code::
|
|
112
|
+
|
|
113
|
+
@article{JMLR:v21:20-412,
|
|
114
|
+
author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
|
|
115
|
+
title = {Scikit-network: Graph Analysis in Python},
|
|
116
|
+
journal = {Journal of Machine Learning Research},
|
|
117
|
+
year = {2020},
|
|
118
|
+
volume = {21},
|
|
119
|
+
number = {185},
|
|
120
|
+
pages = {1-6},
|
|
121
|
+
url = {http://jmlr.org/papers/v21/20-412.html}
|
|
122
|
+
}
|
|
@@ -1,19 +1,26 @@
|
|
|
1
|
+
scikit_network-0.33.3.dist-info/RECORD,,
|
|
2
|
+
scikit_network-0.33.3.dist-info/WHEEL,sha256=kLIzNDkWstoIsZQpgmd7mEjqJTBsBtoA_tkJmnd4ZUs,134
|
|
3
|
+
scikit_network-0.33.3.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
|
|
4
|
+
scikit_network-0.33.3.dist-info/METADATA,sha256=mE_lYxAcrrK3PRjrWezI_EANftf2Wb_HbhuKKgnTkww,4471
|
|
5
|
+
scikit_network-0.33.3.dist-info/licenses/LICENSE,sha256=zKbJMpbSKgGEUaNr_fKgvJrvw_3W4gnJs5XdLCK5Sxo,1622
|
|
6
|
+
scikit_network-0.33.3.dist-info/licenses/AUTHORS.rst,sha256=MIEWJmfpIVmBPo03Xl_6j8kg7cjXicp9WVRQpuVDj9o,923
|
|
1
7
|
sknetwork/log.py,sha256=ORInAVh_cWIfxwaFWSblSRxwT-jG05XPRnYTTAHSKy4,443
|
|
2
8
|
sknetwork/__init__.py,sha256=SZAI5otUFjW-KNf_HNvDY7g_mjFAcPTNg5SIcBjU4WM,533
|
|
3
9
|
sknetwork/test_log.py,sha256=V4t6Ggi_fh8px5Iq7CDLlJvbXfz24macQ43Ss0tPb5I,319
|
|
4
10
|
sknetwork/test_base.py,sha256=PB_kJ7cNvhBXmlL-KzyLu2hf6mG7b1OQY759aYplW4k,912
|
|
5
11
|
sknetwork/sknetwork.py,sha256=VYoI-gwqwBKPx84cA0KnYDRofrgIXs8xtASD2nu5fE0,44
|
|
6
12
|
sknetwork/base.py,sha256=XJJ6MicVcSiQBWQ9fYlmUJYkXq0PRldQzExhZKuaFBo,1951
|
|
7
|
-
sknetwork/classification/metrics.py,sha256=
|
|
13
|
+
sknetwork/classification/metrics.py,sha256=NHRldLX4fnZ9FrfrEgQUEjyxYivu7rIqTGdiFDpipws,6827
|
|
8
14
|
sknetwork/classification/vote.pyx,sha256=Bbf74XCPH8uYDP-SrXRaA7k6Ax2x-wDzpbHMeg9le7A,1584
|
|
9
|
-
sknetwork/classification/diffusion.py,sha256=
|
|
15
|
+
sknetwork/classification/diffusion.py,sha256=8OTfIVQcBCAC3rgKLsUpwDNoSwXQxrSzUT57vu0sYKY,5571
|
|
10
16
|
sknetwork/classification/__init__.py,sha256=yVv7wSuUfNLxeNBF-AhWCJys3C-XatPtMzi1wyp9Bz4,475
|
|
11
17
|
sknetwork/classification/base_rank.py,sha256=RGElYD6PuP4nhnenNnzpOiBojs49Afg5ahjBFEi566I,4522
|
|
12
|
-
sknetwork/classification/propagation.py,sha256=
|
|
13
|
-
sknetwork/classification/vote.cpython-39-darwin.so,sha256=
|
|
14
|
-
sknetwork/classification/pagerank.py,sha256=
|
|
18
|
+
sknetwork/classification/propagation.py,sha256=1NkRPE5v59IgJGlnQLQh77XC0Q7Ph3MrPm7BdoFZ6Ek,5800
|
|
19
|
+
sknetwork/classification/vote.cpython-39-darwin.so,sha256=icC4O3Yr8L9zeg_YYiI_n8vUo70CnKLcxPXtPiz19Vo,212664
|
|
20
|
+
sknetwork/classification/pagerank.py,sha256=3xHBcuiwMZb-xKpDQ9KIgRtSGE_vbpskVyFK3hkyWcs,2593
|
|
15
21
|
sknetwork/classification/base.py,sha256=WS-QHh4553Dr1VwJqjggSqO6hHFIAs50oPah_L23eFo,4290
|
|
16
|
-
sknetwork/classification/
|
|
22
|
+
sknetwork/classification/vote.cpp,sha256=aJVVtKhoMId_vCJUcqaLc782bVCarOi41q92DSdYlf8,1020427
|
|
23
|
+
sknetwork/classification/knn.py,sha256=MpF1y3oH-ZDV3Pxqu8KGW7n7Eoh4WtUJ1Td4j7wXWI0,5340
|
|
17
24
|
sknetwork/classification/tests/test_metrics.py,sha256=eBs-5uAEz2s8gukMyfhQ07GSFoyvxtsslLuc6VgUxBU,2303
|
|
18
25
|
sknetwork/classification/tests/__init__.py,sha256=sy9uRiPhYG2i7uqM3P07-VUf4UcZEHeOoH9BvKCpU3s,31
|
|
19
26
|
sknetwork/classification/tests/test_pagerank.py,sha256=5IJpYqnz31cWT0iXjTdo1xE8Kfj3YTK0cSZnnTlyJBs,620
|
|
@@ -23,25 +30,30 @@ sknetwork/classification/tests/test_API.py,sha256=FA1d0NQz3vaNVVeFbhEljPe0fD_ryR
|
|
|
23
30
|
sknetwork/classification/tests/test_propagation.py,sha256=m0Jyq59k3taoikyBxcZGILzG7dWQV3SGE45MPm0RPao,850
|
|
24
31
|
sknetwork/visualization/dendrograms.py,sha256=m4FbBfvJUW_gXccZWF8OWxAsbhsEcKa1fXNNCp_y4MA,9901
|
|
25
32
|
sknetwork/visualization/__init__.py,sha256=8rLiR13WHSWLsEVTTL6lzOZms0LZf-ZujBqOI5VnKxk,216
|
|
26
|
-
sknetwork/visualization/graphs.py,sha256=
|
|
33
|
+
sknetwork/visualization/graphs.py,sha256=HXIJV5W4rLPmwawXKPqiGhyP7sE5iytW2Ibt_9ea8Rs,41194
|
|
27
34
|
sknetwork/visualization/colors.py,sha256=DjcXt9aMgLan7bRg7TZI8m_8SLWQOZ-g2HoguB1-3qA,2509
|
|
28
35
|
sknetwork/visualization/tests/test_graphs.py,sha256=g2YPJn9m8wD-UHZ_BL37xuJqE7ygOx3EztKLVVqphYk,9421
|
|
29
36
|
sknetwork/visualization/tests/__init__.py,sha256=yOVrqUD9UuI_HdYuqRP5PS7QhS-pO4RE_Ls5PLiIC_w,30
|
|
30
37
|
sknetwork/visualization/tests/test_dendrograms.py,sha256=UuS3VZ5XnV1u5BtW-QKbFv0wavllQpbgtsOIe5XvTlg,2466
|
|
31
|
-
sknetwork/topology/cliques.cpython-39-darwin.so,sha256=
|
|
32
|
-
sknetwork/topology/weisfeiler_lehman_core.cpython-39-darwin.so,sha256=
|
|
38
|
+
sknetwork/topology/cliques.cpython-39-darwin.so,sha256=NhLrWXoc9IsciFVtCP-My1FYFNIrLRimzvLTlOXFSuE,249472
|
|
39
|
+
sknetwork/topology/weisfeiler_lehman_core.cpython-39-darwin.so,sha256=kuB7F9tD6sWhoVIEBCrOYAVlSuggUjwZ4E5yqcsj9i4,214488
|
|
40
|
+
sknetwork/topology/core.cpp,sha256=PaiElKsf30tdqbjkpCjgauwK3cqhiP-GoZhS3CEN4Xs,1160664
|
|
33
41
|
sknetwork/topology/cliques.pyx,sha256=BuezL9-zJOicL1zffkpcf8uIEgqhik6dgK_agXX4gaU,4510
|
|
42
|
+
sknetwork/topology/triangles.cpp,sha256=f1wYWMHAZMjfVfdzKku-FqohUoQ_3J2RWKuZ4pNM0Dw,352662
|
|
34
43
|
sknetwork/topology/minheap.pyx,sha256=iFWpXPYSAmWjYphYByAM6auUj1XHly6QovZvuy2Lpyc,3310
|
|
35
44
|
sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=fi0rRrXHVZuIQYzPDcPCamCRQLKquchjV3N9dNuQ1Pk,3034
|
|
36
|
-
sknetwork/topology/minheap.cpython-39-darwin.so,sha256=
|
|
45
|
+
sknetwork/topology/minheap.cpython-39-darwin.so,sha256=qx56snYEm_3sb2zp1Tcuo1pOF-UUVRX3WBoa4H7faGw,195104
|
|
37
46
|
sknetwork/topology/__init__.py,sha256=T2W2cWwcUdhfA86VuZAZqksbrgct4hiyp0HuizEnLg4,534
|
|
38
|
-
sknetwork/topology/triangles.cpython-39-darwin.so,sha256=
|
|
39
|
-
sknetwork/topology/cycles.py,sha256=
|
|
47
|
+
sknetwork/topology/triangles.cpython-39-darwin.so,sha256=O-p2yGEIrwn6On7kLo4QY9RPh09JbHiBIRC1XyndwLQ,106208
|
|
48
|
+
sknetwork/topology/cycles.py,sha256=1ta2Iw8uckVwo2sy6IcxZ9t9cJkfV1NFhlEaJX4Q3hQ,8995
|
|
40
49
|
sknetwork/topology/weisfeiler_lehman.py,sha256=ACJDAmZbwDrZAvO-LsHnRaef-8KX7esM1LxVUglXtLw,4308
|
|
41
|
-
sknetwork/topology/core.cpython-39-darwin.so,sha256=
|
|
50
|
+
sknetwork/topology/core.cpython-39-darwin.so,sha256=nC5J3Uf-cBy2SST7Xcam1UjsQiyD3r2UK_nhNo4rdfY,210072
|
|
42
51
|
sknetwork/topology/minheap.pxd,sha256=Y_oRh8H-sNZYAWv0XM9T-ZLzYBhb5TrBM4VjlH-ZqPQ,564
|
|
43
52
|
sknetwork/topology/structure.py,sha256=CDfN7SL70wTHm2HPfqd7ncsZEaV1SQO3tJKYl1CdtNI,7285
|
|
53
|
+
sknetwork/topology/cliques.cpp,sha256=E0cK8yUAh-NM9P7KPdphim6Uhbvpla31rs3BJjuvj00,1251455
|
|
54
|
+
sknetwork/topology/minheap.cpp,sha256=EHkTX9zrWd5cmixDBr3FaghNs86Xa0MUOHvBPyLQv9I,1013681
|
|
44
55
|
sknetwork/topology/triangles.pyx,sha256=JOkA9k0CQTsT7zdPaEoW7-PdHYuoXHsB0XSuPKFLJSI,4349
|
|
56
|
+
sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=pyqa_KG5bh27mN814Fa7yUx5YCPYs7V17mZCWS4nT-Y,1024479
|
|
45
57
|
sknetwork/topology/core.pyx,sha256=HwGbC84p9F9fkEw8ouNNMQtlYrAoEWhQS5hU9Cf1h94,2465
|
|
46
58
|
sknetwork/topology/tests/test_cycles.py,sha256=KZzMKS5ILfC_J0Fj5MFlEOL7Z9nOnlRfo4TnGdXEPWY,3150
|
|
47
59
|
sknetwork/topology/tests/test_structure.py,sha256=CzcZ1LxV-mI_buxz6LcTeCy3h5ofMLfOu2HUHwNSMi8,3948
|
|
@@ -50,12 +62,13 @@ sknetwork/topology/tests/test_core.py,sha256=Zh9IYHGfqDqIlLycucLzqZbHvYmU-IB-J03
|
|
|
50
62
|
sknetwork/topology/tests/__init__.py,sha256=9lKrPX4BnSJbK-VlDi9TsmAgDwqF3H423KhJ1u1Uaos,25
|
|
51
63
|
sknetwork/topology/tests/test_triangles.py,sha256=9g3nml3TNOiIFHLJDih5PTxWunDJemmpLQy2tmoQw4Y,1275
|
|
52
64
|
sknetwork/topology/tests/test_cliques.py,sha256=t97pKDMxT9RC-_YsgY-c8tQxrekyAE6i2_guvxAYHhQ,838
|
|
65
|
+
sknetwork/ranking/betweenness.cpp,sha256=0UV0d4frqXs1-YmT3eUtgxeXk4j_Gv9zLIvGd-v8qa4,378984
|
|
53
66
|
sknetwork/ranking/postprocess.py,sha256=-3wqBPvTM7jDdfTytINEXxM2eugJjbCZRLiLy9pkmac,919
|
|
54
67
|
sknetwork/ranking/__init__.py,sha256=UeYw8y0HFoBnPziqnVYXSt8jqFtkDgkCCMPhYTEIaF0,348
|
|
55
68
|
sknetwork/ranking/closeness.py,sha256=pETMD8uaXfADZhmzVaH4YIGX57S2vvhzVInONaAwBUM,2840
|
|
56
69
|
sknetwork/ranking/katz.py,sha256=uPyXkEL73_6MS4dP5XTSVSIrD5h5QJipVTVEa0L_y48,2535
|
|
57
70
|
sknetwork/ranking/hits.py,sha256=L39a9Ze3ITUbikmNhA_Lx-V5s_RQr0XnNkOsIgG8m98,2761
|
|
58
|
-
sknetwork/ranking/betweenness.cpython-39-darwin.so,sha256=
|
|
71
|
+
sknetwork/ranking/betweenness.cpython-39-darwin.so,sha256=meP6xNJp-aCIn4OnXOEJHHu_s5CrRk7rUKaO3N25mjY,127568
|
|
59
72
|
sknetwork/ranking/pagerank.py,sha256=Qt2SOUoLO76JVDnT4-x-b-hah9IlaHECsYNu45AnpY8,4749
|
|
60
73
|
sknetwork/ranking/base.py,sha256=Jo9LBK3TfXiYdxYqSmfeVC8O2D6fA5L-SRzQh3eqtnA,1512
|
|
61
74
|
sknetwork/ranking/betweenness.pyx,sha256=Pq9EqOHV0P8TDN_w9siP3h8HyechaAErysNwz0JT0ow,3087
|
|
@@ -67,18 +80,20 @@ sknetwork/ranking/tests/test_API.py,sha256=PZ4Q5X1WT1HSAojZX72fUm4o9Y0PwocewJEoC
|
|
|
67
80
|
sknetwork/ranking/tests/test_betweenness.py,sha256=8XA1ycLQQ7-Cm3CBfkcSDQOvD6xagAIP1--mPe9VFzo,1135
|
|
68
81
|
sknetwork/ranking/tests/test_hits.py,sha256=zStzrWZ-pv2Nsd-pB282FgW3KAn1TyKjz_l85tJaPJ0,491
|
|
69
82
|
sknetwork/linalg/diteration.pyx,sha256=gk9W6SwIxXgmjQujXWBUIoM_OwevjE3jTzFrIEkGnWI,1384
|
|
70
|
-
sknetwork/linalg/diteration.cpython-39-darwin.so,sha256=
|
|
83
|
+
sknetwork/linalg/diteration.cpython-39-darwin.so,sha256=9nxrirhuoa3QLmo2w3bKpuu2nua_plezOndqxGORwSU,208912
|
|
71
84
|
sknetwork/linalg/__init__.py,sha256=awBDY2wWiO40L5eED3H8K1BM8qtHz7aQRv1p3PcSK94,533
|
|
85
|
+
sknetwork/linalg/push.cpp,sha256=NtvbiKED5RS7Mx1VNL5Z-DBhSBmXTmglUZj71GUtOlw,1184587
|
|
72
86
|
sknetwork/linalg/laplacian.py,sha256=_gQr8YLqMUtK_IMNgvJoQX7-uODVlvCVmc-oTsgw7MA,401
|
|
73
87
|
sknetwork/linalg/eig_solver.py,sha256=yq_prP5p1jbALby69wkzzH0vYKc1btmRQoiVUtTh-eA,2700
|
|
74
88
|
sknetwork/linalg/push.pyx,sha256=caxCZa5h9zsHhxJgDBaaetqpB0wUbFLdOUwHwj0q_t0,2358
|
|
75
89
|
sknetwork/linalg/ppr_solver.py,sha256=mQkCnik-vvv_oFa9n1vtMzxgvi78qW-QQONdcmC9CXA,6533
|
|
76
|
-
sknetwork/linalg/sparse_lowrank.py,sha256=
|
|
90
|
+
sknetwork/linalg/sparse_lowrank.py,sha256=AHIP-eErNKm1EtuulbNo8ct2Ux-Xe2YdvWUNPez1r-M,5035
|
|
77
91
|
sknetwork/linalg/basics.py,sha256=8AFph_1G5SZP_24jrIv6qIWooO0UMglL4jMgx3ZdYIQ,1142
|
|
78
92
|
sknetwork/linalg/normalizer.py,sha256=kOFDPPdiGqG-KcWNiRwbS_y_nmw5fTKYTvuj_x8yBd0,2473
|
|
93
|
+
sknetwork/linalg/diteration.cpp,sha256=INBYgPFmtBPKpDMe8I_asKgDQStTAryttvjJ3iEU1yc,1017237
|
|
79
94
|
sknetwork/linalg/operators.py,sha256=fxitao4UYW4Hq7B258T_cAq2H3R2FN1-mwdy138w8fE,7432
|
|
80
95
|
sknetwork/linalg/polynome.py,sha256=_dP9Nu_6XCV0-WEQJ7E5nG6pxZWMtbj-LREu0vtxeWk,2125
|
|
81
|
-
sknetwork/linalg/push.cpython-39-darwin.so,sha256=
|
|
96
|
+
sknetwork/linalg/push.cpython-39-darwin.so,sha256=3nA6K8SJglPWtRaT6UPIaPXi6dBtIOnoEfLbYyK6trc,229144
|
|
82
97
|
sknetwork/linalg/svd_solver.py,sha256=vhcXwCsOar0cYDPZo7IF_ulRDsGGvZzePIeSpSCVgLk,2681
|
|
83
98
|
sknetwork/linalg/tests/test_svd.py,sha256=eLRmSiHt8uWzknImZtRSZmJC8OX0YDgUt9-8PePc3OA,1285
|
|
84
99
|
sknetwork/linalg/tests/test_operators.py,sha256=l_pBF7JZhjUSNfTReDX-lN2nA7HU7mkz7dznJ8I6lrY,2919
|
|
@@ -89,12 +104,13 @@ sknetwork/linalg/tests/test_ppr.py,sha256=Bh1n7W3We2N8u1RIWPyE5QQGE7esnNoUOLLRCL
|
|
|
89
104
|
sknetwork/linalg/tests/test_laplacian.py,sha256=B6UhJOmYUdNlXwNoxLLtb--nv9mx96Orl-W1Vl6PLyM,434
|
|
90
105
|
sknetwork/linalg/tests/test_eig.py,sha256=lUAgo4UfWuuSG5DhSk5SIT7ToLDgPG-5JCgmOe_M7Vw,1504
|
|
91
106
|
sknetwork/linalg/tests/test_normalization.py,sha256=nASuMYxKcsWj3gk9DF5uPKYOw93oJ-UQUWi99Fw3kmE,887
|
|
92
|
-
sknetwork/hierarchy/metrics.py,sha256=
|
|
107
|
+
sknetwork/hierarchy/metrics.py,sha256=rgD2izsy6HhIYpYE8kftvg4X1gDS780UUGQBlboksXQ,8067
|
|
93
108
|
sknetwork/hierarchy/paris.pyx,sha256=DX8p3LOtrNxyQ8pOZZE_Q2b5rBKjYwKArsmMZbvb0xY,11813
|
|
94
109
|
sknetwork/hierarchy/postprocess.py,sha256=d1Fll3eqDIjiMf1c5nGuKF6I0fN93elnglkp59LARGU,12072
|
|
95
110
|
sknetwork/hierarchy/__init__.py,sha256=YgE2eqnwS8Q2NWP9pNY-M1bpdxRn5-C-CdykydNW7iM,412
|
|
96
|
-
sknetwork/hierarchy/paris.cpython-39-darwin.so,sha256=
|
|
111
|
+
sknetwork/hierarchy/paris.cpython-39-darwin.so,sha256=LaMOUff4l0LylPw3P4rf0T91Pb2PjC-DyTp9d2SWVmU,292632
|
|
97
112
|
sknetwork/hierarchy/louvain_hierarchy.py,sha256=PhetHYpmsnI7yC-rbYAUXhNiBV9QNKMDbrfz9l0fskc,9846
|
|
113
|
+
sknetwork/hierarchy/paris.cpp,sha256=5GOEwMeRCdxI6smrkMhJ4sulk7HiZFdq45yoq_BgzuM,1500480
|
|
98
114
|
sknetwork/hierarchy/base.py,sha256=MoxBiSsEJOq77YmXj_bpf4vUiPLSpQn8fnUX7YIqyd8,2693
|
|
99
115
|
sknetwork/hierarchy/tests/test_postprocess.py,sha256=OSrWE0gT0AcPI4LKmUL-Blfg5ErxnjS3d4rPNnA63_Y,2209
|
|
100
116
|
sknetwork/hierarchy/tests/test_metrics.py,sha256=IHlsdJXeHqPU8_SBm4eIXua5ZhyRIAUH4cAtVNNR7Ng,3160
|
|
@@ -128,23 +144,25 @@ sknetwork/embedding/tests/test_force_atlas.py,sha256=-YM4HSF5Nvpm8e4SoCHiA2o7yAk
|
|
|
128
144
|
sknetwork/embedding/tests/test_random_projection.py,sha256=2bUOCw66tUKP775pGPd5STj0UmRuwvBtI5CgY8HeHKI,1193
|
|
129
145
|
sknetwork/embedding/tests/test_spectral.py,sha256=CH-F8fM3cYoxhjpob1m7wZV-tEr8XFD6Lxa_bFsLv3A,3897
|
|
130
146
|
sknetwork/clustering/leiden_core.pyx,sha256=7HGdeX6iMnSs52Px44-__kN9JhHueaQUvCmrkIGTalg,4300
|
|
131
|
-
sknetwork/clustering/metrics.py,sha256=
|
|
147
|
+
sknetwork/clustering/metrics.py,sha256=qnQo70cLs_Rebj3Z1cxmktGw1qQGAAA8yzqj-lC8Tss,3067
|
|
132
148
|
sknetwork/clustering/leiden.py,sha256=yL5N-9ny6XAj6La2-PBcsieRl4SVx8wxwVGvS1tMr-o,9682
|
|
133
|
-
sknetwork/clustering/louvain_core.
|
|
149
|
+
sknetwork/clustering/louvain_core.cpp,sha256=xseIOaeF-fOp39zhMVjeKX2kYYMAbKoWSFpi7tUohPY,1183001
|
|
150
|
+
sknetwork/clustering/louvain_core.cpython-39-darwin.so,sha256=34W5g6UKvccINx1_7irMGCKdCQyrDJ-DaIJuabDhZiA,250144
|
|
134
151
|
sknetwork/clustering/postprocess.py,sha256=4hx5VTQmqS2Ld2P2kvXoyvVanXVg3bMA619IHS2jWHM,2039
|
|
135
152
|
sknetwork/clustering/__init__.py,sha256=Ab-rmioxlaMoghrzd1RMr-L4zyrqIM8XznqrjBPGE28,435
|
|
136
153
|
sknetwork/clustering/kcenters.py,sha256=RFEx35vPUm9a4mzCbDwv-PmePCsdQwbuKAeaRizBMxY,8689
|
|
137
|
-
sknetwork/clustering/louvain.py,sha256=
|
|
138
|
-
sknetwork/clustering/leiden_core.cpython-39-darwin.so,sha256=
|
|
154
|
+
sknetwork/clustering/louvain.py,sha256=4IfTjO_WbYi5XfJWC86kOswOPRhE4LSufsiRBcd52nU,10825
|
|
155
|
+
sknetwork/clustering/leiden_core.cpython-39-darwin.so,sha256=0cPA9KFbIeBcP9H4z0-gBs6DjkCqsYwGtf0-T018XOA,250800
|
|
139
156
|
sknetwork/clustering/propagation_clustering.py,sha256=ABZZtyojkrXfzsMwEcxqphzHgFC5q8sECOyanvK9D3o,3781
|
|
140
157
|
sknetwork/clustering/louvain_core.pyx,sha256=pMqt7WukTkBOpjofmiXMYHqRX69mkquEMapDdoskiQM,4089
|
|
141
158
|
sknetwork/clustering/base.py,sha256=dCF4K3nbKY24kzFeDAy7Fp-b9jDBzEoG3jj1ozuu_W8,5932
|
|
159
|
+
sknetwork/clustering/leiden_core.cpp,sha256=DVBgia_YAxpbUC8tF1rbcBPyl5AhllGCLs-Gpgt6ZRc,1202437
|
|
142
160
|
sknetwork/clustering/tests/test_postprocess.py,sha256=WSmAlqB-6Nw3eoL3NaOyNlpPr7GVnNnllkPVdyE9rXI,1378
|
|
143
161
|
sknetwork/clustering/tests/test_kcenters.py,sha256=laO1QSJ-yGlroB5XtrC15jbRK0krYZK5sIRDHBUZL30,1977
|
|
144
162
|
sknetwork/clustering/tests/test_metrics.py,sha256=fbVYg2s8DXQdiYHUNuVjFMtEJg4od1Vej25mgHhGDu0,1818
|
|
145
163
|
sknetwork/clustering/tests/__init__.py,sha256=Ta0XKY7pklRvHyUY3Jlow3A2V4REa5geZG74xPz80Tc,27
|
|
146
164
|
sknetwork/clustering/tests/test_leiden.py,sha256=3KSXvxUP9H4tCJQXUfWt-45-ltyD0FrVgYjXDvRN-yQ,1155
|
|
147
|
-
sknetwork/clustering/tests/test_louvain.py,sha256=
|
|
165
|
+
sknetwork/clustering/tests/test_louvain.py,sha256=R9GI3IymlwJGHD5owOJZSrYJ5pJp9WdRWH2xnNO2QC8,4871
|
|
148
166
|
sknetwork/clustering/tests/test_API.py,sha256=Eez17EngcirVHVVoybClXS5314_Yz54JFzXldubEdgg,1528
|
|
149
167
|
sknetwork/linkpred/nn.py,sha256=tY-qYlp0j9WCvdoHkZ9EKzCD_GlDu7tQpKD7-aC20rE,4030
|
|
150
168
|
sknetwork/linkpred/__init__.py,sha256=pFtM52OhDK69ceeiRyH1MDse0EbD8fqyhOsWWih47gM,72
|
|
@@ -166,13 +184,13 @@ sknetwork/utils/tests/test_check.py,sha256=WOLQ7J4eM4YHsSxyBNU5yPquq-0dB5FyD_ttt
|
|
|
166
184
|
sknetwork/utils/tests/test_neighbors.py,sha256=vF697D0cTfx4Limcmbre5JkJcLi1rUX0tS_JviX11Zg,1426
|
|
167
185
|
sknetwork/utils/tests/test_format.py,sha256=xSvz_IbxNnei8IrEysIOi8YpX_a6edxVE41g_lSx1mk,2245
|
|
168
186
|
sknetwork/gnn/base_layer.py,sha256=o5CbTVXY7Y1_TyNEMkp7P2va2HLLIq_MgnOxZ7PGQmg,3948
|
|
169
|
-
sknetwork/gnn/base_activation.py,sha256=
|
|
187
|
+
sknetwork/gnn/base_activation.py,sha256=vSsIQqN8fmLl3W6v6ZlPd0Hy-lfq5iEf_oEQ7yMY-3k,2307
|
|
170
188
|
sknetwork/gnn/__init__.py,sha256=m2lkDJoJZocJ18scpArsUHuzePZ8Q-ue7D3yXQ5H_RM,519
|
|
171
189
|
sknetwork/gnn/loss.py,sha256=P0un3iqbnFLrBbYODznVAoU_J2qAZuqHAPLiae0LCtI,5162
|
|
172
190
|
sknetwork/gnn/activation.py,sha256=D7o4FdbDMrBa2PQrWrvplCf14QOSzZ67d9eWN9bHY-M,3560
|
|
173
191
|
sknetwork/gnn/neighbor_sampler.py,sha256=TXdMRFwiT8sOdl6-S-flQZ5Rjrx1hwTzFqqiR_8PHTQ,1864
|
|
174
192
|
sknetwork/gnn/utils.py,sha256=A0kuBe29Eg90cEzRAgw4YmnShnzoq6ai_-01IBAf63g,4349
|
|
175
|
-
sknetwork/gnn/gnn_classifier.py,sha256=
|
|
193
|
+
sknetwork/gnn/gnn_classifier.py,sha256=ofqyqkBrRSAbDK5fr6cWjZVP6DMVhEQZr2wiF0i7y64,12617
|
|
176
194
|
sknetwork/gnn/layer.py,sha256=i0XiAutNal9ImAGqMtSLVEq_QiqZoGAlAWwlSGrNY8Q,5526
|
|
177
195
|
sknetwork/gnn/optimizer.py,sha256=vsCgfPoJtYMWREnR4tBsfPb0Ed-rHR0poBr-75lE57s,5782
|
|
178
196
|
sknetwork/gnn/base.py,sha256=QZ_pNi2-edAUpu-2C93DWfooS_sHulO6HL6vK108lhc,5708
|
|
@@ -208,9 +226,3 @@ sknetwork/data/tests/test_models.py,sha256=oP-X_k0vbSB4CwlV4GQVVBAQ9uI_8frFicde5
|
|
|
208
226
|
sknetwork/data/tests/test_API.py,sha256=LUWZX9pPpZLVuzgAz85sJk6tgKDaXKqc2Fhp91x-E6c,963
|
|
209
227
|
sknetwork/data/tests/test_base.py,sha256=b-0CM1ResLoJXg6-jGmBWFii5JtZrXAhfYiAG70dW1w,312
|
|
210
228
|
sknetwork/data/tests/test_load.py,sha256=9EXkw2TbDAUmpwE-kUTgxZieB4XDLF5drLVvyugX96M,3550
|
|
211
|
-
scikit_network-0.33.0.dist-info/RECORD,,
|
|
212
|
-
scikit_network-0.33.0.dist-info/LICENSE,sha256=zKbJMpbSKgGEUaNr_fKgvJrvw_3W4gnJs5XdLCK5Sxo,1622
|
|
213
|
-
scikit_network-0.33.0.dist-info/WHEEL,sha256=9pNdQPFvBqtyjygr-ufETb3aWCkPwzIHIZFTeqcm3gw,107
|
|
214
|
-
scikit_network-0.33.0.dist-info/AUTHORS.rst,sha256=MIEWJmfpIVmBPo03Xl_6j8kg7cjXicp9WVRQpuVDj9o,923
|
|
215
|
-
scikit_network-0.33.0.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
|
|
216
|
-
scikit_network-0.33.0.dist-info/METADATA,sha256=KSryYoew7nGXScWKHnpxhItQbesZ7N1FBL7mKyZMg_U,14471
|
|
@@ -55,7 +55,7 @@ class DiffusionClassifier(BaseClassifier):
|
|
|
55
55
|
>>> labels_true = graph.labels
|
|
56
56
|
>>> labels = {0: labels_true[0], 33: labels_true[33]}
|
|
57
57
|
>>> labels_pred = diffusion.fit_predict(adjacency, labels)
|
|
58
|
-
>>> round(np.mean(labels_pred == labels_true), 2)
|
|
58
|
+
>>> float(round(np.mean(labels_pred == labels_true), 2))
|
|
59
59
|
0.97
|
|
60
60
|
|
|
61
61
|
References
|
sknetwork/classification/knn.py
CHANGED
|
@@ -55,7 +55,7 @@ class NNClassifier(BaseClassifier):
|
|
|
55
55
|
>>> labels_true = graph.labels
|
|
56
56
|
>>> labels = {0: labels_true[0], 33: labels_true[33]}
|
|
57
57
|
>>> labels_pred = classifier.fit_predict(adjacency, labels)
|
|
58
|
-
>>> round(np.mean(labels_pred == labels_true), 2)
|
|
58
|
+
>>> float(round(np.mean(labels_pred == labels_true), 2))
|
|
59
59
|
0.82
|
|
60
60
|
"""
|
|
61
61
|
def __init__(self, n_neighbors: int = 3, embedding_method: Optional[BaseEmbedding] = None, normalize: bool = True):
|
|
@@ -34,7 +34,7 @@ def get_accuracy_score(labels_true: np.ndarray, labels_pred: np.ndarray) -> floa
|
|
|
34
34
|
>>> import numpy as np
|
|
35
35
|
>>> labels_true = np.array([0, 0, 1, 1])
|
|
36
36
|
>>> labels_pred = np.array([0, 0, 0, 1])
|
|
37
|
-
>>> round(get_accuracy_score(labels_true, labels_pred), 2)
|
|
37
|
+
>>> float(round(get_accuracy_score(labels_true, labels_pred), 2))
|
|
38
38
|
0.75
|
|
39
39
|
"""
|
|
40
40
|
check_vector_format(labels_true, labels_pred)
|
|
@@ -105,7 +105,7 @@ def get_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, return_precis
|
|
|
105
105
|
>>> import numpy as np
|
|
106
106
|
>>> labels_true = np.array([0, 0, 1, 1])
|
|
107
107
|
>>> labels_pred = np.array([0, 0, 0, 1])
|
|
108
|
-
>>> round(get_f1_score(labels_true, labels_pred), 2)
|
|
108
|
+
>>> float(round(get_f1_score(labels_true, labels_pred), 2))
|
|
109
109
|
0.67
|
|
110
110
|
"""
|
|
111
111
|
values = set(labels_true[labels_true >= 0]) | set(labels_pred[labels_pred >= 0])
|
|
@@ -188,7 +188,7 @@ def get_average_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, avera
|
|
|
188
188
|
>>> import numpy as np
|
|
189
189
|
>>> labels_true = np.array([0, 0, 1, 1])
|
|
190
190
|
>>> labels_pred = np.array([0, 0, 0, 1])
|
|
191
|
-
>>> round(get_average_f1_score(labels_true, labels_pred), 2)
|
|
191
|
+
>>> float(round(get_average_f1_score(labels_true, labels_pred), 2))
|
|
192
192
|
0.73
|
|
193
193
|
"""
|
|
194
194
|
if average == 'micro':
|
|
@@ -51,7 +51,7 @@ class PageRankClassifier(RankClassifier):
|
|
|
51
51
|
>>> labels_true = graph.labels
|
|
52
52
|
>>> labels = {0: labels_true[0], 33: labels_true[33]}
|
|
53
53
|
>>> labels_pred = pagerank.fit_predict(adjacency, labels)
|
|
54
|
-
>>> np.round(np.mean(labels_pred == labels_true), 2)
|
|
54
|
+
>>> float(np.round(np.mean(labels_pred == labels_true), 2))
|
|
55
55
|
0.97
|
|
56
56
|
|
|
57
57
|
References
|
|
@@ -58,7 +58,7 @@ class Propagation(BaseClassifier):
|
|
|
58
58
|
>>> labels_true = graph.labels
|
|
59
59
|
>>> labels = {0: labels_true[0], 33: labels_true[33]}
|
|
60
60
|
>>> labels_pred = propagation.fit_predict(adjacency, labels)
|
|
61
|
-
>>> np.round(np.mean(labels_pred == labels_true), 2)
|
|
61
|
+
>>> float(np.round(np.mean(labels_pred == labels_true), 2))
|
|
62
62
|
0.94
|
|
63
63
|
|
|
64
64
|
References
|