scikit-network 0.33.0__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- scikit_network-0.33.0.dist-info/AUTHORS.rst +43 -0
- scikit_network-0.33.0.dist-info/LICENSE +34 -0
- scikit_network-0.33.0.dist-info/METADATA +517 -0
- scikit_network-0.33.0.dist-info/RECORD +228 -0
- scikit_network-0.33.0.dist-info/WHEEL +5 -0
- scikit_network-0.33.0.dist-info/top_level.txt +1 -0
- sknetwork/__init__.py +21 -0
- sknetwork/base.py +67 -0
- sknetwork/classification/__init__.py +8 -0
- sknetwork/classification/base.py +142 -0
- sknetwork/classification/base_rank.py +133 -0
- sknetwork/classification/diffusion.py +134 -0
- sknetwork/classification/knn.py +139 -0
- sknetwork/classification/metrics.py +205 -0
- sknetwork/classification/pagerank.py +66 -0
- sknetwork/classification/propagation.py +152 -0
- sknetwork/classification/tests/__init__.py +1 -0
- sknetwork/classification/tests/test_API.py +30 -0
- sknetwork/classification/tests/test_diffusion.py +77 -0
- sknetwork/classification/tests/test_knn.py +23 -0
- sknetwork/classification/tests/test_metrics.py +53 -0
- sknetwork/classification/tests/test_pagerank.py +20 -0
- sknetwork/classification/tests/test_propagation.py +24 -0
- sknetwork/classification/vote.cp312-win_amd64.pyd +0 -0
- sknetwork/classification/vote.cpp +27577 -0
- sknetwork/classification/vote.pyx +56 -0
- sknetwork/clustering/__init__.py +8 -0
- sknetwork/clustering/base.py +172 -0
- sknetwork/clustering/kcenters.py +253 -0
- sknetwork/clustering/leiden.py +242 -0
- sknetwork/clustering/leiden_core.cp312-win_amd64.pyd +0 -0
- sknetwork/clustering/leiden_core.cpp +31564 -0
- sknetwork/clustering/leiden_core.pyx +124 -0
- sknetwork/clustering/louvain.py +286 -0
- sknetwork/clustering/louvain_core.cp312-win_amd64.pyd +0 -0
- sknetwork/clustering/louvain_core.cpp +31209 -0
- sknetwork/clustering/louvain_core.pyx +124 -0
- sknetwork/clustering/metrics.py +91 -0
- sknetwork/clustering/postprocess.py +66 -0
- sknetwork/clustering/propagation_clustering.py +104 -0
- sknetwork/clustering/tests/__init__.py +1 -0
- sknetwork/clustering/tests/test_API.py +38 -0
- sknetwork/clustering/tests/test_kcenters.py +60 -0
- sknetwork/clustering/tests/test_leiden.py +34 -0
- sknetwork/clustering/tests/test_louvain.py +129 -0
- sknetwork/clustering/tests/test_metrics.py +50 -0
- sknetwork/clustering/tests/test_postprocess.py +39 -0
- sknetwork/data/__init__.py +6 -0
- sknetwork/data/base.py +33 -0
- sknetwork/data/load.py +406 -0
- sknetwork/data/models.py +459 -0
- sknetwork/data/parse.py +644 -0
- sknetwork/data/test_graphs.py +84 -0
- sknetwork/data/tests/__init__.py +1 -0
- sknetwork/data/tests/test_API.py +30 -0
- sknetwork/data/tests/test_base.py +14 -0
- sknetwork/data/tests/test_load.py +95 -0
- sknetwork/data/tests/test_models.py +52 -0
- sknetwork/data/tests/test_parse.py +250 -0
- sknetwork/data/tests/test_test_graphs.py +29 -0
- sknetwork/data/tests/test_toy_graphs.py +68 -0
- sknetwork/data/timeout.py +38 -0
- sknetwork/data/toy_graphs.py +611 -0
- sknetwork/embedding/__init__.py +8 -0
- sknetwork/embedding/base.py +94 -0
- sknetwork/embedding/force_atlas.py +198 -0
- sknetwork/embedding/louvain_embedding.py +148 -0
- sknetwork/embedding/random_projection.py +135 -0
- sknetwork/embedding/spectral.py +141 -0
- sknetwork/embedding/spring.py +198 -0
- sknetwork/embedding/svd.py +359 -0
- sknetwork/embedding/tests/__init__.py +1 -0
- sknetwork/embedding/tests/test_API.py +49 -0
- sknetwork/embedding/tests/test_force_atlas.py +35 -0
- sknetwork/embedding/tests/test_louvain_embedding.py +33 -0
- sknetwork/embedding/tests/test_random_projection.py +28 -0
- sknetwork/embedding/tests/test_spectral.py +81 -0
- sknetwork/embedding/tests/test_spring.py +50 -0
- sknetwork/embedding/tests/test_svd.py +43 -0
- sknetwork/gnn/__init__.py +10 -0
- sknetwork/gnn/activation.py +117 -0
- sknetwork/gnn/base.py +181 -0
- sknetwork/gnn/base_activation.py +89 -0
- sknetwork/gnn/base_layer.py +109 -0
- sknetwork/gnn/gnn_classifier.py +305 -0
- sknetwork/gnn/layer.py +153 -0
- sknetwork/gnn/loss.py +180 -0
- sknetwork/gnn/neighbor_sampler.py +65 -0
- sknetwork/gnn/optimizer.py +164 -0
- sknetwork/gnn/tests/__init__.py +1 -0
- sknetwork/gnn/tests/test_activation.py +56 -0
- sknetwork/gnn/tests/test_base.py +75 -0
- sknetwork/gnn/tests/test_base_layer.py +37 -0
- sknetwork/gnn/tests/test_gnn_classifier.py +130 -0
- sknetwork/gnn/tests/test_layers.py +80 -0
- sknetwork/gnn/tests/test_loss.py +33 -0
- sknetwork/gnn/tests/test_neigh_sampler.py +23 -0
- sknetwork/gnn/tests/test_optimizer.py +43 -0
- sknetwork/gnn/tests/test_utils.py +41 -0
- sknetwork/gnn/utils.py +127 -0
- sknetwork/hierarchy/__init__.py +6 -0
- sknetwork/hierarchy/base.py +96 -0
- sknetwork/hierarchy/louvain_hierarchy.py +272 -0
- sknetwork/hierarchy/metrics.py +234 -0
- sknetwork/hierarchy/paris.cp312-win_amd64.pyd +0 -0
- sknetwork/hierarchy/paris.cpp +37264 -0
- sknetwork/hierarchy/paris.pyx +316 -0
- sknetwork/hierarchy/postprocess.py +350 -0
- sknetwork/hierarchy/tests/__init__.py +1 -0
- sknetwork/hierarchy/tests/test_API.py +24 -0
- sknetwork/hierarchy/tests/test_algos.py +34 -0
- sknetwork/hierarchy/tests/test_metrics.py +62 -0
- sknetwork/hierarchy/tests/test_postprocess.py +57 -0
- sknetwork/linalg/__init__.py +9 -0
- sknetwork/linalg/basics.py +37 -0
- sknetwork/linalg/diteration.cp312-win_amd64.pyd +0 -0
- sknetwork/linalg/diteration.cpp +27393 -0
- sknetwork/linalg/diteration.pyx +47 -0
- sknetwork/linalg/eig_solver.py +93 -0
- sknetwork/linalg/laplacian.py +15 -0
- sknetwork/linalg/normalizer.py +86 -0
- sknetwork/linalg/operators.py +225 -0
- sknetwork/linalg/polynome.py +76 -0
- sknetwork/linalg/ppr_solver.py +170 -0
- sknetwork/linalg/push.cp312-win_amd64.pyd +0 -0
- sknetwork/linalg/push.cpp +30474 -0
- sknetwork/linalg/push.pyx +71 -0
- sknetwork/linalg/sparse_lowrank.py +142 -0
- sknetwork/linalg/svd_solver.py +91 -0
- sknetwork/linalg/tests/__init__.py +1 -0
- sknetwork/linalg/tests/test_eig.py +44 -0
- sknetwork/linalg/tests/test_laplacian.py +18 -0
- sknetwork/linalg/tests/test_normalization.py +34 -0
- sknetwork/linalg/tests/test_operators.py +66 -0
- sknetwork/linalg/tests/test_polynome.py +38 -0
- sknetwork/linalg/tests/test_ppr.py +50 -0
- sknetwork/linalg/tests/test_sparse_lowrank.py +61 -0
- sknetwork/linalg/tests/test_svd.py +38 -0
- sknetwork/linkpred/__init__.py +2 -0
- sknetwork/linkpred/base.py +46 -0
- sknetwork/linkpred/nn.py +126 -0
- sknetwork/linkpred/tests/__init__.py +1 -0
- sknetwork/linkpred/tests/test_nn.py +27 -0
- sknetwork/log.py +19 -0
- sknetwork/path/__init__.py +5 -0
- sknetwork/path/dag.py +54 -0
- sknetwork/path/distances.py +98 -0
- sknetwork/path/search.py +31 -0
- sknetwork/path/shortest_path.py +61 -0
- sknetwork/path/tests/__init__.py +1 -0
- sknetwork/path/tests/test_dag.py +37 -0
- sknetwork/path/tests/test_distances.py +62 -0
- sknetwork/path/tests/test_search.py +40 -0
- sknetwork/path/tests/test_shortest_path.py +40 -0
- sknetwork/ranking/__init__.py +8 -0
- sknetwork/ranking/base.py +61 -0
- sknetwork/ranking/betweenness.cp312-win_amd64.pyd +0 -0
- sknetwork/ranking/betweenness.cpp +9701 -0
- sknetwork/ranking/betweenness.pyx +97 -0
- sknetwork/ranking/closeness.py +92 -0
- sknetwork/ranking/hits.py +94 -0
- sknetwork/ranking/katz.py +83 -0
- sknetwork/ranking/pagerank.py +110 -0
- sknetwork/ranking/postprocess.py +37 -0
- sknetwork/ranking/tests/__init__.py +1 -0
- sknetwork/ranking/tests/test_API.py +32 -0
- sknetwork/ranking/tests/test_betweenness.py +38 -0
- sknetwork/ranking/tests/test_closeness.py +30 -0
- sknetwork/ranking/tests/test_hits.py +20 -0
- sknetwork/ranking/tests/test_pagerank.py +62 -0
- sknetwork/ranking/tests/test_postprocess.py +26 -0
- sknetwork/regression/__init__.py +4 -0
- sknetwork/regression/base.py +61 -0
- sknetwork/regression/diffusion.py +210 -0
- sknetwork/regression/tests/__init__.py +1 -0
- sknetwork/regression/tests/test_API.py +32 -0
- sknetwork/regression/tests/test_diffusion.py +56 -0
- sknetwork/sknetwork.py +3 -0
- sknetwork/test_base.py +35 -0
- sknetwork/test_log.py +15 -0
- sknetwork/topology/__init__.py +8 -0
- sknetwork/topology/cliques.cp312-win_amd64.pyd +0 -0
- sknetwork/topology/cliques.cpp +31964 -0
- sknetwork/topology/cliques.pyx +149 -0
- sknetwork/topology/core.cp312-win_amd64.pyd +0 -0
- sknetwork/topology/core.cpp +30053 -0
- sknetwork/topology/core.pyx +90 -0
- sknetwork/topology/cycles.py +243 -0
- sknetwork/topology/minheap.cp312-win_amd64.pyd +0 -0
- sknetwork/topology/minheap.cpp +27322 -0
- sknetwork/topology/minheap.pxd +20 -0
- sknetwork/topology/minheap.pyx +109 -0
- sknetwork/topology/structure.py +194 -0
- sknetwork/topology/tests/__init__.py +1 -0
- sknetwork/topology/tests/test_cliques.py +28 -0
- sknetwork/topology/tests/test_core.py +19 -0
- sknetwork/topology/tests/test_cycles.py +65 -0
- sknetwork/topology/tests/test_structure.py +85 -0
- sknetwork/topology/tests/test_triangles.py +38 -0
- sknetwork/topology/tests/test_wl.py +72 -0
- sknetwork/topology/triangles.cp312-win_amd64.pyd +0 -0
- sknetwork/topology/triangles.cpp +8889 -0
- sknetwork/topology/triangles.pyx +151 -0
- sknetwork/topology/weisfeiler_lehman.py +133 -0
- sknetwork/topology/weisfeiler_lehman_core.cp312-win_amd64.pyd +0 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +27628 -0
- sknetwork/topology/weisfeiler_lehman_core.pyx +114 -0
- sknetwork/utils/__init__.py +7 -0
- sknetwork/utils/check.py +355 -0
- sknetwork/utils/format.py +221 -0
- sknetwork/utils/membership.py +82 -0
- sknetwork/utils/neighbors.py +115 -0
- sknetwork/utils/tests/__init__.py +1 -0
- sknetwork/utils/tests/test_check.py +190 -0
- sknetwork/utils/tests/test_format.py +63 -0
- sknetwork/utils/tests/test_membership.py +24 -0
- sknetwork/utils/tests/test_neighbors.py +41 -0
- sknetwork/utils/tests/test_tfidf.py +18 -0
- sknetwork/utils/tests/test_values.py +66 -0
- sknetwork/utils/tfidf.py +37 -0
- sknetwork/utils/values.py +76 -0
- sknetwork/visualization/__init__.py +4 -0
- sknetwork/visualization/colors.py +34 -0
- sknetwork/visualization/dendrograms.py +277 -0
- sknetwork/visualization/graphs.py +1039 -0
- sknetwork/visualization/tests/__init__.py +1 -0
- sknetwork/visualization/tests/test_dendrograms.py +53 -0
- sknetwork/visualization/tests/test_graphs.py +176 -0
|
@@ -0,0 +1 @@
|
|
|
1
|
+
"""tests for classification"""
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""Tests for classification API"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
from sknetwork.classification import *
|
|
8
|
+
from sknetwork.data.test_graphs import *
|
|
9
|
+
from sknetwork.embedding import LouvainEmbedding
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class TestClassificationAPI(unittest.TestCase):
|
|
13
|
+
|
|
14
|
+
def test_undirected(self):
|
|
15
|
+
for adjacency in [test_graph(), test_digraph()]:
|
|
16
|
+
n = adjacency.shape[0]
|
|
17
|
+
seeds_array = -np.ones(n)
|
|
18
|
+
seeds_array[:2] = np.arange(2)
|
|
19
|
+
seeds_dict = {0: 0, 1: 1}
|
|
20
|
+
|
|
21
|
+
classifiers = [PageRankClassifier(), DiffusionClassifier(),
|
|
22
|
+
NNClassifier(embedding_method=LouvainEmbedding(), n_neighbors=1), Propagation()]
|
|
23
|
+
|
|
24
|
+
for algo in classifiers:
|
|
25
|
+
labels1 = algo.fit_predict(adjacency, seeds_array)
|
|
26
|
+
labels2 = algo.fit_predict(adjacency, seeds_dict)
|
|
27
|
+
self.assertTrue((labels1 == labels2).all())
|
|
28
|
+
self.assertEqual(labels2.shape, (n,))
|
|
29
|
+
membership = algo.fit_transform(adjacency, seeds_array)
|
|
30
|
+
self.assertTupleEqual(membership.shape, (n, 2))
|
|
@@ -0,0 +1,77 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""Tests for DiffusionClassifier"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
from sknetwork.classification import DiffusionClassifier
|
|
8
|
+
from sknetwork.data.test_graphs import *
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class TestDiffusionClassifier(unittest.TestCase):
|
|
12
|
+
|
|
13
|
+
def test_graph(self):
|
|
14
|
+
adjacency = test_graph()
|
|
15
|
+
n_nodes = adjacency.shape[0]
|
|
16
|
+
labels = {0: 0, 1: 1}
|
|
17
|
+
algo = DiffusionClassifier()
|
|
18
|
+
algo.fit(adjacency, labels=labels)
|
|
19
|
+
self.assertTrue(len(algo.labels_) == n_nodes)
|
|
20
|
+
adjacency = test_digraph()
|
|
21
|
+
algo = DiffusionClassifier(centering=False)
|
|
22
|
+
algo.fit(adjacency, labels=labels)
|
|
23
|
+
self.assertTrue(len(algo.labels_) == n_nodes)
|
|
24
|
+
with self.assertRaises(ValueError):
|
|
25
|
+
DiffusionClassifier(n_iter=0)
|
|
26
|
+
algo = DiffusionClassifier(centering=True, scale=10)
|
|
27
|
+
probs = algo.fit_predict_proba(adjacency, labels=labels)[:, 1]
|
|
28
|
+
self.assertTrue(max(probs) > 0.99)
|
|
29
|
+
|
|
30
|
+
def test_bipartite(self):
|
|
31
|
+
biadjacency = test_bigraph()
|
|
32
|
+
n_row, n_col = biadjacency.shape
|
|
33
|
+
labels_row = {0: 0, 1: 1}
|
|
34
|
+
labels_col = {5: 1}
|
|
35
|
+
algo = DiffusionClassifier()
|
|
36
|
+
algo.fit(biadjacency, labels_row=labels_row, labels_col=labels_col)
|
|
37
|
+
self.assertTrue(len(algo.labels_row_) == n_row)
|
|
38
|
+
self.assertTrue(len(algo.labels_col_) == n_col)
|
|
39
|
+
self.assertTrue(all(algo.labels_col_ == algo.predict(columns=True)))
|
|
40
|
+
|
|
41
|
+
def test_predict(self):
|
|
42
|
+
adjacency = test_graph()
|
|
43
|
+
n_nodes = adjacency.shape[0]
|
|
44
|
+
labels = {0: 0, 1: 1}
|
|
45
|
+
algo = DiffusionClassifier()
|
|
46
|
+
labels_pred = algo.fit_predict(adjacency, labels=labels)
|
|
47
|
+
self.assertTrue(len(labels_pred) == n_nodes)
|
|
48
|
+
probs_pred = algo.fit_predict_proba(adjacency, labels=labels)
|
|
49
|
+
self.assertTrue(probs_pred.shape == (n_nodes, 2))
|
|
50
|
+
membership = algo.fit_transform(adjacency, labels=labels)
|
|
51
|
+
self.assertTrue(membership.shape == (n_nodes, 2))
|
|
52
|
+
|
|
53
|
+
biadjacency = test_bigraph()
|
|
54
|
+
n_row, n_col = biadjacency.shape
|
|
55
|
+
labels_row = {0: 0, 1: 1}
|
|
56
|
+
algo = DiffusionClassifier()
|
|
57
|
+
labels_pred = algo.fit_predict(biadjacency, labels_row=labels_row)
|
|
58
|
+
self.assertTrue(len(labels_pred) == n_row)
|
|
59
|
+
labels_pred = algo.predict(columns=True)
|
|
60
|
+
self.assertTrue(len(labels_pred) == n_col)
|
|
61
|
+
probs_pred = algo.fit_predict_proba(biadjacency, labels_row=labels_row)
|
|
62
|
+
self.assertTrue(probs_pred.shape == (n_row, 2))
|
|
63
|
+
probs_pred = algo.predict_proba(columns=True)
|
|
64
|
+
self.assertTrue(probs_pred.shape == (n_col, 2))
|
|
65
|
+
membership = algo.fit_transform(biadjacency, labels_row=labels_row)
|
|
66
|
+
self.assertTrue(membership.shape == (n_row, 2))
|
|
67
|
+
membership = algo.transform(columns=True)
|
|
68
|
+
self.assertTrue(membership.shape == (n_col, 2))
|
|
69
|
+
|
|
70
|
+
def test_reindex_label(self):
|
|
71
|
+
adjacency = test_graph()
|
|
72
|
+
n_nodes = adjacency.shape[0]
|
|
73
|
+
labels = {0: 0, 1: 2, 2: 3}
|
|
74
|
+
algo = DiffusionClassifier()
|
|
75
|
+
labels_pred = algo.fit_predict(adjacency, labels=labels)
|
|
76
|
+
self.assertTrue(len(labels_pred) == n_nodes)
|
|
77
|
+
self.assertTrue(set(list(labels_pred)) == {0, 2, 3})
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""Tests for KNN"""
|
|
4
|
+
import unittest
|
|
5
|
+
|
|
6
|
+
from sknetwork.classification import NNClassifier
|
|
7
|
+
from sknetwork.data.test_graphs import *
|
|
8
|
+
from sknetwork.embedding import Spectral
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class TestKNNClassifier(unittest.TestCase):
|
|
12
|
+
|
|
13
|
+
def test_classification(self):
|
|
14
|
+
for adjacency in [test_graph(), test_digraph(), test_bigraph()]:
|
|
15
|
+
labels = {0: 0, 1: 1}
|
|
16
|
+
|
|
17
|
+
algo = NNClassifier(n_neighbors=1)
|
|
18
|
+
labels_pred = algo.fit_predict(adjacency, labels)
|
|
19
|
+
self.assertTrue(len(set(labels_pred)) == 2)
|
|
20
|
+
|
|
21
|
+
algo = NNClassifier(n_neighbors=1, embedding_method=Spectral(2), normalize=False)
|
|
22
|
+
labels_pred = algo.fit_predict(adjacency, labels)
|
|
23
|
+
self.assertTrue(len(set(labels_pred)) == 2)
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""Tests for classification metrics"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
from sknetwork.classification.metrics import *
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestMetrics(unittest.TestCase):
|
|
11
|
+
|
|
12
|
+
def setUp(self) -> None:
|
|
13
|
+
self.labels_true = np.array([0, 1, 1, 2, 2, -1])
|
|
14
|
+
self.labels_pred1 = np.array([0, -1, 1, 2, 0, 0])
|
|
15
|
+
self.labels_pred2 = np.array([-1, -1, -1, -1, -1, 0])
|
|
16
|
+
|
|
17
|
+
def test_accuracy(self):
|
|
18
|
+
self.assertEqual(get_accuracy_score(self.labels_true, self.labels_pred1), 0.75)
|
|
19
|
+
with self.assertRaises(ValueError):
|
|
20
|
+
get_accuracy_score(self.labels_true, self.labels_pred2)
|
|
21
|
+
|
|
22
|
+
def test_confusion(self):
|
|
23
|
+
confusion = get_confusion_matrix(self.labels_true, self.labels_pred1)
|
|
24
|
+
self.assertEqual(confusion.data.sum(), 4)
|
|
25
|
+
self.assertEqual(confusion.diagonal().sum(), 3)
|
|
26
|
+
with self.assertRaises(ValueError):
|
|
27
|
+
get_accuracy_score(self.labels_true, self.labels_pred2)
|
|
28
|
+
|
|
29
|
+
def test_f1_score(self):
|
|
30
|
+
f1_score = get_f1_score(np.array([0, 0, 1]), np.array([0, 1, 1]))
|
|
31
|
+
self.assertAlmostEqual(f1_score, 0.67, 2)
|
|
32
|
+
with self.assertRaises(ValueError):
|
|
33
|
+
get_f1_score(self.labels_true, self.labels_pred1)
|
|
34
|
+
|
|
35
|
+
def test_f1_scores(self):
|
|
36
|
+
f1_scores = get_f1_scores(self.labels_true, self.labels_pred1)
|
|
37
|
+
self.assertAlmostEqual(min(f1_scores), 0.67, 2)
|
|
38
|
+
f1_scores, precisions, recalls = get_f1_scores(self.labels_true, self.labels_pred1, True)
|
|
39
|
+
self.assertAlmostEqual(min(f1_scores), 0.67, 2)
|
|
40
|
+
self.assertAlmostEqual(min(precisions), 0.5, 2)
|
|
41
|
+
self.assertAlmostEqual(min(recalls), 0.5, 2)
|
|
42
|
+
with self.assertRaises(ValueError):
|
|
43
|
+
get_f1_scores(self.labels_true, self.labels_pred2)
|
|
44
|
+
|
|
45
|
+
def test_average_f1_score(self):
|
|
46
|
+
f1_score = get_average_f1_score(self.labels_true, self.labels_pred1)
|
|
47
|
+
self.assertAlmostEqual(f1_score, 0.78, 2)
|
|
48
|
+
f1_score = get_average_f1_score(self.labels_true, self.labels_pred1, average='micro')
|
|
49
|
+
self.assertEqual(f1_score, 0.75)
|
|
50
|
+
f1_score = get_average_f1_score(self.labels_true, self.labels_pred1, average='weighted')
|
|
51
|
+
self.assertEqual(f1_score, 0.80)
|
|
52
|
+
with self.assertRaises(ValueError):
|
|
53
|
+
get_average_f1_score(self.labels_true, self.labels_pred2, 'toto')
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""Tests for PageRankClassifier"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
from sknetwork.classification import PageRankClassifier
|
|
8
|
+
from sknetwork.data.test_graphs import *
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class TestPageRankClassifier(unittest.TestCase):
|
|
12
|
+
|
|
13
|
+
def test_solvers(self):
|
|
14
|
+
adjacency = test_graph()
|
|
15
|
+
labels = {0: 0, 1: 1}
|
|
16
|
+
|
|
17
|
+
ref = PageRankClassifier(solver='piteration').fit_predict(adjacency, labels)
|
|
18
|
+
for solver in ['lanczos', 'bicgstab']:
|
|
19
|
+
labels_pred = PageRankClassifier(solver=solver).fit_predict(adjacency, labels)
|
|
20
|
+
self.assertTrue((ref == labels_pred).all())
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""Tests for label propagation"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
from sknetwork.classification import Propagation
|
|
8
|
+
from sknetwork.data.test_graphs import *
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class TestLabelPropagation(unittest.TestCase):
|
|
12
|
+
|
|
13
|
+
def test_algo(self):
|
|
14
|
+
for adjacency in [test_graph(), test_digraph(), test_bigraph()]:
|
|
15
|
+
n = adjacency.shape[0]
|
|
16
|
+
labels = {0: 0, 1: 1}
|
|
17
|
+
propagation = Propagation(n_iter=3, weighted=False)
|
|
18
|
+
labels_pred = propagation.fit_predict(adjacency, labels)
|
|
19
|
+
self.assertEqual(labels_pred.shape, (n,))
|
|
20
|
+
|
|
21
|
+
for order in ['random', 'decreasing', 'increasing']:
|
|
22
|
+
propagation = Propagation(node_order=order)
|
|
23
|
+
labels_pred = propagation.fit_predict(adjacency, labels)
|
|
24
|
+
self.assertEqual(labels_pred.shape, (n,))
|
|
Binary file
|