scikit-network 0.33.0__cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- scikit_network-0.33.0.dist-info/AUTHORS.rst +43 -0
- scikit_network-0.33.0.dist-info/LICENSE +34 -0
- scikit_network-0.33.0.dist-info/METADATA +517 -0
- scikit_network-0.33.0.dist-info/RECORD +217 -0
- scikit_network-0.33.0.dist-info/WHEEL +6 -0
- scikit_network-0.33.0.dist-info/top_level.txt +1 -0
- scikit_network.libs/libgomp-a34b3233.so.1.0.0 +0 -0
- sknetwork/__init__.py +21 -0
- sknetwork/base.py +67 -0
- sknetwork/classification/__init__.py +8 -0
- sknetwork/classification/base.py +142 -0
- sknetwork/classification/base_rank.py +133 -0
- sknetwork/classification/diffusion.py +134 -0
- sknetwork/classification/knn.py +139 -0
- sknetwork/classification/metrics.py +205 -0
- sknetwork/classification/pagerank.py +66 -0
- sknetwork/classification/propagation.py +152 -0
- sknetwork/classification/tests/__init__.py +1 -0
- sknetwork/classification/tests/test_API.py +30 -0
- sknetwork/classification/tests/test_diffusion.py +77 -0
- sknetwork/classification/tests/test_knn.py +23 -0
- sknetwork/classification/tests/test_metrics.py +53 -0
- sknetwork/classification/tests/test_pagerank.py +20 -0
- sknetwork/classification/tests/test_propagation.py +24 -0
- sknetwork/classification/vote.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/classification/vote.pyx +56 -0
- sknetwork/clustering/__init__.py +8 -0
- sknetwork/clustering/base.py +172 -0
- sknetwork/clustering/kcenters.py +253 -0
- sknetwork/clustering/leiden.py +242 -0
- sknetwork/clustering/leiden_core.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/clustering/leiden_core.pyx +124 -0
- sknetwork/clustering/louvain.py +286 -0
- sknetwork/clustering/louvain_core.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/clustering/louvain_core.pyx +124 -0
- sknetwork/clustering/metrics.py +91 -0
- sknetwork/clustering/postprocess.py +66 -0
- sknetwork/clustering/propagation_clustering.py +104 -0
- sknetwork/clustering/tests/__init__.py +1 -0
- sknetwork/clustering/tests/test_API.py +38 -0
- sknetwork/clustering/tests/test_kcenters.py +60 -0
- sknetwork/clustering/tests/test_leiden.py +34 -0
- sknetwork/clustering/tests/test_louvain.py +129 -0
- sknetwork/clustering/tests/test_metrics.py +50 -0
- sknetwork/clustering/tests/test_postprocess.py +39 -0
- sknetwork/data/__init__.py +6 -0
- sknetwork/data/base.py +33 -0
- sknetwork/data/load.py +406 -0
- sknetwork/data/models.py +459 -0
- sknetwork/data/parse.py +644 -0
- sknetwork/data/test_graphs.py +84 -0
- sknetwork/data/tests/__init__.py +1 -0
- sknetwork/data/tests/test_API.py +30 -0
- sknetwork/data/tests/test_base.py +14 -0
- sknetwork/data/tests/test_load.py +95 -0
- sknetwork/data/tests/test_models.py +52 -0
- sknetwork/data/tests/test_parse.py +250 -0
- sknetwork/data/tests/test_test_graphs.py +29 -0
- sknetwork/data/tests/test_toy_graphs.py +68 -0
- sknetwork/data/timeout.py +38 -0
- sknetwork/data/toy_graphs.py +611 -0
- sknetwork/embedding/__init__.py +8 -0
- sknetwork/embedding/base.py +94 -0
- sknetwork/embedding/force_atlas.py +198 -0
- sknetwork/embedding/louvain_embedding.py +148 -0
- sknetwork/embedding/random_projection.py +135 -0
- sknetwork/embedding/spectral.py +141 -0
- sknetwork/embedding/spring.py +198 -0
- sknetwork/embedding/svd.py +359 -0
- sknetwork/embedding/tests/__init__.py +1 -0
- sknetwork/embedding/tests/test_API.py +49 -0
- sknetwork/embedding/tests/test_force_atlas.py +35 -0
- sknetwork/embedding/tests/test_louvain_embedding.py +33 -0
- sknetwork/embedding/tests/test_random_projection.py +28 -0
- sknetwork/embedding/tests/test_spectral.py +81 -0
- sknetwork/embedding/tests/test_spring.py +50 -0
- sknetwork/embedding/tests/test_svd.py +43 -0
- sknetwork/gnn/__init__.py +10 -0
- sknetwork/gnn/activation.py +117 -0
- sknetwork/gnn/base.py +181 -0
- sknetwork/gnn/base_activation.py +89 -0
- sknetwork/gnn/base_layer.py +109 -0
- sknetwork/gnn/gnn_classifier.py +305 -0
- sknetwork/gnn/layer.py +153 -0
- sknetwork/gnn/loss.py +180 -0
- sknetwork/gnn/neighbor_sampler.py +65 -0
- sknetwork/gnn/optimizer.py +164 -0
- sknetwork/gnn/tests/__init__.py +1 -0
- sknetwork/gnn/tests/test_activation.py +56 -0
- sknetwork/gnn/tests/test_base.py +75 -0
- sknetwork/gnn/tests/test_base_layer.py +37 -0
- sknetwork/gnn/tests/test_gnn_classifier.py +130 -0
- sknetwork/gnn/tests/test_layers.py +80 -0
- sknetwork/gnn/tests/test_loss.py +33 -0
- sknetwork/gnn/tests/test_neigh_sampler.py +23 -0
- sknetwork/gnn/tests/test_optimizer.py +43 -0
- sknetwork/gnn/tests/test_utils.py +41 -0
- sknetwork/gnn/utils.py +127 -0
- sknetwork/hierarchy/__init__.py +6 -0
- sknetwork/hierarchy/base.py +96 -0
- sknetwork/hierarchy/louvain_hierarchy.py +272 -0
- sknetwork/hierarchy/metrics.py +234 -0
- sknetwork/hierarchy/paris.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/hierarchy/paris.pyx +316 -0
- sknetwork/hierarchy/postprocess.py +350 -0
- sknetwork/hierarchy/tests/__init__.py +1 -0
- sknetwork/hierarchy/tests/test_API.py +24 -0
- sknetwork/hierarchy/tests/test_algos.py +34 -0
- sknetwork/hierarchy/tests/test_metrics.py +62 -0
- sknetwork/hierarchy/tests/test_postprocess.py +57 -0
- sknetwork/linalg/__init__.py +9 -0
- sknetwork/linalg/basics.py +37 -0
- sknetwork/linalg/diteration.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/linalg/diteration.pyx +47 -0
- sknetwork/linalg/eig_solver.py +93 -0
- sknetwork/linalg/laplacian.py +15 -0
- sknetwork/linalg/normalizer.py +86 -0
- sknetwork/linalg/operators.py +225 -0
- sknetwork/linalg/polynome.py +76 -0
- sknetwork/linalg/ppr_solver.py +170 -0
- sknetwork/linalg/push.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/linalg/push.pyx +71 -0
- sknetwork/linalg/sparse_lowrank.py +142 -0
- sknetwork/linalg/svd_solver.py +91 -0
- sknetwork/linalg/tests/__init__.py +1 -0
- sknetwork/linalg/tests/test_eig.py +44 -0
- sknetwork/linalg/tests/test_laplacian.py +18 -0
- sknetwork/linalg/tests/test_normalization.py +34 -0
- sknetwork/linalg/tests/test_operators.py +66 -0
- sknetwork/linalg/tests/test_polynome.py +38 -0
- sknetwork/linalg/tests/test_ppr.py +50 -0
- sknetwork/linalg/tests/test_sparse_lowrank.py +61 -0
- sknetwork/linalg/tests/test_svd.py +38 -0
- sknetwork/linkpred/__init__.py +2 -0
- sknetwork/linkpred/base.py +46 -0
- sknetwork/linkpred/nn.py +126 -0
- sknetwork/linkpred/tests/__init__.py +1 -0
- sknetwork/linkpred/tests/test_nn.py +27 -0
- sknetwork/log.py +19 -0
- sknetwork/path/__init__.py +5 -0
- sknetwork/path/dag.py +54 -0
- sknetwork/path/distances.py +98 -0
- sknetwork/path/search.py +31 -0
- sknetwork/path/shortest_path.py +61 -0
- sknetwork/path/tests/__init__.py +1 -0
- sknetwork/path/tests/test_dag.py +37 -0
- sknetwork/path/tests/test_distances.py +62 -0
- sknetwork/path/tests/test_search.py +40 -0
- sknetwork/path/tests/test_shortest_path.py +40 -0
- sknetwork/ranking/__init__.py +8 -0
- sknetwork/ranking/base.py +61 -0
- sknetwork/ranking/betweenness.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/ranking/betweenness.pyx +97 -0
- sknetwork/ranking/closeness.py +92 -0
- sknetwork/ranking/hits.py +94 -0
- sknetwork/ranking/katz.py +83 -0
- sknetwork/ranking/pagerank.py +110 -0
- sknetwork/ranking/postprocess.py +37 -0
- sknetwork/ranking/tests/__init__.py +1 -0
- sknetwork/ranking/tests/test_API.py +32 -0
- sknetwork/ranking/tests/test_betweenness.py +38 -0
- sknetwork/ranking/tests/test_closeness.py +30 -0
- sknetwork/ranking/tests/test_hits.py +20 -0
- sknetwork/ranking/tests/test_pagerank.py +62 -0
- sknetwork/ranking/tests/test_postprocess.py +26 -0
- sknetwork/regression/__init__.py +4 -0
- sknetwork/regression/base.py +61 -0
- sknetwork/regression/diffusion.py +210 -0
- sknetwork/regression/tests/__init__.py +1 -0
- sknetwork/regression/tests/test_API.py +32 -0
- sknetwork/regression/tests/test_diffusion.py +56 -0
- sknetwork/sknetwork.py +3 -0
- sknetwork/test_base.py +35 -0
- sknetwork/test_log.py +15 -0
- sknetwork/topology/__init__.py +8 -0
- sknetwork/topology/cliques.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/cliques.pyx +149 -0
- sknetwork/topology/core.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/core.pyx +90 -0
- sknetwork/topology/cycles.py +243 -0
- sknetwork/topology/minheap.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/minheap.pxd +20 -0
- sknetwork/topology/minheap.pyx +109 -0
- sknetwork/topology/structure.py +194 -0
- sknetwork/topology/tests/__init__.py +1 -0
- sknetwork/topology/tests/test_cliques.py +28 -0
- sknetwork/topology/tests/test_core.py +19 -0
- sknetwork/topology/tests/test_cycles.py +65 -0
- sknetwork/topology/tests/test_structure.py +85 -0
- sknetwork/topology/tests/test_triangles.py +38 -0
- sknetwork/topology/tests/test_wl.py +72 -0
- sknetwork/topology/triangles.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/triangles.pyx +151 -0
- sknetwork/topology/weisfeiler_lehman.py +133 -0
- sknetwork/topology/weisfeiler_lehman_core.cpython-312-x86_64-linux-gnu.so +0 -0
- sknetwork/topology/weisfeiler_lehman_core.pyx +114 -0
- sknetwork/utils/__init__.py +7 -0
- sknetwork/utils/check.py +355 -0
- sknetwork/utils/format.py +221 -0
- sknetwork/utils/membership.py +82 -0
- sknetwork/utils/neighbors.py +115 -0
- sknetwork/utils/tests/__init__.py +1 -0
- sknetwork/utils/tests/test_check.py +190 -0
- sknetwork/utils/tests/test_format.py +63 -0
- sknetwork/utils/tests/test_membership.py +24 -0
- sknetwork/utils/tests/test_neighbors.py +41 -0
- sknetwork/utils/tests/test_tfidf.py +18 -0
- sknetwork/utils/tests/test_values.py +66 -0
- sknetwork/utils/tfidf.py +37 -0
- sknetwork/utils/values.py +76 -0
- sknetwork/visualization/__init__.py +4 -0
- sknetwork/visualization/colors.py +34 -0
- sknetwork/visualization/dendrograms.py +277 -0
- sknetwork/visualization/graphs.py +1039 -0
- sknetwork/visualization/tests/__init__.py +1 -0
- sknetwork/visualization/tests/test_dendrograms.py +53 -0
- sknetwork/visualization/tests/test_graphs.py +176 -0
|
@@ -0,0 +1,110 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created in May 2019
|
|
5
|
+
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
|
+
@author: Thomas Bonald <bonald@enst.fr>
|
|
7
|
+
"""
|
|
8
|
+
from typing import Union, Optional
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
from scipy import sparse
|
|
12
|
+
|
|
13
|
+
from sknetwork.linalg.ppr_solver import get_pagerank
|
|
14
|
+
from sknetwork.ranking.base import BaseRanking
|
|
15
|
+
from sknetwork.utils.check import check_damping_factor
|
|
16
|
+
from sknetwork.utils.format import get_adjacency_values
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class PageRank(BaseRanking):
|
|
20
|
+
"""PageRank of each node, corresponding to its frequency of visit by a random walk.
|
|
21
|
+
|
|
22
|
+
The random walk restarts with some fixed probability. The restart distribution can be personalized by the user.
|
|
23
|
+
This variant is known as Personalized PageRank.
|
|
24
|
+
|
|
25
|
+
Parameters
|
|
26
|
+
----------
|
|
27
|
+
damping_factor : float
|
|
28
|
+
Probability to continue the random walk.
|
|
29
|
+
solver : str
|
|
30
|
+
* ``'piteration'``, use power iteration for a given number of iterations.
|
|
31
|
+
* ``'diteration'``, use asynchronous parallel diffusion for a given number of iterations.
|
|
32
|
+
* ``'lanczos'``, use eigensolver with a given tolerance.
|
|
33
|
+
* ``'bicgstab'``, use Biconjugate Gradient Stabilized method for a given tolerance.
|
|
34
|
+
* ``'RH'``, use a Ruffini-Horner polynomial evaluation.
|
|
35
|
+
* ``'push'``, use push-based algorithm for a given tolerance
|
|
36
|
+
n_iter : int
|
|
37
|
+
Number of iterations for some solvers.
|
|
38
|
+
tol : float
|
|
39
|
+
Tolerance for the convergence of some solvers.
|
|
40
|
+
|
|
41
|
+
Attributes
|
|
42
|
+
----------
|
|
43
|
+
scores_ : np.ndarray
|
|
44
|
+
PageRank score of each node.
|
|
45
|
+
scores_row_: np.ndarray
|
|
46
|
+
Scores of rows, for bipartite graphs.
|
|
47
|
+
scores_col_: np.ndarray
|
|
48
|
+
Scores of columns, for bipartite graphs.
|
|
49
|
+
|
|
50
|
+
Example
|
|
51
|
+
-------
|
|
52
|
+
>>> from sknetwork.ranking import PageRank
|
|
53
|
+
>>> from sknetwork.data import house
|
|
54
|
+
>>> pagerank = PageRank()
|
|
55
|
+
>>> adjacency = house()
|
|
56
|
+
>>> weights = {0: 1}
|
|
57
|
+
>>> scores = pagerank.fit_predict(adjacency, weights)
|
|
58
|
+
>>> np.round(scores, 2)
|
|
59
|
+
array([0.29, 0.24, 0.12, 0.12, 0.24])
|
|
60
|
+
|
|
61
|
+
References
|
|
62
|
+
----------
|
|
63
|
+
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web.
|
|
64
|
+
Stanford InfoLab.
|
|
65
|
+
"""
|
|
66
|
+
def __init__(self, damping_factor: float = 0.85, solver: str = 'piteration', n_iter: int = 10, tol: float = 1e-6):
|
|
67
|
+
super(PageRank, self).__init__()
|
|
68
|
+
check_damping_factor(damping_factor)
|
|
69
|
+
self.damping_factor = damping_factor
|
|
70
|
+
self.solver = solver
|
|
71
|
+
self.n_iter = n_iter
|
|
72
|
+
self.tol = tol
|
|
73
|
+
self.bipartite = None
|
|
74
|
+
|
|
75
|
+
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray],
|
|
76
|
+
weights: Optional[Union[dict, np.ndarray]] = None, weights_row: Optional[Union[dict, np.ndarray]] = None,
|
|
77
|
+
weights_col: Optional[Union[dict, np.ndarray]] = None, force_bipartite: bool = False) -> 'PageRank':
|
|
78
|
+
"""Compute the pagerank of each node.
|
|
79
|
+
|
|
80
|
+
Parameters
|
|
81
|
+
----------
|
|
82
|
+
input_matrix : sparse.csr_matrix, np.ndarray
|
|
83
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
84
|
+
weights : np.ndarray, dict
|
|
85
|
+
Weights of the restart distribution for Personalized PageRank.
|
|
86
|
+
If ``None``, the uniform distribution is used (no personalization, default).
|
|
87
|
+
weights_row : np.ndarray, dict
|
|
88
|
+
Weights on rows of the restart distribution for Personalized PageRank.
|
|
89
|
+
Used for bipartite graphs.
|
|
90
|
+
If both weights_row and weights_col are ``None`` (default), the uniform distribution on rows is used.
|
|
91
|
+
weights_col : np.ndarray, dict
|
|
92
|
+
Weights on columns of the restart distribution for Personalized PageRank.
|
|
93
|
+
Used for bipartite graphs.
|
|
94
|
+
force_bipartite : bool
|
|
95
|
+
If ``True``, consider the input matrix as the biadjacency matrix of a bipartite graph.
|
|
96
|
+
Returns
|
|
97
|
+
-------
|
|
98
|
+
self: :class:`PageRank`
|
|
99
|
+
"""
|
|
100
|
+
adjacency, values, self.bipartite = get_adjacency_values(input_matrix, force_bipartite=force_bipartite,
|
|
101
|
+
values=weights,
|
|
102
|
+
values_row=weights_row,
|
|
103
|
+
values_col=weights_col,
|
|
104
|
+
default_value=0,
|
|
105
|
+
which='probs')
|
|
106
|
+
self.scores_ = get_pagerank(adjacency, values, damping_factor=self.damping_factor, n_iter=self.n_iter,
|
|
107
|
+
solver=self.solver, tol=self.tol)
|
|
108
|
+
if self.bipartite:
|
|
109
|
+
self._split_vars(input_matrix.shape)
|
|
110
|
+
return self
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created on May 2019
|
|
5
|
+
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
|
+
"""
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def top_k(scores: np.ndarray, k: int = 1, sort: bool = True):
|
|
11
|
+
"""Return the indices of the k elements of highest values.
|
|
12
|
+
|
|
13
|
+
Parameters
|
|
14
|
+
----------
|
|
15
|
+
scores : np.ndarray
|
|
16
|
+
Array of values.
|
|
17
|
+
k : int
|
|
18
|
+
Number of elements to return.
|
|
19
|
+
sort : bool
|
|
20
|
+
If ``True``, sort the indices in decreasing order of value (element of highest value first).
|
|
21
|
+
|
|
22
|
+
Examples
|
|
23
|
+
--------
|
|
24
|
+
>>> top_k([1, 3, 2], k=2)
|
|
25
|
+
array([1, 2])
|
|
26
|
+
"""
|
|
27
|
+
scores = np.array(scores)
|
|
28
|
+
if k >= len(scores):
|
|
29
|
+
if sort:
|
|
30
|
+
index = np.argsort(-scores)
|
|
31
|
+
else:
|
|
32
|
+
index = np.arange(scores)
|
|
33
|
+
else:
|
|
34
|
+
index = np.argpartition(-scores, k)[:k]
|
|
35
|
+
if sort:
|
|
36
|
+
index = index[np.argsort(-scores[index])]
|
|
37
|
+
return index
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
"""tests for ranking"""
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for ranking API"""
|
|
4
|
+
import unittest
|
|
5
|
+
|
|
6
|
+
from sknetwork.data.test_graphs import *
|
|
7
|
+
from sknetwork.ranking import *
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestPageRank(unittest.TestCase):
|
|
11
|
+
|
|
12
|
+
def test_basic(self):
|
|
13
|
+
methods = [PageRank(), Closeness(), HITS(), Katz()]
|
|
14
|
+
for adjacency in [test_graph(), test_digraph()]:
|
|
15
|
+
n = adjacency.shape[0]
|
|
16
|
+
for method in methods:
|
|
17
|
+
score = method.fit_predict(adjacency)
|
|
18
|
+
self.assertEqual(score.shape, (n, ))
|
|
19
|
+
self.assertTrue(min(score) >= 0)
|
|
20
|
+
|
|
21
|
+
def test_bipartite(self):
|
|
22
|
+
biadjacency = test_bigraph()
|
|
23
|
+
n_row, n_col = biadjacency.shape
|
|
24
|
+
|
|
25
|
+
methods = [PageRank(), HITS(), Katz()]
|
|
26
|
+
for method in methods:
|
|
27
|
+
method.fit(biadjacency)
|
|
28
|
+
scores_row = method.scores_row_
|
|
29
|
+
scores_col = method.scores_col_
|
|
30
|
+
|
|
31
|
+
self.assertEqual(scores_row.shape, (n_row,))
|
|
32
|
+
self.assertEqual(scores_col.shape, (n_col,))
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for betweenness.py"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
import numpy as np
|
|
7
|
+
|
|
8
|
+
from sknetwork.ranking.betweenness import Betweenness
|
|
9
|
+
from sknetwork.data.test_graphs import test_graph, test_disconnected_graph
|
|
10
|
+
from sknetwork.data.toy_graphs import bow_tie, star_wars
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class TestBetweenness(unittest.TestCase):
|
|
14
|
+
|
|
15
|
+
def test_basic(self):
|
|
16
|
+
adjacency = test_graph()
|
|
17
|
+
betweenness = Betweenness()
|
|
18
|
+
scores = betweenness.fit_predict(adjacency)
|
|
19
|
+
self.assertEqual(len(scores), adjacency.shape[0])
|
|
20
|
+
|
|
21
|
+
def test_bowtie(self):
|
|
22
|
+
adjacency = bow_tie()
|
|
23
|
+
betweenness = Betweenness()
|
|
24
|
+
scores = betweenness.fit_predict(adjacency)
|
|
25
|
+
self.assertEqual(np.sum(scores > 0), 1)
|
|
26
|
+
|
|
27
|
+
def test_disconnected(self):
|
|
28
|
+
adjacency = test_disconnected_graph()
|
|
29
|
+
betweenness = Betweenness()
|
|
30
|
+
with self.assertRaises(ValueError):
|
|
31
|
+
betweenness.fit(adjacency)
|
|
32
|
+
|
|
33
|
+
def test_bipartite(self):
|
|
34
|
+
adjacency = star_wars()
|
|
35
|
+
betweenness = Betweenness()
|
|
36
|
+
|
|
37
|
+
with self.assertRaises(ValueError):
|
|
38
|
+
betweenness.fit_predict(adjacency)
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for closeness.py"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
from sknetwork.data.test_graphs import *
|
|
8
|
+
from sknetwork.ranking.closeness import Closeness
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class TestDiffusion(unittest.TestCase):
|
|
12
|
+
|
|
13
|
+
def test_params(self):
|
|
14
|
+
with self.assertRaises(ValueError):
|
|
15
|
+
adjacency = test_graph()
|
|
16
|
+
Closeness(method='toto').fit(adjacency)
|
|
17
|
+
|
|
18
|
+
def test_parallel(self):
|
|
19
|
+
adjacency = test_graph()
|
|
20
|
+
n = adjacency.shape[0]
|
|
21
|
+
|
|
22
|
+
closeness = Closeness(method='approximate')
|
|
23
|
+
scores = closeness.fit_predict(adjacency)
|
|
24
|
+
self.assertEqual(scores.shape, (n,))
|
|
25
|
+
|
|
26
|
+
def test_disconnected(self):
|
|
27
|
+
adjacency = test_disconnected_graph()
|
|
28
|
+
closeness = Closeness()
|
|
29
|
+
with self.assertRaises(ValueError):
|
|
30
|
+
closeness.fit(adjacency)
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""Tests for his.py"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
from sknetwork.data.test_graphs import test_bigraph
|
|
8
|
+
from sknetwork.ranking import HITS
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class TestHITS(unittest.TestCase):
|
|
12
|
+
|
|
13
|
+
def test_keywords(self):
|
|
14
|
+
biadjacency = test_bigraph()
|
|
15
|
+
n_row, n_col = biadjacency.shape
|
|
16
|
+
|
|
17
|
+
hits = HITS()
|
|
18
|
+
hits.fit(biadjacency)
|
|
19
|
+
self.assertEqual(hits.scores_row_.shape, (n_row,))
|
|
20
|
+
self.assertEqual(hits.scores_col_.shape, (n_col,))
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for pagerank.py"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
from sknetwork.data.models import cyclic_digraph
|
|
10
|
+
from sknetwork.data.test_graphs import test_graph, test_digraph, test_bigraph
|
|
11
|
+
from sknetwork.ranking.pagerank import PageRank
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class TestPageRank(unittest.TestCase):
|
|
15
|
+
|
|
16
|
+
def setUp(self) -> None:
|
|
17
|
+
"""Cycle graph for tests."""
|
|
18
|
+
self.n = 5
|
|
19
|
+
self.adjacency = cyclic_digraph(self.n)
|
|
20
|
+
self.truth = np.ones(self.n) / self.n
|
|
21
|
+
|
|
22
|
+
def test_params(self):
|
|
23
|
+
with self.assertRaises(ValueError):
|
|
24
|
+
PageRank(damping_factor=1789)
|
|
25
|
+
|
|
26
|
+
def test_solvers(self):
|
|
27
|
+
for solver in ['piteration', 'lanczos', 'bicgstab', 'RH']:
|
|
28
|
+
pagerank = PageRank(solver=solver)
|
|
29
|
+
scores = pagerank.fit_predict(self.adjacency)
|
|
30
|
+
self.assertAlmostEqual(0, np.linalg.norm(scores - self.truth))
|
|
31
|
+
with self.assertRaises(ValueError):
|
|
32
|
+
PageRank(solver='toto').fit_predict(self.adjacency)
|
|
33
|
+
|
|
34
|
+
def test_seeding(self):
|
|
35
|
+
pagerank = PageRank()
|
|
36
|
+
seeds_array = np.zeros(self.n)
|
|
37
|
+
seeds_array[0] = 1.
|
|
38
|
+
seeds_dict = {0: 1}
|
|
39
|
+
|
|
40
|
+
scores1 = pagerank.fit_predict(self.adjacency, seeds_array)
|
|
41
|
+
scores2 = pagerank.fit_predict(self.adjacency, seeds_dict)
|
|
42
|
+
self.assertAlmostEqual(np.linalg.norm(scores1 - scores2), 0.)
|
|
43
|
+
|
|
44
|
+
def test_input(self):
|
|
45
|
+
pagerank = PageRank()
|
|
46
|
+
scores = pagerank.fit_predict(self.adjacency, force_bipartite=True)
|
|
47
|
+
self.assertEqual(len(scores), len(pagerank.scores_col_))
|
|
48
|
+
|
|
49
|
+
def test_damping(self):
|
|
50
|
+
pagerank = PageRank(damping_factor=0.99)
|
|
51
|
+
scores = pagerank.fit_predict(self.adjacency)
|
|
52
|
+
self.assertAlmostEqual(np.linalg.norm(scores - self.truth), 0.)
|
|
53
|
+
|
|
54
|
+
pagerank = PageRank(damping_factor=0.01)
|
|
55
|
+
scores = pagerank.fit_predict(self.adjacency)
|
|
56
|
+
self.assertAlmostEqual(np.linalg.norm(scores - self.truth), 0.)
|
|
57
|
+
|
|
58
|
+
def test_bigraph(self):
|
|
59
|
+
pagerank = PageRank()
|
|
60
|
+
for adjacency in [test_graph(), test_digraph(), test_bigraph()]:
|
|
61
|
+
pagerank.fit(adjacency, weights_col={0: 1})
|
|
62
|
+
self.assertAlmostEqual(np.linalg.norm(pagerank.scores_col_ - pagerank.predict(columns=True)), 0.)
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for postprocessing"""
|
|
4
|
+
|
|
5
|
+
import unittest
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
from sknetwork.ranking.postprocess import top_k
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class TestPostprocessing(unittest.TestCase):
|
|
13
|
+
|
|
14
|
+
def test_top_k(self):
|
|
15
|
+
scores = np.arange(10)
|
|
16
|
+
index = top_k(scores, 3)
|
|
17
|
+
self.assertTrue(set(index) == {7, 8, 9})
|
|
18
|
+
index = top_k(scores, 10)
|
|
19
|
+
self.assertTrue(len(index) == 10)
|
|
20
|
+
index = top_k(scores, 20)
|
|
21
|
+
self.assertTrue(len(index) == 10)
|
|
22
|
+
scores = [3, 1, 6, 2]
|
|
23
|
+
index = top_k(scores, 2)
|
|
24
|
+
self.assertTrue(set(index) == {0, 2})
|
|
25
|
+
index = top_k(scores, 2, sort=True)
|
|
26
|
+
self.assertTrue(list(index) == [2, 0])
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created on April 2022
|
|
5
|
+
@author: Thomas Bonald <bonald@enst.fr>
|
|
6
|
+
"""
|
|
7
|
+
from abc import ABC
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
|
|
11
|
+
from sknetwork.base import Algorithm
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class BaseRegressor(Algorithm, ABC):
|
|
15
|
+
"""Base class for regression algorithms.
|
|
16
|
+
|
|
17
|
+
Attributes
|
|
18
|
+
----------
|
|
19
|
+
values_ : np.ndarray
|
|
20
|
+
Value of each node.
|
|
21
|
+
values_row_: np.ndarray
|
|
22
|
+
Values of rows, for bipartite graphs.
|
|
23
|
+
values_col_: np.ndarray
|
|
24
|
+
Values of columns, for bipartite graphs.
|
|
25
|
+
"""
|
|
26
|
+
def __init__(self):
|
|
27
|
+
self.values_ = None
|
|
28
|
+
|
|
29
|
+
def predict(self, columns: bool = False) -> np.ndarray:
|
|
30
|
+
"""Return the values predicted by the algorithm.
|
|
31
|
+
|
|
32
|
+
Parameters
|
|
33
|
+
----------
|
|
34
|
+
columns : bool
|
|
35
|
+
If ``True``, return the prediction for columns.
|
|
36
|
+
|
|
37
|
+
Returns
|
|
38
|
+
-------
|
|
39
|
+
values : np.ndarray
|
|
40
|
+
Values.
|
|
41
|
+
"""
|
|
42
|
+
if columns:
|
|
43
|
+
return self.values_col_
|
|
44
|
+
return self.values_
|
|
45
|
+
|
|
46
|
+
def fit_predict(self, *args, **kwargs) -> np.ndarray:
|
|
47
|
+
"""Fit algorithm to data and return the values. Same parameters as the ``fit`` method.
|
|
48
|
+
|
|
49
|
+
Returns
|
|
50
|
+
-------
|
|
51
|
+
values : np.ndarray
|
|
52
|
+
Values.
|
|
53
|
+
"""
|
|
54
|
+
self.fit(*args, **kwargs)
|
|
55
|
+
return self.values_
|
|
56
|
+
|
|
57
|
+
def _split_vars(self, shape):
|
|
58
|
+
n_row = shape[0]
|
|
59
|
+
self.values_row_ = self.values_[:n_row]
|
|
60
|
+
self.values_col_ = self.values_[n_row:]
|
|
61
|
+
self.values_ = self.values_row_
|
|
@@ -0,0 +1,210 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created in July 2019
|
|
5
|
+
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
|
+
@author: Thomas Bonald <thomas.bonald@telecom-paris.fr>
|
|
7
|
+
"""
|
|
8
|
+
from typing import Union, Optional, Tuple
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
from scipy import sparse
|
|
12
|
+
|
|
13
|
+
from sknetwork.linalg.normalizer import normalize
|
|
14
|
+
from sknetwork.regression.base import BaseRegressor
|
|
15
|
+
from sknetwork.utils import get_adjacency_values, get_degrees
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def init_temperatures(seeds: np.ndarray, init: Optional[float]) -> Tuple[np.ndarray, np.ndarray]:
|
|
19
|
+
"""Init temperatures."""
|
|
20
|
+
n = len(seeds)
|
|
21
|
+
border = (seeds >= 0)
|
|
22
|
+
if init is None:
|
|
23
|
+
temperatures = seeds[border].mean() * np.ones(n)
|
|
24
|
+
else:
|
|
25
|
+
temperatures = init * np.ones(n)
|
|
26
|
+
temperatures[border] = seeds[border]
|
|
27
|
+
return temperatures, border
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class Diffusion(BaseRegressor):
|
|
31
|
+
"""Regression by diffusion along the edges, given the temperatures of some seed nodes (heat equation).
|
|
32
|
+
|
|
33
|
+
The row vector of tempreatures :math:`T` evolves like:
|
|
34
|
+
|
|
35
|
+
:math:`T \\gets (1-\\alpha) T + \\alpha PT`
|
|
36
|
+
|
|
37
|
+
where :math:`\\alpha` is the damping factor and :math:`P` is the transition matrix of the random walk in the graph.
|
|
38
|
+
|
|
39
|
+
All values are updated, including those of seed nodes (free diffusion).
|
|
40
|
+
See ``Dirichlet`` for diffusion with boundary constraints.
|
|
41
|
+
|
|
42
|
+
Parameters
|
|
43
|
+
----------
|
|
44
|
+
n_iter : int
|
|
45
|
+
Number of iterations of the diffusion (must be positive).
|
|
46
|
+
damping_factor : float
|
|
47
|
+
Damping factor.
|
|
48
|
+
|
|
49
|
+
Attributes
|
|
50
|
+
----------
|
|
51
|
+
values_ : np.ndarray
|
|
52
|
+
Value of each node (= temperature).
|
|
53
|
+
values_row_: np.ndarray
|
|
54
|
+
Values of rows, for bipartite graphs.
|
|
55
|
+
values_col_: np.ndarray
|
|
56
|
+
Values of columns, for bipartite graphs.
|
|
57
|
+
Example
|
|
58
|
+
-------
|
|
59
|
+
>>> from sknetwork.data import house
|
|
60
|
+
>>> diffusion = Diffusion(n_iter=1)
|
|
61
|
+
>>> adjacency = house()
|
|
62
|
+
>>> values = {0: 1, 2: 0}
|
|
63
|
+
>>> values_pred = diffusion.fit_predict(adjacency, values)
|
|
64
|
+
>>> np.round(values_pred, 1)
|
|
65
|
+
array([0.8, 0.5, 0.2, 0.4, 0.6])
|
|
66
|
+
|
|
67
|
+
References
|
|
68
|
+
----------
|
|
69
|
+
Chung, F. (2007). The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences.
|
|
70
|
+
"""
|
|
71
|
+
def __init__(self, n_iter: int = 3, damping_factor: float = 0.5):
|
|
72
|
+
super(Diffusion, self).__init__()
|
|
73
|
+
|
|
74
|
+
if n_iter <= 0:
|
|
75
|
+
raise ValueError('The number of iterations must be positive.')
|
|
76
|
+
else:
|
|
77
|
+
self.n_iter = n_iter
|
|
78
|
+
self.damping_factor = damping_factor
|
|
79
|
+
self.bipartite = None
|
|
80
|
+
|
|
81
|
+
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray],
|
|
82
|
+
values: Optional[Union[dict, list, np.ndarray]] = None,
|
|
83
|
+
values_row: Optional[Union[dict, list, np.ndarray]] = None,
|
|
84
|
+
values_col: Optional[Union[dict, list, np.ndarray]] = None, init: Optional[float] = None,
|
|
85
|
+
force_bipartite: bool = False) -> 'Diffusion':
|
|
86
|
+
"""Compute the diffusion (temperatures at equilibrium).
|
|
87
|
+
|
|
88
|
+
Parameters
|
|
89
|
+
----------
|
|
90
|
+
input_matrix :
|
|
91
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
92
|
+
values :
|
|
93
|
+
Temperatures of nodes in initial state (dictionary or vector). Negative temperatures ignored.
|
|
94
|
+
values_row, values_col :
|
|
95
|
+
Temperatures of rows and columns for bipartite graphs. Negative temperatures ignored.
|
|
96
|
+
init :
|
|
97
|
+
Temperature of nodes in initial state.
|
|
98
|
+
If ``None``, use the average temperature of seed nodes (default).
|
|
99
|
+
force_bipartite :
|
|
100
|
+
If ``True``, consider the input matrix as a biadjacency matrix (default = ``False``).
|
|
101
|
+
|
|
102
|
+
Returns
|
|
103
|
+
-------
|
|
104
|
+
self: :class:`Diffusion`
|
|
105
|
+
"""
|
|
106
|
+
adjacency, values, self.bipartite = get_adjacency_values(input_matrix, force_bipartite=force_bipartite,
|
|
107
|
+
values=values,
|
|
108
|
+
values_row=values_row,
|
|
109
|
+
values_col=values_col)
|
|
110
|
+
values, _ = init_temperatures(values, init)
|
|
111
|
+
diffusion = normalize(adjacency.T.tocsr())
|
|
112
|
+
degrees = get_degrees(diffusion)
|
|
113
|
+
diag = sparse.diags((degrees == 0).astype(int)).tocsr()
|
|
114
|
+
diffusion += diag
|
|
115
|
+
|
|
116
|
+
diffusion = (1 - self.damping_factor) * sparse.identity(len(degrees)).tocsr() + self.damping_factor * diffusion
|
|
117
|
+
|
|
118
|
+
for i in range(self.n_iter):
|
|
119
|
+
values = diffusion.dot(values)
|
|
120
|
+
|
|
121
|
+
self.values_ = values
|
|
122
|
+
if self.bipartite:
|
|
123
|
+
self._split_vars(input_matrix.shape)
|
|
124
|
+
|
|
125
|
+
return self
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
class Dirichlet(BaseRegressor):
|
|
129
|
+
"""Regression by the Dirichlet problem (heat diffusion with boundary constraints).
|
|
130
|
+
|
|
131
|
+
The temperatures of some seed nodes are fixed. The temperatures of other nodes are computed.
|
|
132
|
+
|
|
133
|
+
Parameters
|
|
134
|
+
----------
|
|
135
|
+
n_iter : int
|
|
136
|
+
Number of iterations of the diffusion (must be positive).
|
|
137
|
+
|
|
138
|
+
Attributes
|
|
139
|
+
----------
|
|
140
|
+
values_ : np.ndarray
|
|
141
|
+
Value of each node (= temperature).
|
|
142
|
+
values_row_: np.ndarray
|
|
143
|
+
Values of rows, for bipartite graphs.
|
|
144
|
+
values_col_: np.ndarray
|
|
145
|
+
Values of columns, for bipartite graphs.
|
|
146
|
+
Example
|
|
147
|
+
-------
|
|
148
|
+
>>> from sknetwork.regression import Dirichlet
|
|
149
|
+
>>> from sknetwork.data import house
|
|
150
|
+
>>> dirichlet = Dirichlet()
|
|
151
|
+
>>> adjacency = house()
|
|
152
|
+
>>> values = {0: 1, 2: 0}
|
|
153
|
+
>>> values_pred = dirichlet.fit_predict(adjacency, values)
|
|
154
|
+
>>> np.round(values_pred, 2)
|
|
155
|
+
array([1. , 0.54, 0. , 0.31, 0.62])
|
|
156
|
+
|
|
157
|
+
References
|
|
158
|
+
----------
|
|
159
|
+
Chung, F. (2007). The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences.
|
|
160
|
+
"""
|
|
161
|
+
def __init__(self, n_iter: int = 10):
|
|
162
|
+
super(Dirichlet, self).__init__()
|
|
163
|
+
|
|
164
|
+
if n_iter <= 0:
|
|
165
|
+
raise ValueError('The number of iterations must be positive.')
|
|
166
|
+
else:
|
|
167
|
+
self.n_iter = n_iter
|
|
168
|
+
self.bipartite = None
|
|
169
|
+
|
|
170
|
+
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray],
|
|
171
|
+
values: Optional[Union[dict, list, np.ndarray]] = None,
|
|
172
|
+
values_row: Optional[Union[dict, list, np.ndarray]] = None,
|
|
173
|
+
values_col: Optional[Union[dict, list, np.ndarray]] = None, init: Optional[float] = None,
|
|
174
|
+
force_bipartite: bool = False) -> 'Dirichlet':
|
|
175
|
+
"""Compute the solution to the Dirichlet problem (temperatures at equilibrium).
|
|
176
|
+
|
|
177
|
+
Parameters
|
|
178
|
+
----------
|
|
179
|
+
input_matrix :
|
|
180
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
181
|
+
values :
|
|
182
|
+
Temperatures of nodes (dictionary or vector). Negative temperatures ignored.
|
|
183
|
+
values_row, values_col :
|
|
184
|
+
Temperatures of rows and columns for bipartite graphs. Negative temperatures ignored.
|
|
185
|
+
init :
|
|
186
|
+
Temperature of nodes in initial state.
|
|
187
|
+
If ``None``, use the average temperature of seed nodes (default).
|
|
188
|
+
force_bipartite :
|
|
189
|
+
If ``True``, consider the input matrix as a biadjacency matrix (default = ``False``).
|
|
190
|
+
|
|
191
|
+
Returns
|
|
192
|
+
-------
|
|
193
|
+
self: :class:`Dirichlet`
|
|
194
|
+
"""
|
|
195
|
+
adjacency, values, self.bipartite = get_adjacency_values(input_matrix, force_bipartite=force_bipartite,
|
|
196
|
+
values=values,
|
|
197
|
+
values_row=values_row,
|
|
198
|
+
values_col=values_col)
|
|
199
|
+
temperatures, border = init_temperatures(values, init)
|
|
200
|
+
values = temperatures.copy()
|
|
201
|
+
diffusion = normalize(adjacency)
|
|
202
|
+
for i in range(self.n_iter):
|
|
203
|
+
values = diffusion.dot(values)
|
|
204
|
+
values[border] = temperatures[border]
|
|
205
|
+
|
|
206
|
+
self.values_ = values
|
|
207
|
+
if self.bipartite:
|
|
208
|
+
self._split_vars(input_matrix.shape)
|
|
209
|
+
|
|
210
|
+
return self
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
"""tests for regression"""
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""tests for regression API"""
|
|
4
|
+
import unittest
|
|
5
|
+
|
|
6
|
+
from sknetwork.data.test_graphs import test_bigraph, test_graph, test_digraph
|
|
7
|
+
from sknetwork.regression import *
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestAPI(unittest.TestCase):
|
|
11
|
+
|
|
12
|
+
def test_basic(self):
|
|
13
|
+
methods = [Diffusion(), Dirichlet()]
|
|
14
|
+
for adjacency in [test_graph(), test_digraph()]:
|
|
15
|
+
n = adjacency.shape[0]
|
|
16
|
+
for method in methods:
|
|
17
|
+
score = method.fit_predict(adjacency)
|
|
18
|
+
self.assertEqual(score.shape, (n, ))
|
|
19
|
+
self.assertTrue(min(score) >= 0)
|
|
20
|
+
|
|
21
|
+
def test_bipartite(self):
|
|
22
|
+
biadjacency = test_bigraph()
|
|
23
|
+
n_row, n_col = biadjacency.shape
|
|
24
|
+
|
|
25
|
+
methods = [Diffusion(), Dirichlet()]
|
|
26
|
+
for method in methods:
|
|
27
|
+
method.fit(biadjacency)
|
|
28
|
+
values_row = method.values_row_
|
|
29
|
+
values_col = method.values_col_
|
|
30
|
+
|
|
31
|
+
self.assertEqual(values_row.shape, (n_row,))
|
|
32
|
+
self.assertEqual(values_col.shape, (n_col,))
|