scikit-network 0.33.0__cp311-cp311-win_amd64.whl → 0.33.1__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- scikit_network-0.33.1.dist-info/METADATA +120 -0
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/RECORD +42 -42
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/WHEEL +1 -1
- sknetwork/classification/diffusion.py +1 -1
- sknetwork/classification/knn.py +1 -1
- sknetwork/classification/metrics.py +3 -3
- sknetwork/classification/pagerank.py +1 -1
- sknetwork/classification/propagation.py +1 -1
- sknetwork/classification/vote.cp311-win_amd64.pyd +0 -0
- sknetwork/classification/vote.cpp +684 -677
- sknetwork/clustering/leiden_core.cp311-win_amd64.pyd +0 -0
- sknetwork/clustering/leiden_core.cpp +713 -702
- sknetwork/clustering/louvain.py +3 -3
- sknetwork/clustering/louvain_core.cp311-win_amd64.pyd +0 -0
- sknetwork/clustering/louvain_core.cpp +713 -702
- sknetwork/clustering/metrics.py +1 -1
- sknetwork/clustering/tests/test_louvain.py +6 -0
- sknetwork/gnn/gnn_classifier.py +1 -1
- sknetwork/hierarchy/metrics.py +3 -3
- sknetwork/hierarchy/paris.cp311-win_amd64.pyd +0 -0
- sknetwork/hierarchy/paris.cpp +1775 -1153
- sknetwork/linalg/diteration.cp311-win_amd64.pyd +0 -0
- sknetwork/linalg/diteration.cpp +684 -677
- sknetwork/linalg/push.cp311-win_amd64.pyd +0 -0
- sknetwork/linalg/push.cpp +1769 -1153
- sknetwork/linalg/sparse_lowrank.py +1 -1
- sknetwork/ranking/betweenness.cp311-win_amd64.pyd +0 -0
- sknetwork/ranking/betweenness.cpp +563 -557
- sknetwork/topology/cliques.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/cliques.cpp +1729 -1110
- sknetwork/topology/core.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/core.cpp +1755 -1139
- sknetwork/topology/cycles.py +1 -1
- sknetwork/topology/minheap.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/minheap.cpp +687 -677
- sknetwork/topology/triangles.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/triangles.cpp +437 -432
- sknetwork/topology/weisfeiler_lehman_core.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +684 -677
- scikit_network-0.33.0.dist-info/METADATA +0 -517
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/AUTHORS.rst +0 -0
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/LICENSE +0 -0
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,120 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: scikit-network
|
|
3
|
+
Version: 0.33.1
|
|
4
|
+
Summary: Graph algorithms
|
|
5
|
+
Author: Scikit-network team
|
|
6
|
+
Maintainer-email: Thomas Bonald <bonald@enst.fr>
|
|
7
|
+
License: BSD License
|
|
8
|
+
Project-URL: Repository, https://github.com/sknetwork-team/scikit-network
|
|
9
|
+
Project-URL: Documentation, https://scikit-network.readthedocs.io/
|
|
10
|
+
Project-URL: Changelog, https://github.com/sknetwork-team/scikit-network/blob/master/HISTORY.rst
|
|
11
|
+
Keywords: sknetwork
|
|
12
|
+
Classifier: Development Status :: 3 - Alpha
|
|
13
|
+
Classifier: Intended Audience :: Developers
|
|
14
|
+
Classifier: Intended Audience :: Information Technology
|
|
15
|
+
Classifier: Intended Audience :: Education
|
|
16
|
+
Classifier: Intended Audience :: Science/Research
|
|
17
|
+
Classifier: License :: OSI Approved :: BSD License
|
|
18
|
+
Classifier: Natural Language :: English
|
|
19
|
+
Classifier: Programming Language :: Cython
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
22
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
23
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
24
|
+
Requires-Python: >=3.9
|
|
25
|
+
Description-Content-Type: text/x-rst
|
|
26
|
+
License-File: LICENSE
|
|
27
|
+
License-File: AUTHORS.rst
|
|
28
|
+
Requires-Dist: numpy >=1.22.4
|
|
29
|
+
Requires-Dist: scipy >=1.7.3
|
|
30
|
+
Provides-Extra: test
|
|
31
|
+
Requires-Dist: pytest ; extra == 'test'
|
|
32
|
+
Requires-Dist: note ; extra == 'test'
|
|
33
|
+
Requires-Dist: pluggy >=0.7.1 ; extra == 'test'
|
|
34
|
+
|
|
35
|
+
.. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
|
|
36
|
+
:align: right
|
|
37
|
+
:width: 150px
|
|
38
|
+
:alt: logo sknetwork
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
.. image:: https://img.shields.io/pypi/v/scikit-network.svg
|
|
43
|
+
:target: https://pypi.python.org/pypi/scikit-network
|
|
44
|
+
|
|
45
|
+
.. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
|
|
46
|
+
:target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
|
|
47
|
+
|
|
48
|
+
.. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
|
|
49
|
+
:target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
|
|
50
|
+
:alt: Documentation Status
|
|
51
|
+
|
|
52
|
+
.. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
|
|
53
|
+
:target: https://codecov.io/gh/sknetwork-team/scikit-network
|
|
54
|
+
|
|
55
|
+
.. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
|
|
56
|
+
:target: https://pypi.python.org/pypi/scikit-network
|
|
57
|
+
|
|
58
|
+
Free software library in Python for machine learning on graphs:
|
|
59
|
+
|
|
60
|
+
* Memory-efficient representation of graphs as sparse matrices in scipy_ format
|
|
61
|
+
* Fast algorithms
|
|
62
|
+
* Simple API inspired by scikit-learn_
|
|
63
|
+
|
|
64
|
+
.. _scipy: https://www.scipy.org
|
|
65
|
+
.. _scikit-learn: https://scikit-learn.org/
|
|
66
|
+
|
|
67
|
+
Resources
|
|
68
|
+
---------
|
|
69
|
+
|
|
70
|
+
* Free software: BSD license
|
|
71
|
+
* GitHub: https://github.com/sknetwork-team/scikit-network
|
|
72
|
+
* Documentation: https://scikit-network.readthedocs.io
|
|
73
|
+
|
|
74
|
+
Quick start
|
|
75
|
+
-----------
|
|
76
|
+
|
|
77
|
+
Install scikit-network:
|
|
78
|
+
|
|
79
|
+
.. code-block:: console
|
|
80
|
+
|
|
81
|
+
$ pip install scikit-network
|
|
82
|
+
|
|
83
|
+
Import scikit-network::
|
|
84
|
+
|
|
85
|
+
import sknetwork
|
|
86
|
+
|
|
87
|
+
Overview
|
|
88
|
+
--------
|
|
89
|
+
|
|
90
|
+
An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
|
|
91
|
+
|
|
92
|
+
Documentation
|
|
93
|
+
-------------
|
|
94
|
+
|
|
95
|
+
The documentation is structured as follows:
|
|
96
|
+
|
|
97
|
+
* `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
|
|
98
|
+
* `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
|
|
99
|
+
* `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
|
|
100
|
+
* `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
|
|
101
|
+
* `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
|
|
102
|
+
|
|
103
|
+
Citing
|
|
104
|
+
------
|
|
105
|
+
|
|
106
|
+
If you want to cite scikit-network, please refer to the publication in
|
|
107
|
+
the `Journal of Machine Learning Research <https://jmlr.org>`_:
|
|
108
|
+
|
|
109
|
+
.. code::
|
|
110
|
+
|
|
111
|
+
@article{JMLR:v21:20-412,
|
|
112
|
+
author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
|
|
113
|
+
title = {Scikit-network: Graph Analysis in Python},
|
|
114
|
+
journal = {Journal of Machine Learning Research},
|
|
115
|
+
year = {2020},
|
|
116
|
+
volume = {21},
|
|
117
|
+
number = {185},
|
|
118
|
+
pages = {1-6},
|
|
119
|
+
url = {http://jmlr.org/papers/v21/20-412.html}
|
|
120
|
+
}
|
|
@@ -7,13 +7,13 @@ sknetwork/test_log.py,sha256=ucX3w138eDyD0Wnpk9QEsPoQgAPTJNPy9twzMf5TjQ8,334
|
|
|
7
7
|
sknetwork/classification/__init__.py,sha256=QoS3fTnCZ0nFdlDkEphEYqj1NDEf23_aqsfP0G4zLMM,483
|
|
8
8
|
sknetwork/classification/base.py,sha256=a6JczKf23arkC4Xx6rUEI0gLFAPoyPXKTXCdhV6_bWI,4432
|
|
9
9
|
sknetwork/classification/base_rank.py,sha256=BChHu6sDkdq_M6coJsC3hac3HWPE2lholi3g97J6lWw,4655
|
|
10
|
-
sknetwork/classification/diffusion.py,sha256=
|
|
11
|
-
sknetwork/classification/knn.py,sha256=
|
|
12
|
-
sknetwork/classification/metrics.py,sha256=
|
|
13
|
-
sknetwork/classification/pagerank.py,sha256=
|
|
14
|
-
sknetwork/classification/propagation.py,sha256=
|
|
15
|
-
sknetwork/classification/vote.cp311-win_amd64.pyd,sha256=
|
|
16
|
-
sknetwork/classification/vote.cpp,sha256=
|
|
10
|
+
sknetwork/classification/diffusion.py,sha256=YcPTJKZDw9xraZSWraxIBh8x0RmOD1ANsg2lseotQXY,5705
|
|
11
|
+
sknetwork/classification/knn.py,sha256=RIlLqksGOWLCAhgQ3X8KqCVD6Qcj9C0Tgrz4spk_LDE,5479
|
|
12
|
+
sknetwork/classification/metrics.py,sha256=BY3RPwnFCCX3HYmHJiZtNWSzKPtVTACUVX3u1TMGe2c,7032
|
|
13
|
+
sknetwork/classification/pagerank.py,sha256=GTbTSplrDoxpKb-LZmjibEHPgjeicGInCBEOI_bwVu4,2659
|
|
14
|
+
sknetwork/classification/propagation.py,sha256=soL5zmSIohmJw-song-2liwXuPB40N0_R4w6W1-tlIE,5952
|
|
15
|
+
sknetwork/classification/vote.cp311-win_amd64.pyd,sha256=AlKKUFT1A1sIQWYnTULCcmnlHHh55USpGnw6o4zcOBc,155648
|
|
16
|
+
sknetwork/classification/vote.cpp,sha256=BFuqYgkgHeO5lvOgM3X6UAc4JFPV2GRPB0y2Qj0rGEU,1020435
|
|
17
17
|
sknetwork/classification/vote.pyx,sha256=-mNsL96aaA1UL-qfeUgZlbdvKZUK9R4MLmq0BNFWVKA,1640
|
|
18
18
|
sknetwork/classification/tests/__init__.py,sha256=Per0oy1Frnm5jB7dnpod1g_xbgYhqkNteWQV5cemcH0,32
|
|
19
19
|
sknetwork/classification/tests/test_API.py,sha256=WV5cY8yhTHBHYRbDE3InZ4v-agymxLPMKxa2NqjbWZo,1154
|
|
@@ -26,21 +26,21 @@ sknetwork/clustering/__init__.py,sha256=Ju06e1zwMUfOn_1soTOlxJJu1F5u9VNxFXWN8TTP
|
|
|
26
26
|
sknetwork/clustering/base.py,sha256=LsH_wlP19lDnIZWVUXbKwSta05ii5dWMqS-J-AkY6HE,6104
|
|
27
27
|
sknetwork/clustering/kcenters.py,sha256=MKmsR7zWTITeEAqFyRDKpglU7yZZEjR8H0TLJXdDjtw,8942
|
|
28
28
|
sknetwork/clustering/leiden.py,sha256=THQdYR_DhGF8xJLTEiSmd8cx0Y70ms5nZ1emnoqcxBg,9924
|
|
29
|
-
sknetwork/clustering/leiden_core.cp311-win_amd64.pyd,sha256=
|
|
30
|
-
sknetwork/clustering/leiden_core.cpp,sha256=
|
|
29
|
+
sknetwork/clustering/leiden_core.cp311-win_amd64.pyd,sha256=0JOsExGnBbgFfLHPJsi5jnccTv82FEYP8Frcd1ftro4,201216
|
|
30
|
+
sknetwork/clustering/leiden_core.cpp,sha256=B6W94NZDId6cZAvUDGM4IvQiDlMZ1hFcam9JxDIQu5c,1202445
|
|
31
31
|
sknetwork/clustering/leiden_core.pyx,sha256=kEppO0iSs0UqK3ybtSVIHRSojJ4KNfe6pUNo9sShh7E,4424
|
|
32
|
-
sknetwork/clustering/louvain.py,sha256=
|
|
33
|
-
sknetwork/clustering/louvain_core.cp311-win_amd64.pyd,sha256=
|
|
34
|
-
sknetwork/clustering/louvain_core.cpp,sha256=
|
|
32
|
+
sknetwork/clustering/louvain.py,sha256=RMIPR068mPNkB4SzubwMhKZSUepnaju8ORr-SHUKe2g,11111
|
|
33
|
+
sknetwork/clustering/louvain_core.cp311-win_amd64.pyd,sha256=H7aP7_Q9WGGqxRFyESVOtIYmb0mcOt8iUbrX5UdnuQY,197120
|
|
34
|
+
sknetwork/clustering/louvain_core.cpp,sha256=fe_5BNCA0NLhiD-p39jnxR9HMpKU0Ik0oFlDOo-qS5E,1183009
|
|
35
35
|
sknetwork/clustering/louvain_core.pyx,sha256=2KPnBhBeSlIxmoScZW7jwsmVxJyAyHQs3pcH9AfBM2Y,4213
|
|
36
|
-
sknetwork/clustering/metrics.py,sha256=
|
|
36
|
+
sknetwork/clustering/metrics.py,sha256=yBvtH97m66OTkgZnwcoMYFReMFdi9di37NDyMn56CxU,3158
|
|
37
37
|
sknetwork/clustering/postprocess.py,sha256=uynPXvjYXiFNShxGZyLkpIwRl5nIlIVEm-auMCNZA0o,2105
|
|
38
38
|
sknetwork/clustering/propagation_clustering.py,sha256=s-Y7EQEqGM2wdl1zAOQzfmy-8LGab1eB00u_AOkYzl0,3885
|
|
39
39
|
sknetwork/clustering/tests/__init__.py,sha256=tCA27jkL3pdstka9XWQEA1NbC6ZqL7Rf-1V1UcySCEE,28
|
|
40
40
|
sknetwork/clustering/tests/test_API.py,sha256=PKxuTh49IyKzwkLfgFAmJiuBhWJQBEYtNxzOEYgc5uE,1566
|
|
41
41
|
sknetwork/clustering/tests/test_kcenters.py,sha256=BWvcTo8iNDFbKawVrRe8N6q4ujS0Co4MHpkT-P8_A9U,2037
|
|
42
42
|
sknetwork/clustering/tests/test_leiden.py,sha256=oEN0Dz9popCEYE-qqEdmTEqqr3af9TB3WDmRNWYAidE,1189
|
|
43
|
-
sknetwork/clustering/tests/test_louvain.py,sha256=
|
|
43
|
+
sknetwork/clustering/tests/test_louvain.py,sha256=rnW-WGa9YA0u__JdXlODqbqAgPadeMlyu40VZ1ri29c,5006
|
|
44
44
|
sknetwork/clustering/tests/test_metrics.py,sha256=ZTr4T-d-g6kQJinei9VH6Teb_rOScmj5XLG168EI5LQ,1868
|
|
45
45
|
sknetwork/clustering/tests/test_postprocess.py,sha256=41l4coS_1CHqGOCnnucqxU6UkXws89YVMjef162ZTEQ,1417
|
|
46
46
|
sknetwork/data/__init__.py,sha256=qt9xm8RuVQqJQct_A2aCytKjTkMmegnPaRFcHqFbyDY,261
|
|
@@ -80,7 +80,7 @@ sknetwork/gnn/activation.py,sha256=rhvEXgrIix4nZ9I3WYZ0e1MID_DESCCC_XlVcOa4Wpo,3
|
|
|
80
80
|
sknetwork/gnn/base.py,sha256=qHnKsfsUW4LIdwm3vzfAahBjweCkIDRzk62i4piNBuc,5889
|
|
81
81
|
sknetwork/gnn/base_activation.py,sha256=Kxs_d4aPOpMRXZMBAW7WKkA_uWLXRM7XM-JqE4nFHhc,2395
|
|
82
82
|
sknetwork/gnn/base_layer.py,sha256=_zL_SyVYvhxch9N1i44Qkgar_M5xVRz7JcxqUjVwDjY,4057
|
|
83
|
-
sknetwork/gnn/gnn_classifier.py,sha256=
|
|
83
|
+
sknetwork/gnn/gnn_classifier.py,sha256=OSy6BURNFW1-5AmwPnJYYcrAc_eH1pS_99pu8V2vyy4,12922
|
|
84
84
|
sknetwork/gnn/layer.py,sha256=JBNFABBgGtMeXdQaS8wGnsSd7Jqs18jbIguITTOCQRE,5679
|
|
85
85
|
sknetwork/gnn/loss.py,sha256=FwULPjbUe3OFIhIBKJoNfdYX41ALckX2ANKvC69yyoI,5342
|
|
86
86
|
sknetwork/gnn/neighbor_sampler.py,sha256=l5OkylbRQsDpmkfeHAaSA7gHi5l7OUKtL4YvH-YTMWM,1929
|
|
@@ -99,9 +99,9 @@ sknetwork/gnn/tests/test_utils.py,sha256=MJvOXEWouRiIVaPM76W0hizt3jFb-1_BXHLd1zk
|
|
|
99
99
|
sknetwork/hierarchy/__init__.py,sha256=-2-y7iBVQRanXLSl9kY8VASJVqx37trYmVNcz74QsUc,418
|
|
100
100
|
sknetwork/hierarchy/base.py,sha256=DvVUNgJgfaFlWyl4QbdHmp-VldPMFLPx9irt74kpyrU,2789
|
|
101
101
|
sknetwork/hierarchy/louvain_hierarchy.py,sha256=MoO0mlvuFUFNYssl1zOAWlcyg-2OLzJI6VFPjIS1FiA,10118
|
|
102
|
-
sknetwork/hierarchy/metrics.py,sha256=
|
|
103
|
-
sknetwork/hierarchy/paris.cp311-win_amd64.pyd,sha256=
|
|
104
|
-
sknetwork/hierarchy/paris.cpp,sha256=
|
|
102
|
+
sknetwork/hierarchy/metrics.py,sha256=UzfTDFZExTn6j3wQQ_FXF7frHGNvfS5mpj1ZtlR63iQ,8301
|
|
103
|
+
sknetwork/hierarchy/paris.cp311-win_amd64.pyd,sha256=MBxXNoo-DxdOozOyUgGgOdK1mB02e6wWiiz2GpxNT3w,226816
|
|
104
|
+
sknetwork/hierarchy/paris.cpp,sha256=s1enneSBZ9HkPWiPWjIeT_aL1pdWRG40EAFClxIJ0eA,1494314
|
|
105
105
|
sknetwork/hierarchy/paris.pyx,sha256=CSr7eJBGPQoHff3czQpDuaW3V16ZsgdnVoFQ_rkFWBk,12129
|
|
106
106
|
sknetwork/hierarchy/postprocess.py,sha256=81Hj7eCHvU_2mdq0FTeYuZAqk4FIudZfZbvU39_sqyM,12422
|
|
107
107
|
sknetwork/hierarchy/tests/__init__.py,sha256=jRlC4pbyKuxaiXvByYK-4ix7DwYWxpjwKNvSXZ7rQJE,27
|
|
@@ -111,8 +111,8 @@ sknetwork/hierarchy/tests/test_metrics.py,sha256=sljCTCIXNvanQ3Bf-g0x0jyjXs05EBl
|
|
|
111
111
|
sknetwork/hierarchy/tests/test_postprocess.py,sha256=Bm1_XU6OgwZr_1B28IA5m_HZRqI7GMwlTLpzkXux__Y,2266
|
|
112
112
|
sknetwork/linalg/__init__.py,sha256=COkAHs_EsxWzd_tHl6qq8laEfSsjoMuWVx3VbNFEgzU,542
|
|
113
113
|
sknetwork/linalg/basics.py,sha256=WDlylrkBTCQpjXGtzs8kshJYfpo0h3uM8TMhHmnAnnM,1179
|
|
114
|
-
sknetwork/linalg/diteration.cp311-win_amd64.pyd,sha256=
|
|
115
|
-
sknetwork/linalg/diteration.cpp,sha256=
|
|
114
|
+
sknetwork/linalg/diteration.cp311-win_amd64.pyd,sha256=WLmVzUUTEfqZXdwnlMyeko9RUvmiPnUuvfufrKpFfAI,146432
|
|
115
|
+
sknetwork/linalg/diteration.cpp,sha256=YQQX4V_B3evhvlklRUVbhDG8bTzDrpq3NArrHwx2w0U,1017245
|
|
116
116
|
sknetwork/linalg/diteration.pyx,sha256=1r7a1usqftiBNTPOAwHFQPK__nZ67J-87wQLM25GqEU,1431
|
|
117
117
|
sknetwork/linalg/eig_solver.py,sha256=lMqxTg66_T-LsgGqc9oo_ngxpTceekavnCFOANWEpPA,2793
|
|
118
118
|
sknetwork/linalg/laplacian.py,sha256=qifd-8iltcTKCQW-7fG5z3XfwVrrrCeaBqbViBQCLf0,416
|
|
@@ -120,10 +120,10 @@ sknetwork/linalg/normalizer.py,sha256=Z0-paMHwp51aY_ssCP2RfXNVQqTFA9gsIHfy-fhG5Q
|
|
|
120
120
|
sknetwork/linalg/operators.py,sha256=nNTtdI_I0HEhnpHOxUYRHmEzUDcz9CbwjDc5eEKzlNQ,7657
|
|
121
121
|
sknetwork/linalg/polynome.py,sha256=qnIhfpRk26JMinuNCrZO1EDj5ci65ZLxkKJyhO7HxpE,2201
|
|
122
122
|
sknetwork/linalg/ppr_solver.py,sha256=D7LUMQgFAtnGhh8pxpKrISH1H9d5MknFpHib8bPA5x4,6703
|
|
123
|
-
sknetwork/linalg/push.cp311-win_amd64.pyd,sha256=
|
|
124
|
-
sknetwork/linalg/push.cpp,sha256=
|
|
123
|
+
sknetwork/linalg/push.cp311-win_amd64.pyd,sha256=itcoDROjXwGsWBJGui90C24hnepc3IU6DECWTctq47g,164864
|
|
124
|
+
sknetwork/linalg/push.cpp,sha256=40zK0HHddw0bYbH4ztlMj5dqlcCx6X3opf4ZnwqBmdM,1178421
|
|
125
125
|
sknetwork/linalg/push.pyx,sha256=79ycseJ1jOznzc1_KSexTGy_0dlX1jQVnf_WI8Ufvgc,2429
|
|
126
|
-
sknetwork/linalg/sparse_lowrank.py,sha256
|
|
126
|
+
sknetwork/linalg/sparse_lowrank.py,sha256=rfyg9lg4HmWdce3eFi1IPaTPsd2SAWR_pAdqDOyvYyA,5177
|
|
127
127
|
sknetwork/linalg/svd_solver.py,sha256=XxP4AyKQInBQN3imcbtahXseZ4YyKj4ZI2UAJK1mDs4,2772
|
|
128
128
|
sknetwork/linalg/tests/__init__.py,sha256=i2cO6oXoryXdEJ-HdSFZsY7LZdNit7W3GC8J8LAUMU4,24
|
|
129
129
|
sknetwork/linalg/tests/test_eig.py,sha256=c_BpjP_S7xCwYgk2N7kaFfsjV1-nfUYCu3Rys07bPeo,1548
|
|
@@ -151,8 +151,8 @@ sknetwork/path/tests/test_search.py,sha256=wJzwbbe86axJRmausJp-KcsNTB9n7kpo6YBd7
|
|
|
151
151
|
sknetwork/path/tests/test_shortest_path.py,sha256=zeM-qgbTs3i29gvF568otKOKgv_pbryV_yGefThLEIY,1422
|
|
152
152
|
sknetwork/ranking/__init__.py,sha256=lbkUSZ3alkLK0xGiUx5ptPqhQKIjIKK80uPk0KymJPc,356
|
|
153
153
|
sknetwork/ranking/base.py,sha256=W3gw9j_ikhyETr3dpEYo9RINUUHlSn8Dez_eAnlIsDg,1573
|
|
154
|
-
sknetwork/ranking/betweenness.cp311-win_amd64.pyd,sha256=
|
|
155
|
-
sknetwork/ranking/betweenness.cpp,sha256=
|
|
154
|
+
sknetwork/ranking/betweenness.cp311-win_amd64.pyd,sha256=22D9-xvfxt10BeW_r-GSyj9CBZo4zbjJecpSPC4pTBw,75264
|
|
155
|
+
sknetwork/ranking/betweenness.cpp,sha256=_pugPQJywnsK_f8J37Ja6kTOy7TSTJKS7wc03J6OPTk,378992
|
|
156
156
|
sknetwork/ranking/betweenness.pyx,sha256=fe5_gwRQ0TaFi_0-vUGfy6XC5kW5un5xly7-xVDgxrU,3184
|
|
157
157
|
sknetwork/ranking/closeness.py,sha256=CvdAaqsM8HvAi6zGCuLcVF0BUu9n9UPBz_YxZhFF_sM,2932
|
|
158
158
|
sknetwork/ranking/hits.py,sha256=uhGJH2C0U9hLsVRutI6M1ulbEIM7L6dCeYqiAhtTD9A,2855
|
|
@@ -173,24 +173,24 @@ sknetwork/regression/tests/__init__.py,sha256=GvqvsSMbqMYwRmWw4VrZntwccz1jOPqrqu
|
|
|
173
173
|
sknetwork/regression/tests/test_API.py,sha256=7x_n8bG8hUcJVRYDbdC6GvPmwW5cE7HmASlu5SHnwFI,1056
|
|
174
174
|
sknetwork/regression/tests/test_diffusion.py,sha256=_ivBfsfmRQyiFChMS8N1J7HoJDhZtKdeydBIu7SuSvU,2117
|
|
175
175
|
sknetwork/topology/__init__.py,sha256=Ho06JPdSeiy5sq-Cv3e9y4AiFVMUQ_RUNUDDpKegWnM,542
|
|
176
|
-
sknetwork/topology/cliques.cp311-win_amd64.pyd,sha256=
|
|
177
|
-
sknetwork/topology/cliques.cpp,sha256=
|
|
176
|
+
sknetwork/topology/cliques.cp311-win_amd64.pyd,sha256=6DZzLSXP7F8xKJJ8WnYmXqBo5y_y0mDfGUWR2BDJ1-E,185344
|
|
177
|
+
sknetwork/topology/cliques.cpp,sha256=V15CeP_Ga-MsERNHd3vp012watB4WtTjjlrhHkcUo3g,1245289
|
|
178
178
|
sknetwork/topology/cliques.pyx,sha256=y6Ee5oaX7IdVhXXjSOazqT5dYo4gSTQ8Mq0u1Abg0vw,4659
|
|
179
|
-
sknetwork/topology/core.cp311-win_amd64.pyd,sha256=
|
|
180
|
-
sknetwork/topology/core.cpp,sha256=
|
|
179
|
+
sknetwork/topology/core.cp311-win_amd64.pyd,sha256=kh6Q27DKU-R0lAMNORYnHxE2vczmqooFLVa5tH0VxU8,156160
|
|
180
|
+
sknetwork/topology/core.cpp,sha256=XXGXenF1hutlUNiH2bupLPY5GoQ-ez8zN_EPX2ab-KM,1154504
|
|
181
181
|
sknetwork/topology/core.pyx,sha256=0PO4HnOYivjrFY1NMlXHd7wscu0R5Fg-Toj3YVRwXDo,2555
|
|
182
|
-
sknetwork/topology/cycles.py,sha256=
|
|
183
|
-
sknetwork/topology/minheap.cp311-win_amd64.pyd,sha256=
|
|
184
|
-
sknetwork/topology/minheap.cpp,sha256=
|
|
182
|
+
sknetwork/topology/cycles.py,sha256=Z4T65j4TuO0IKgPYzxESDF8g_CkmoUWaZS3U4qIcmtY,9286
|
|
183
|
+
sknetwork/topology/minheap.cp311-win_amd64.pyd,sha256=9WT2_qseYyBzMYPqmhiFCeF9gQBdgRG277NdZlj4vwE,133632
|
|
184
|
+
sknetwork/topology/minheap.cpp,sha256=gRrxc2W3TaY3JXeq8D-l2FJerg3GlAO5T8Jwp5DwBG0,1013687
|
|
185
185
|
sknetwork/topology/minheap.pxd,sha256=AHeBNN8wGzT429K6AyhbrFUoBkWVwbkyUIY6TkeJ80g,584
|
|
186
186
|
sknetwork/topology/minheap.pyx,sha256=KOmjjlljgkGUJNL8PQ6WaNzx-Ro84QoSve_8baDN1B0,3419
|
|
187
187
|
sknetwork/topology/structure.py,sha256=28mSnrukLU_GDil8e5ouLZ9PuoQyJ0UmQ4WgMu9Wzew,7479
|
|
188
|
-
sknetwork/topology/triangles.cp311-win_amd64.pyd,sha256=
|
|
189
|
-
sknetwork/topology/triangles.cpp,sha256=
|
|
188
|
+
sknetwork/topology/triangles.cp311-win_amd64.pyd,sha256=3Kn1Bn9YQ5dAZTHQtdGFzjsystuKaaM7TmPbT7GCMcE,60416
|
|
189
|
+
sknetwork/topology/triangles.cpp,sha256=23eJeO_CPRUa5sprtFlb8EGqdymxI7nPm0DWAUXCc6E,352670
|
|
190
190
|
sknetwork/topology/triangles.pyx,sha256=q_f23ZidyizvR9P4X4OIX8o8bAZZTtV7tnjXqmyYZuY,4500
|
|
191
191
|
sknetwork/topology/weisfeiler_lehman.py,sha256=U5b5RoTFtqBeFwkuBXs4g0Px2UWRFePyneu-tfgnY_I,4441
|
|
192
|
-
sknetwork/topology/weisfeiler_lehman_core.cp311-win_amd64.pyd,sha256=
|
|
193
|
-
sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=
|
|
192
|
+
sknetwork/topology/weisfeiler_lehman_core.cp311-win_amd64.pyd,sha256=NfZQppQ38btzlQoCyIzxjZer-5nUAUjJOxH0JpZmdqk,156160
|
|
193
|
+
sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=ABIsutPma_8eUu9JRjB9NqKj-CycQjCNFrgJrZmNW9c,1024487
|
|
194
194
|
sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=lpUV1BpxtedsGBfOl19b8OFXCIbyaAA4ZYlW6BzSxbw,3148
|
|
195
195
|
sknetwork/topology/tests/__init__.py,sha256=84T-xv8JCFeA9D7Rxw9gy3_dNAoE8CY1k1pYcuG8K3s,26
|
|
196
196
|
sknetwork/topology/tests/test_cliques.py,sha256=vdRMDmF8AKkIWE-LnU2yGzk1wzwzq9PdggpeS-8wfRw,866
|
|
@@ -220,9 +220,9 @@ sknetwork/visualization/graphs.py,sha256=vLsuL2AUyrc8B5nxM2K713QPRjf7i1PRaoRXYbY
|
|
|
220
220
|
sknetwork/visualization/tests/__init__.py,sha256=hrso2pNVzMWn4D2pRyWA_xAMib-xacKjm-rf91MyGGk,31
|
|
221
221
|
sknetwork/visualization/tests/test_dendrograms.py,sha256=e0u3qL9SlWlrQiVAeCVXxq7P6-mU0GaCz3FBu6cm_HA,2519
|
|
222
222
|
sknetwork/visualization/tests/test_graphs.py,sha256=FPZcgGj9asTjOvtkXpENYjeE8xtwh1ES4XYWcYe56Jo,9597
|
|
223
|
-
scikit_network-0.33.
|
|
224
|
-
scikit_network-0.33.
|
|
225
|
-
scikit_network-0.33.
|
|
226
|
-
scikit_network-0.33.
|
|
227
|
-
scikit_network-0.33.
|
|
228
|
-
scikit_network-0.33.
|
|
223
|
+
scikit_network-0.33.1.dist-info/AUTHORS.rst,sha256=_GVYaZmiOIOk8o_2X2dGicyCy-1seStrLAZdsk8zKEI,966
|
|
224
|
+
scikit_network-0.33.1.dist-info/LICENSE,sha256=BJ1Hth1QjBmjIfHcp1sVxlkEqHYM58Vn5bcpYcggMZE,1656
|
|
225
|
+
scikit_network-0.33.1.dist-info/METADATA,sha256=dvTU-9SmoSsqZhmqCCwHwbQgB08J4wdyQWJKQ-rYhYs,4524
|
|
226
|
+
scikit_network-0.33.1.dist-info/WHEEL,sha256=qW4RD1rfHm8ZRUjJbXUnZHDNPCXHt6Rq0mgR8lv_JEg,101
|
|
227
|
+
scikit_network-0.33.1.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
|
|
228
|
+
scikit_network-0.33.1.dist-info/RECORD,,
|
|
@@ -55,7 +55,7 @@ class DiffusionClassifier(BaseClassifier):
|
|
|
55
55
|
>>> labels_true = graph.labels
|
|
56
56
|
>>> labels = {0: labels_true[0], 33: labels_true[33]}
|
|
57
57
|
>>> labels_pred = diffusion.fit_predict(adjacency, labels)
|
|
58
|
-
>>> round(np.mean(labels_pred == labels_true), 2)
|
|
58
|
+
>>> float(round(np.mean(labels_pred == labels_true), 2))
|
|
59
59
|
0.97
|
|
60
60
|
|
|
61
61
|
References
|
sknetwork/classification/knn.py
CHANGED
|
@@ -55,7 +55,7 @@ class NNClassifier(BaseClassifier):
|
|
|
55
55
|
>>> labels_true = graph.labels
|
|
56
56
|
>>> labels = {0: labels_true[0], 33: labels_true[33]}
|
|
57
57
|
>>> labels_pred = classifier.fit_predict(adjacency, labels)
|
|
58
|
-
>>> round(np.mean(labels_pred == labels_true), 2)
|
|
58
|
+
>>> float(round(np.mean(labels_pred == labels_true), 2))
|
|
59
59
|
0.82
|
|
60
60
|
"""
|
|
61
61
|
def __init__(self, n_neighbors: int = 3, embedding_method: Optional[BaseEmbedding] = None, normalize: bool = True):
|
|
@@ -34,7 +34,7 @@ def get_accuracy_score(labels_true: np.ndarray, labels_pred: np.ndarray) -> floa
|
|
|
34
34
|
>>> import numpy as np
|
|
35
35
|
>>> labels_true = np.array([0, 0, 1, 1])
|
|
36
36
|
>>> labels_pred = np.array([0, 0, 0, 1])
|
|
37
|
-
>>> round(get_accuracy_score(labels_true, labels_pred), 2)
|
|
37
|
+
>>> float(round(get_accuracy_score(labels_true, labels_pred), 2))
|
|
38
38
|
0.75
|
|
39
39
|
"""
|
|
40
40
|
check_vector_format(labels_true, labels_pred)
|
|
@@ -105,7 +105,7 @@ def get_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, return_precis
|
|
|
105
105
|
>>> import numpy as np
|
|
106
106
|
>>> labels_true = np.array([0, 0, 1, 1])
|
|
107
107
|
>>> labels_pred = np.array([0, 0, 0, 1])
|
|
108
|
-
>>> round(get_f1_score(labels_true, labels_pred), 2)
|
|
108
|
+
>>> float(round(get_f1_score(labels_true, labels_pred), 2))
|
|
109
109
|
0.67
|
|
110
110
|
"""
|
|
111
111
|
values = set(labels_true[labels_true >= 0]) | set(labels_pred[labels_pred >= 0])
|
|
@@ -188,7 +188,7 @@ def get_average_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, avera
|
|
|
188
188
|
>>> import numpy as np
|
|
189
189
|
>>> labels_true = np.array([0, 0, 1, 1])
|
|
190
190
|
>>> labels_pred = np.array([0, 0, 0, 1])
|
|
191
|
-
>>> round(get_average_f1_score(labels_true, labels_pred), 2)
|
|
191
|
+
>>> float(round(get_average_f1_score(labels_true, labels_pred), 2))
|
|
192
192
|
0.73
|
|
193
193
|
"""
|
|
194
194
|
if average == 'micro':
|
|
@@ -51,7 +51,7 @@ class PageRankClassifier(RankClassifier):
|
|
|
51
51
|
>>> labels_true = graph.labels
|
|
52
52
|
>>> labels = {0: labels_true[0], 33: labels_true[33]}
|
|
53
53
|
>>> labels_pred = pagerank.fit_predict(adjacency, labels)
|
|
54
|
-
>>> np.round(np.mean(labels_pred == labels_true), 2)
|
|
54
|
+
>>> float(np.round(np.mean(labels_pred == labels_true), 2))
|
|
55
55
|
0.97
|
|
56
56
|
|
|
57
57
|
References
|
|
@@ -58,7 +58,7 @@ class Propagation(BaseClassifier):
|
|
|
58
58
|
>>> labels_true = graph.labels
|
|
59
59
|
>>> labels = {0: labels_true[0], 33: labels_true[33]}
|
|
60
60
|
>>> labels_pred = propagation.fit_predict(adjacency, labels)
|
|
61
|
-
>>> np.round(np.mean(labels_pred == labels_true), 2)
|
|
61
|
+
>>> float(np.round(np.mean(labels_pred == labels_true), 2))
|
|
62
62
|
0.94
|
|
63
63
|
|
|
64
64
|
References
|
|
Binary file
|