scikit-network 0.33.0__cp311-cp311-macosx_11_0_arm64.whl → 0.33.2__cp311-cp311-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (45) hide show
  1. scikit_network-0.33.2.dist-info/METADATA +122 -0
  2. {scikit_network-0.33.0.dist-info → scikit_network-0.33.2.dist-info}/RECORD +44 -32
  3. {scikit_network-0.33.0.dist-info → scikit_network-0.33.2.dist-info}/WHEEL +1 -1
  4. sknetwork/classification/diffusion.py +1 -1
  5. sknetwork/classification/knn.py +1 -1
  6. sknetwork/classification/metrics.py +3 -3
  7. sknetwork/classification/pagerank.py +1 -1
  8. sknetwork/classification/propagation.py +1 -1
  9. sknetwork/classification/vote.cpp +27581 -0
  10. sknetwork/classification/vote.cpython-311-darwin.so +0 -0
  11. sknetwork/clustering/leiden_core.cpp +31572 -0
  12. sknetwork/clustering/leiden_core.cpython-311-darwin.so +0 -0
  13. sknetwork/clustering/louvain.py +3 -3
  14. sknetwork/clustering/louvain_core.cpp +31217 -0
  15. sknetwork/clustering/louvain_core.cpython-311-darwin.so +0 -0
  16. sknetwork/clustering/metrics.py +1 -1
  17. sknetwork/clustering/tests/test_louvain.py +6 -0
  18. sknetwork/gnn/base_activation.py +1 -0
  19. sknetwork/gnn/gnn_classifier.py +1 -1
  20. sknetwork/hierarchy/metrics.py +3 -3
  21. sknetwork/hierarchy/paris.cpp +37865 -0
  22. sknetwork/hierarchy/paris.cpython-311-darwin.so +0 -0
  23. sknetwork/linalg/diteration.cpp +27397 -0
  24. sknetwork/linalg/diteration.cpython-311-darwin.so +0 -0
  25. sknetwork/linalg/push.cpp +31069 -0
  26. sknetwork/linalg/push.cpython-311-darwin.so +0 -0
  27. sknetwork/linalg/sparse_lowrank.py +1 -1
  28. sknetwork/ranking/betweenness.cpp +9704 -0
  29. sknetwork/ranking/betweenness.cpython-311-darwin.so +0 -0
  30. sknetwork/topology/cliques.cpp +32562 -0
  31. sknetwork/topology/cliques.cpython-311-darwin.so +0 -0
  32. sknetwork/topology/core.cpp +30648 -0
  33. sknetwork/topology/core.cpython-311-darwin.so +0 -0
  34. sknetwork/topology/cycles.py +2 -2
  35. sknetwork/topology/minheap.cpp +27329 -0
  36. sknetwork/topology/minheap.cpython-311-darwin.so +0 -0
  37. sknetwork/topology/triangles.cpp +8891 -0
  38. sknetwork/topology/triangles.cpython-311-darwin.so +0 -0
  39. sknetwork/topology/weisfeiler_lehman_core.cpp +27632 -0
  40. sknetwork/topology/weisfeiler_lehman_core.cpython-311-darwin.so +0 -0
  41. sknetwork/visualization/graphs.py +1 -1
  42. scikit_network-0.33.0.dist-info/METADATA +0 -517
  43. {scikit_network-0.33.0.dist-info → scikit_network-0.33.2.dist-info/licenses}/AUTHORS.rst +0 -0
  44. {scikit_network-0.33.0.dist-info → scikit_network-0.33.2.dist-info/licenses}/LICENSE +0 -0
  45. {scikit_network-0.33.0.dist-info → scikit_network-0.33.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,122 @@
1
+ Metadata-Version: 2.4
2
+ Name: scikit-network
3
+ Version: 0.33.2
4
+ Summary: Graph algorithms
5
+ Author: Scikit-network team
6
+ Maintainer-email: Thomas Bonald <bonald@enst.fr>
7
+ License: BSD License
8
+ Project-URL: Repository, https://github.com/sknetwork-team/scikit-network
9
+ Project-URL: Documentation, https://scikit-network.readthedocs.io/
10
+ Project-URL: Changelog, https://github.com/sknetwork-team/scikit-network/blob/master/HISTORY.rst
11
+ Keywords: sknetwork
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Information Technology
15
+ Classifier: Intended Audience :: Education
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: License :: OSI Approved :: BSD License
18
+ Classifier: Natural Language :: English
19
+ Classifier: Programming Language :: Cython
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Classifier: Programming Language :: Python :: 3.13
25
+ Requires-Python: >=3.9
26
+ Description-Content-Type: text/x-rst
27
+ License-File: LICENSE
28
+ License-File: AUTHORS.rst
29
+ Requires-Dist: numpy>=1.22.4
30
+ Requires-Dist: scipy>=1.7.3
31
+ Provides-Extra: test
32
+ Requires-Dist: pytest; extra == "test"
33
+ Requires-Dist: note; extra == "test"
34
+ Requires-Dist: pluggy>=0.7.1; extra == "test"
35
+ Dynamic: license-file
36
+
37
+ .. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
38
+ :align: right
39
+ :width: 150px
40
+ :alt: logo sknetwork
41
+
42
+
43
+
44
+ .. image:: https://img.shields.io/pypi/v/scikit-network.svg
45
+ :target: https://pypi.python.org/pypi/scikit-network
46
+
47
+ .. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
48
+ :target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
49
+
50
+ .. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
51
+ :target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
52
+ :alt: Documentation Status
53
+
54
+ .. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
55
+ :target: https://codecov.io/gh/sknetwork-team/scikit-network
56
+
57
+ .. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
58
+ :target: https://pypi.python.org/pypi/scikit-network
59
+
60
+ Free software library in Python for machine learning on graphs:
61
+
62
+ * Memory-efficient representation of graphs as sparse matrices in scipy_ format
63
+ * Fast algorithms
64
+ * Simple API inspired by scikit-learn_
65
+
66
+ .. _scipy: https://www.scipy.org
67
+ .. _scikit-learn: https://scikit-learn.org/
68
+
69
+ Resources
70
+ ---------
71
+
72
+ * Free software: BSD license
73
+ * GitHub: https://github.com/sknetwork-team/scikit-network
74
+ * Documentation: https://scikit-network.readthedocs.io
75
+
76
+ Quick start
77
+ -----------
78
+
79
+ Install scikit-network:
80
+
81
+ .. code-block:: console
82
+
83
+ $ pip install scikit-network
84
+
85
+ Import scikit-network::
86
+
87
+ import sknetwork
88
+
89
+ Overview
90
+ --------
91
+
92
+ An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
93
+
94
+ Documentation
95
+ -------------
96
+
97
+ The documentation is structured as follows:
98
+
99
+ * `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
100
+ * `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
101
+ * `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
102
+ * `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
103
+ * `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
104
+
105
+ Citing
106
+ ------
107
+
108
+ If you want to cite scikit-network, please refer to the publication in
109
+ the `Journal of Machine Learning Research <https://jmlr.org>`_:
110
+
111
+ .. code::
112
+
113
+ @article{JMLR:v21:20-412,
114
+ author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
115
+ title = {Scikit-network: Graph Analysis in Python},
116
+ journal = {Journal of Machine Learning Research},
117
+ year = {2020},
118
+ volume = {21},
119
+ number = {185},
120
+ pages = {1-6},
121
+ url = {http://jmlr.org/papers/v21/20-412.html}
122
+ }
@@ -1,19 +1,26 @@
1
+ scikit_network-0.33.2.dist-info/RECORD,,
2
+ scikit_network-0.33.2.dist-info/WHEEL,sha256=9JZNYIbX0r2SRqT7WCsXAbM8gP3X-i7Evt35Rx0BOoU,109
3
+ scikit_network-0.33.2.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
4
+ scikit_network-0.33.2.dist-info/METADATA,sha256=sUeGv7CmJpKDpxb5xntGmfY5d2u88twjO0AFCAJ363c,4471
5
+ scikit_network-0.33.2.dist-info/licenses/LICENSE,sha256=zKbJMpbSKgGEUaNr_fKgvJrvw_3W4gnJs5XdLCK5Sxo,1622
6
+ scikit_network-0.33.2.dist-info/licenses/AUTHORS.rst,sha256=MIEWJmfpIVmBPo03Xl_6j8kg7cjXicp9WVRQpuVDj9o,923
1
7
  sknetwork/log.py,sha256=ORInAVh_cWIfxwaFWSblSRxwT-jG05XPRnYTTAHSKy4,443
2
8
  sknetwork/__init__.py,sha256=SZAI5otUFjW-KNf_HNvDY7g_mjFAcPTNg5SIcBjU4WM,533
3
9
  sknetwork/test_log.py,sha256=V4t6Ggi_fh8px5Iq7CDLlJvbXfz24macQ43Ss0tPb5I,319
4
10
  sknetwork/test_base.py,sha256=PB_kJ7cNvhBXmlL-KzyLu2hf6mG7b1OQY759aYplW4k,912
5
11
  sknetwork/sknetwork.py,sha256=VYoI-gwqwBKPx84cA0KnYDRofrgIXs8xtASD2nu5fE0,44
6
12
  sknetwork/base.py,sha256=XJJ6MicVcSiQBWQ9fYlmUJYkXq0PRldQzExhZKuaFBo,1951
7
- sknetwork/classification/metrics.py,sha256=aaIfYddIAJsGXpXJ6TGcQScjzyJOo8kiWgcIE1kefSM,6806
13
+ sknetwork/classification/metrics.py,sha256=NHRldLX4fnZ9FrfrEgQUEjyxYivu7rIqTGdiFDpipws,6827
8
14
  sknetwork/classification/vote.pyx,sha256=Bbf74XCPH8uYDP-SrXRaA7k6Ax2x-wDzpbHMeg9le7A,1584
9
- sknetwork/classification/diffusion.py,sha256=h4l43kA_MR_hMthc5mqW__5jTkQq9Ne9Q_H8bLPhM6Q,5564
15
+ sknetwork/classification/diffusion.py,sha256=8OTfIVQcBCAC3rgKLsUpwDNoSwXQxrSzUT57vu0sYKY,5571
10
16
  sknetwork/classification/__init__.py,sha256=yVv7wSuUfNLxeNBF-AhWCJys3C-XatPtMzi1wyp9Bz4,475
11
- sknetwork/classification/vote.cpython-311-darwin.so,sha256=eQ2XjJ0aq8-JiiPM5zv2dpSqi8NgBIa3wsKlsa-okKM,212840
17
+ sknetwork/classification/vote.cpython-311-darwin.so,sha256=mJTMA5OWZVaOoDMxA4o-Za1Q2dAcXnr01W4j75MZyJQ,212856
12
18
  sknetwork/classification/base_rank.py,sha256=RGElYD6PuP4nhnenNnzpOiBojs49Afg5ahjBFEi566I,4522
13
- sknetwork/classification/propagation.py,sha256=0Cb1-mIMcPoes5oXR7BqhqEmlFMEMcTOMy_BNjX0lvY,5793
14
- sknetwork/classification/pagerank.py,sha256=CBUeCqZisr6s5lh3VXYWA6rbiPdLyNzuSMbjazy80eA,2586
19
+ sknetwork/classification/propagation.py,sha256=1NkRPE5v59IgJGlnQLQh77XC0Q7Ph3MrPm7BdoFZ6Ek,5800
20
+ sknetwork/classification/pagerank.py,sha256=3xHBcuiwMZb-xKpDQ9KIgRtSGE_vbpskVyFK3hkyWcs,2593
15
21
  sknetwork/classification/base.py,sha256=WS-QHh4553Dr1VwJqjggSqO6hHFIAs50oPah_L23eFo,4290
16
- sknetwork/classification/knn.py,sha256=fLRZF2jhHq105QHMeW328JcF71wTaGP-ukmbJdyiw44,5333
22
+ sknetwork/classification/vote.cpp,sha256=l-UxVuBjpJ27U2zyfCKKrDrBCL50SQcYa1sQ-WPsoUg,1020428
23
+ sknetwork/classification/knn.py,sha256=MpF1y3oH-ZDV3Pxqu8KGW7n7Eoh4WtUJ1Td4j7wXWI0,5340
17
24
  sknetwork/classification/tests/test_metrics.py,sha256=eBs-5uAEz2s8gukMyfhQ07GSFoyvxtsslLuc6VgUxBU,2303
18
25
  sknetwork/classification/tests/__init__.py,sha256=sy9uRiPhYG2i7uqM3P07-VUf4UcZEHeOoH9BvKCpU3s,31
19
26
  sknetwork/classification/tests/test_pagerank.py,sha256=5IJpYqnz31cWT0iXjTdo1xE8Kfj3YTK0cSZnnTlyJBs,620
@@ -23,26 +30,31 @@ sknetwork/classification/tests/test_API.py,sha256=FA1d0NQz3vaNVVeFbhEljPe0fD_ryR
23
30
  sknetwork/classification/tests/test_propagation.py,sha256=m0Jyq59k3taoikyBxcZGILzG7dWQV3SGE45MPm0RPao,850
24
31
  sknetwork/visualization/dendrograms.py,sha256=m4FbBfvJUW_gXccZWF8OWxAsbhsEcKa1fXNNCp_y4MA,9901
25
32
  sknetwork/visualization/__init__.py,sha256=8rLiR13WHSWLsEVTTL6lzOZms0LZf-ZujBqOI5VnKxk,216
26
- sknetwork/visualization/graphs.py,sha256=kxFjEbg5b_bHpapLyf1L01CIwzxpWE6KLtS_ji2yZyY,41176
33
+ sknetwork/visualization/graphs.py,sha256=HXIJV5W4rLPmwawXKPqiGhyP7sE5iytW2Ibt_9ea8Rs,41194
27
34
  sknetwork/visualization/colors.py,sha256=DjcXt9aMgLan7bRg7TZI8m_8SLWQOZ-g2HoguB1-3qA,2509
28
35
  sknetwork/visualization/tests/test_graphs.py,sha256=g2YPJn9m8wD-UHZ_BL37xuJqE7ygOx3EztKLVVqphYk,9421
29
36
  sknetwork/visualization/tests/__init__.py,sha256=yOVrqUD9UuI_HdYuqRP5PS7QhS-pO4RE_Ls5PLiIC_w,30
30
37
  sknetwork/visualization/tests/test_dendrograms.py,sha256=UuS3VZ5XnV1u5BtW-QKbFv0wavllQpbgtsOIe5XvTlg,2466
38
+ sknetwork/topology/core.cpp,sha256=V2Y5aFcoqdKGG-UjKoBIvvMOHZEvsJjIvMQdIodXxCE,1159822
31
39
  sknetwork/topology/cliques.pyx,sha256=BuezL9-zJOicL1zffkpcf8uIEgqhik6dgK_agXX4gaU,4510
40
+ sknetwork/topology/triangles.cpp,sha256=8HyPrpfJnN1EoKnsTK08he4pA15g5PFn9tRQRb3K00k,352663
32
41
  sknetwork/topology/minheap.pyx,sha256=iFWpXPYSAmWjYphYByAM6auUj1XHly6QovZvuy2Lpyc,3310
33
- sknetwork/topology/minheap.cpython-311-darwin.so,sha256=8rQmEe28kM8Ka_YfCSEuJxSx-L55VmNlKznwVGbo2SI,195280
42
+ sknetwork/topology/minheap.cpython-311-darwin.so,sha256=nT-Tt_rIj0sg_11vyZm9OK0Dj1bOfUFcEqhh9hCsxus,195312
34
43
  sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=fi0rRrXHVZuIQYzPDcPCamCRQLKquchjV3N9dNuQ1Pk,3034
35
44
  sknetwork/topology/__init__.py,sha256=T2W2cWwcUdhfA86VuZAZqksbrgct4hiyp0HuizEnLg4,534
36
- sknetwork/topology/cycles.py,sha256=EV2UMDktEGdJxEmAZyyjBMttJ6DqYvvfZ6mqwIQqFu0,9003
45
+ sknetwork/topology/cycles.py,sha256=1ta2Iw8uckVwo2sy6IcxZ9t9cJkfV1NFhlEaJX4Q3hQ,8995
37
46
  sknetwork/topology/weisfeiler_lehman.py,sha256=ACJDAmZbwDrZAvO-LsHnRaef-8KX7esM1LxVUglXtLw,4308
38
- sknetwork/topology/cliques.cpython-311-darwin.so,sha256=COxC_t84RlIMB6Q8kD1WVW_vb3ZNtWTGgRu4oDBPtdo,249536
39
- sknetwork/topology/core.cpython-311-darwin.so,sha256=uDFHVX6aSGZNPgtLTGjxOU3ZypcPKr6qrJGMpsQx1uo,210184
47
+ sknetwork/topology/cliques.cpython-311-darwin.so,sha256=z1FVzwsqOSjFwP_9yrMhGG0qp9JutU02Yz1krllGjZw,249664
48
+ sknetwork/topology/core.cpython-311-darwin.so,sha256=PEp7tMDJBEompsmHvXWgNaLO1YUaTBelFy486rlzMbc,210280
40
49
  sknetwork/topology/minheap.pxd,sha256=Y_oRh8H-sNZYAWv0XM9T-ZLzYBhb5TrBM4VjlH-ZqPQ,564
41
50
  sknetwork/topology/structure.py,sha256=CDfN7SL70wTHm2HPfqd7ncsZEaV1SQO3tJKYl1CdtNI,7285
51
+ sknetwork/topology/cliques.cpp,sha256=kVk1JENdZCyfUoRbEjsA_vH2e_P0wllWgfvPTG6flpg,1250613
52
+ sknetwork/topology/minheap.cpp,sha256=lO0i-kHmijFt0jm-JiHieCMhovMX-YOEz7l03imrhNk,1013682
42
53
  sknetwork/topology/triangles.pyx,sha256=JOkA9k0CQTsT7zdPaEoW7-PdHYuoXHsB0XSuPKFLJSI,4349
54
+ sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=XSv_GJ1yEE2KioipxtRt7fkeGPKU0jWlp5PAsm0fCes,1024480
43
55
  sknetwork/topology/core.pyx,sha256=HwGbC84p9F9fkEw8ouNNMQtlYrAoEWhQS5hU9Cf1h94,2465
44
- sknetwork/topology/triangles.cpython-311-darwin.so,sha256=aJ3ez12lZaQRZDg9vZRBo2Zz2xoZu0XZcAjU2w_mrlM,106224
45
- sknetwork/topology/weisfeiler_lehman_core.cpython-311-darwin.so,sha256=dW9JH4XfiR0OBI751HxwenawSjNbDNrcdeTQDtn3DAs,214144
56
+ sknetwork/topology/triangles.cpython-311-darwin.so,sha256=bmMsfUiWMS4K-z9YC8BaE8qT0mT4IRlCxZ0iUnKZFHM,106272
57
+ sknetwork/topology/weisfeiler_lehman_core.cpython-311-darwin.so,sha256=_a3V6qyWDvhAMM2Nm5vy43IrD8f5HYw4LCmmOcgg2Sg,214704
46
58
  sknetwork/topology/tests/test_cycles.py,sha256=KZzMKS5ILfC_J0Fj5MFlEOL7Z9nOnlRfo4TnGdXEPWY,3150
47
59
  sknetwork/topology/tests/test_structure.py,sha256=CzcZ1LxV-mI_buxz6LcTeCy3h5ofMLfOu2HUHwNSMi8,3948
48
60
  sknetwork/topology/tests/test_wl.py,sha256=EJY_4xTi_-qzFsqZJkgnwLteoakdkpRAczzdMCGeXe0,2218
@@ -50,10 +62,11 @@ sknetwork/topology/tests/test_core.py,sha256=Zh9IYHGfqDqIlLycucLzqZbHvYmU-IB-J03
50
62
  sknetwork/topology/tests/__init__.py,sha256=9lKrPX4BnSJbK-VlDi9TsmAgDwqF3H423KhJ1u1Uaos,25
51
63
  sknetwork/topology/tests/test_triangles.py,sha256=9g3nml3TNOiIFHLJDih5PTxWunDJemmpLQy2tmoQw4Y,1275
52
64
  sknetwork/topology/tests/test_cliques.py,sha256=t97pKDMxT9RC-_YsgY-c8tQxrekyAE6i2_guvxAYHhQ,838
65
+ sknetwork/ranking/betweenness.cpp,sha256=ryghJ5RVlDlwrNwm21yoD4zOK3g4AnyeU-yATQOALas,378985
53
66
  sknetwork/ranking/postprocess.py,sha256=-3wqBPvTM7jDdfTytINEXxM2eugJjbCZRLiLy9pkmac,919
54
67
  sknetwork/ranking/__init__.py,sha256=UeYw8y0HFoBnPziqnVYXSt8jqFtkDgkCCMPhYTEIaF0,348
55
68
  sknetwork/ranking/closeness.py,sha256=pETMD8uaXfADZhmzVaH4YIGX57S2vvhzVInONaAwBUM,2840
56
- sknetwork/ranking/betweenness.cpython-311-darwin.so,sha256=moCAUNFJiuNt5KTgU11wdh3cqXomIp8Cpg3QBLhtKk8,127248
69
+ sknetwork/ranking/betweenness.cpython-311-darwin.so,sha256=WekGZSCodYoMGek_DRJ4DVtTn4Jh6K3a7Vt8DRh0xUw,127616
57
70
  sknetwork/ranking/katz.py,sha256=uPyXkEL73_6MS4dP5XTSVSIrD5h5QJipVTVEa0L_y48,2535
58
71
  sknetwork/ranking/hits.py,sha256=L39a9Ze3ITUbikmNhA_Lx-V5s_RQr0XnNkOsIgG8m98,2761
59
72
  sknetwork/ranking/pagerank.py,sha256=Qt2SOUoLO76JVDnT4-x-b-hah9IlaHECsYNu45AnpY8,4749
@@ -67,16 +80,18 @@ sknetwork/ranking/tests/test_API.py,sha256=PZ4Q5X1WT1HSAojZX72fUm4o9Y0PwocewJEoC
67
80
  sknetwork/ranking/tests/test_betweenness.py,sha256=8XA1ycLQQ7-Cm3CBfkcSDQOvD6xagAIP1--mPe9VFzo,1135
68
81
  sknetwork/ranking/tests/test_hits.py,sha256=zStzrWZ-pv2Nsd-pB282FgW3KAn1TyKjz_l85tJaPJ0,491
69
82
  sknetwork/linalg/diteration.pyx,sha256=gk9W6SwIxXgmjQujXWBUIoM_OwevjE3jTzFrIEkGnWI,1384
70
- sknetwork/linalg/diteration.cpython-311-darwin.so,sha256=GMMR6l0X6DiBfhyrct6BK7CBTZEsE7KsToXDooUj96g,192608
83
+ sknetwork/linalg/diteration.cpython-311-darwin.so,sha256=cw_xgey_jttyjlNwsCyUVVdU3G0AeR5Wa66H9QNVS9Q,192608
71
84
  sknetwork/linalg/__init__.py,sha256=awBDY2wWiO40L5eED3H8K1BM8qtHz7aQRv1p3PcSK94,533
85
+ sknetwork/linalg/push.cpp,sha256=FnxhULZSwfe5Eb6yo7RsaAigRpizY3QuaRsDoDY0rh4,1183745
72
86
  sknetwork/linalg/laplacian.py,sha256=_gQr8YLqMUtK_IMNgvJoQX7-uODVlvCVmc-oTsgw7MA,401
73
87
  sknetwork/linalg/eig_solver.py,sha256=yq_prP5p1jbALby69wkzzH0vYKc1btmRQoiVUtTh-eA,2700
74
88
  sknetwork/linalg/push.pyx,sha256=caxCZa5h9zsHhxJgDBaaetqpB0wUbFLdOUwHwj0q_t0,2358
75
89
  sknetwork/linalg/ppr_solver.py,sha256=mQkCnik-vvv_oFa9n1vtMzxgvi78qW-QQONdcmC9CXA,6533
76
- sknetwork/linalg/push.cpython-311-darwin.so,sha256=rQ3BINfZ_TWVTe6S8VU818U7rpyP1GtyKtegP4fu-8A,212456
77
- sknetwork/linalg/sparse_lowrank.py,sha256=LUhbqa01p51SYhoIb2Dmx2b9fMc-iOu69CAVHscR2Xs,5028
90
+ sknetwork/linalg/push.cpython-311-darwin.so,sha256=q3v_UkODKEvlU4BRv6pAZCIsoHOVO7eUpwPkgT5gmGE,229336
91
+ sknetwork/linalg/sparse_lowrank.py,sha256=AHIP-eErNKm1EtuulbNo8ct2Ux-Xe2YdvWUNPez1r-M,5035
78
92
  sknetwork/linalg/basics.py,sha256=8AFph_1G5SZP_24jrIv6qIWooO0UMglL4jMgx3ZdYIQ,1142
79
93
  sknetwork/linalg/normalizer.py,sha256=kOFDPPdiGqG-KcWNiRwbS_y_nmw5fTKYTvuj_x8yBd0,2473
94
+ sknetwork/linalg/diteration.cpp,sha256=6iL1h0yfVIQQMa7-_BYEcHoHJV7z_dwJ6r3g86ijAUo,1017238
80
95
  sknetwork/linalg/operators.py,sha256=fxitao4UYW4Hq7B258T_cAq2H3R2FN1-mwdy138w8fE,7432
81
96
  sknetwork/linalg/polynome.py,sha256=_dP9Nu_6XCV0-WEQJ7E5nG6pxZWMtbj-LREu0vtxeWk,2125
82
97
  sknetwork/linalg/svd_solver.py,sha256=vhcXwCsOar0cYDPZo7IF_ulRDsGGvZzePIeSpSCVgLk,2681
@@ -89,12 +104,13 @@ sknetwork/linalg/tests/test_ppr.py,sha256=Bh1n7W3We2N8u1RIWPyE5QQGE7esnNoUOLLRCL
89
104
  sknetwork/linalg/tests/test_laplacian.py,sha256=B6UhJOmYUdNlXwNoxLLtb--nv9mx96Orl-W1Vl6PLyM,434
90
105
  sknetwork/linalg/tests/test_eig.py,sha256=lUAgo4UfWuuSG5DhSk5SIT7ToLDgPG-5JCgmOe_M7Vw,1504
91
106
  sknetwork/linalg/tests/test_normalization.py,sha256=nASuMYxKcsWj3gk9DF5uPKYOw93oJ-UQUWi99Fw3kmE,887
92
- sknetwork/hierarchy/metrics.py,sha256=_wYGKx_VDE_sfbg-uUEFMhOjSLFqzC8rFHjJo1hdVL8,8046
107
+ sknetwork/hierarchy/metrics.py,sha256=rgD2izsy6HhIYpYE8kftvg4X1gDS780UUGQBlboksXQ,8067
93
108
  sknetwork/hierarchy/paris.pyx,sha256=DX8p3LOtrNxyQ8pOZZE_Q2b5rBKjYwKArsmMZbvb0xY,11813
94
109
  sknetwork/hierarchy/postprocess.py,sha256=d1Fll3eqDIjiMf1c5nGuKF6I0fN93elnglkp59LARGU,12072
95
110
  sknetwork/hierarchy/__init__.py,sha256=YgE2eqnwS8Q2NWP9pNY-M1bpdxRn5-C-CdykydNW7iM,412
96
- sknetwork/hierarchy/paris.cpython-311-darwin.so,sha256=PU-4hSjVRKxth0C9OKEUxWTHNdZr1iLxeAUE2O9Zz-o,292792
111
+ sknetwork/hierarchy/paris.cpython-311-darwin.so,sha256=gVEcsXnnKN5eXwLqU3iSkUsJBpsxNCtzUJ7qqkJlaf8,292888
97
112
  sknetwork/hierarchy/louvain_hierarchy.py,sha256=PhetHYpmsnI7yC-rbYAUXhNiBV9QNKMDbrfz9l0fskc,9846
113
+ sknetwork/hierarchy/paris.cpp,sha256=BaMWFjx53FQzEpqBi9PsL60hGj5uavp-JxeYOzKMOsg,1499638
98
114
  sknetwork/hierarchy/base.py,sha256=MoxBiSsEJOq77YmXj_bpf4vUiPLSpQn8fnUX7YIqyd8,2693
99
115
  sknetwork/hierarchy/tests/test_postprocess.py,sha256=OSrWE0gT0AcPI4LKmUL-Blfg5ErxnjS3d4rPNnA63_Y,2209
100
116
  sknetwork/hierarchy/tests/test_metrics.py,sha256=IHlsdJXeHqPU8_SBm4eIXua5ZhyRIAUH4cAtVNNR7Ng,3160
@@ -127,24 +143,26 @@ sknetwork/embedding/tests/test_API.py,sha256=2c0O8S0u0hF23iys7QLHJJOz2W79rHMeEO2
127
143
  sknetwork/embedding/tests/test_force_atlas.py,sha256=-YM4HSF5Nvpm8e4SoCHiA2o7yAkm0h_ys7GRaJ1wloI,1120
128
144
  sknetwork/embedding/tests/test_random_projection.py,sha256=2bUOCw66tUKP775pGPd5STj0UmRuwvBtI5CgY8HeHKI,1193
129
145
  sknetwork/embedding/tests/test_spectral.py,sha256=CH-F8fM3cYoxhjpob1m7wZV-tEr8XFD6Lxa_bFsLv3A,3897
130
- sknetwork/clustering/leiden_core.cpython-311-darwin.so,sha256=wO7hKO2v5GFGcF_x5H9YQiX6MjooOCA6cA4R1eorBsw,250976
146
+ sknetwork/clustering/leiden_core.cpython-311-darwin.so,sha256=hIXv1tVt1oO15rMXc4xqLth--xYs0kwpN-bIy-9uu2M,250992
131
147
  sknetwork/clustering/leiden_core.pyx,sha256=7HGdeX6iMnSs52Px44-__kN9JhHueaQUvCmrkIGTalg,4300
132
- sknetwork/clustering/metrics.py,sha256=VJPgmB1OvxA0SOaIQIGyJDUP1cgWFElnfdVaQ2krYrg,3060
148
+ sknetwork/clustering/metrics.py,sha256=qnQo70cLs_Rebj3Z1cxmktGw1qQGAAA8yzqj-lC8Tss,3067
133
149
  sknetwork/clustering/leiden.py,sha256=yL5N-9ny6XAj6La2-PBcsieRl4SVx8wxwVGvS1tMr-o,9682
150
+ sknetwork/clustering/louvain_core.cpp,sha256=FIpGgU7Wu4G4kkf1vYpH55j2xcKeGK794fs0GBTfA68,1183002
134
151
  sknetwork/clustering/postprocess.py,sha256=4hx5VTQmqS2Ld2P2kvXoyvVanXVg3bMA619IHS2jWHM,2039
135
152
  sknetwork/clustering/__init__.py,sha256=Ab-rmioxlaMoghrzd1RMr-L4zyrqIM8XznqrjBPGE28,435
136
153
  sknetwork/clustering/kcenters.py,sha256=RFEx35vPUm9a4mzCbDwv-PmePCsdQwbuKAeaRizBMxY,8689
137
- sknetwork/clustering/louvain.py,sha256=nFKEsrEuOH2k9iruT7SGo0kGDtcYzW2Xn7wBAxe767o,10825
154
+ sknetwork/clustering/louvain.py,sha256=4IfTjO_WbYi5XfJWC86kOswOPRhE4LSufsiRBcd52nU,10825
138
155
  sknetwork/clustering/propagation_clustering.py,sha256=ABZZtyojkrXfzsMwEcxqphzHgFC5q8sECOyanvK9D3o,3781
139
- sknetwork/clustering/louvain_core.cpython-311-darwin.so,sha256=ljPJQ8zm24t8JjH-OJsi8CsIdUcYt8FFvtTRLUKOS54,250336
156
+ sknetwork/clustering/louvain_core.cpython-311-darwin.so,sha256=ekVHz_T6fmjCa4FO3XlRsPFvldWGmQXM6_LaK7H3qro,250352
140
157
  sknetwork/clustering/louvain_core.pyx,sha256=pMqt7WukTkBOpjofmiXMYHqRX69mkquEMapDdoskiQM,4089
141
158
  sknetwork/clustering/base.py,sha256=dCF4K3nbKY24kzFeDAy7Fp-b9jDBzEoG3jj1ozuu_W8,5932
159
+ sknetwork/clustering/leiden_core.cpp,sha256=XDGmG34zqmE-hoCHkErevPu4q237p2KgMxQMlmsq41Q,1202438
142
160
  sknetwork/clustering/tests/test_postprocess.py,sha256=WSmAlqB-6Nw3eoL3NaOyNlpPr7GVnNnllkPVdyE9rXI,1378
143
161
  sknetwork/clustering/tests/test_kcenters.py,sha256=laO1QSJ-yGlroB5XtrC15jbRK0krYZK5sIRDHBUZL30,1977
144
162
  sknetwork/clustering/tests/test_metrics.py,sha256=fbVYg2s8DXQdiYHUNuVjFMtEJg4od1Vej25mgHhGDu0,1818
145
163
  sknetwork/clustering/tests/__init__.py,sha256=Ta0XKY7pklRvHyUY3Jlow3A2V4REa5geZG74xPz80Tc,27
146
164
  sknetwork/clustering/tests/test_leiden.py,sha256=3KSXvxUP9H4tCJQXUfWt-45-ltyD0FrVgYjXDvRN-yQ,1155
147
- sknetwork/clustering/tests/test_louvain.py,sha256=6eQPoKodZLBafNgpX1_zBzPzGY5w7QKzWsLuoEVZEaE,4678
165
+ sknetwork/clustering/tests/test_louvain.py,sha256=R9GI3IymlwJGHD5owOJZSrYJ5pJp9WdRWH2xnNO2QC8,4871
148
166
  sknetwork/clustering/tests/test_API.py,sha256=Eez17EngcirVHVVoybClXS5314_Yz54JFzXldubEdgg,1528
149
167
  sknetwork/linkpred/nn.py,sha256=tY-qYlp0j9WCvdoHkZ9EKzCD_GlDu7tQpKD7-aC20rE,4030
150
168
  sknetwork/linkpred/__init__.py,sha256=pFtM52OhDK69ceeiRyH1MDse0EbD8fqyhOsWWih47gM,72
@@ -166,13 +184,13 @@ sknetwork/utils/tests/test_check.py,sha256=WOLQ7J4eM4YHsSxyBNU5yPquq-0dB5FyD_ttt
166
184
  sknetwork/utils/tests/test_neighbors.py,sha256=vF697D0cTfx4Limcmbre5JkJcLi1rUX0tS_JviX11Zg,1426
167
185
  sknetwork/utils/tests/test_format.py,sha256=xSvz_IbxNnei8IrEysIOi8YpX_a6edxVE41g_lSx1mk,2245
168
186
  sknetwork/gnn/base_layer.py,sha256=o5CbTVXY7Y1_TyNEMkp7P2va2HLLIq_MgnOxZ7PGQmg,3948
169
- sknetwork/gnn/base_activation.py,sha256=XogZDdhl3QDyADvWJhMTGSnVYsKPI3PDHPu89yPL1VI,2306
187
+ sknetwork/gnn/base_activation.py,sha256=vSsIQqN8fmLl3W6v6ZlPd0Hy-lfq5iEf_oEQ7yMY-3k,2307
170
188
  sknetwork/gnn/__init__.py,sha256=m2lkDJoJZocJ18scpArsUHuzePZ8Q-ue7D3yXQ5H_RM,519
171
189
  sknetwork/gnn/loss.py,sha256=P0un3iqbnFLrBbYODznVAoU_J2qAZuqHAPLiae0LCtI,5162
172
190
  sknetwork/gnn/activation.py,sha256=D7o4FdbDMrBa2PQrWrvplCf14QOSzZ67d9eWN9bHY-M,3560
173
191
  sknetwork/gnn/neighbor_sampler.py,sha256=TXdMRFwiT8sOdl6-S-flQZ5Rjrx1hwTzFqqiR_8PHTQ,1864
174
192
  sknetwork/gnn/utils.py,sha256=A0kuBe29Eg90cEzRAgw4YmnShnzoq6ai_-01IBAf63g,4349
175
- sknetwork/gnn/gnn_classifier.py,sha256=yvh5P3T3AmpEI8xNBERSkLumifBzz6gRLgQQ5aaASd0,12610
193
+ sknetwork/gnn/gnn_classifier.py,sha256=ofqyqkBrRSAbDK5fr6cWjZVP6DMVhEQZr2wiF0i7y64,12617
176
194
  sknetwork/gnn/layer.py,sha256=i0XiAutNal9ImAGqMtSLVEq_QiqZoGAlAWwlSGrNY8Q,5526
177
195
  sknetwork/gnn/optimizer.py,sha256=vsCgfPoJtYMWREnR4tBsfPb0Ed-rHR0poBr-75lE57s,5782
178
196
  sknetwork/gnn/base.py,sha256=QZ_pNi2-edAUpu-2C93DWfooS_sHulO6HL6vK108lhc,5708
@@ -208,9 +226,3 @@ sknetwork/data/tests/test_models.py,sha256=oP-X_k0vbSB4CwlV4GQVVBAQ9uI_8frFicde5
208
226
  sknetwork/data/tests/test_API.py,sha256=LUWZX9pPpZLVuzgAz85sJk6tgKDaXKqc2Fhp91x-E6c,963
209
227
  sknetwork/data/tests/test_base.py,sha256=b-0CM1ResLoJXg6-jGmBWFii5JtZrXAhfYiAG70dW1w,312
210
228
  sknetwork/data/tests/test_load.py,sha256=9EXkw2TbDAUmpwE-kUTgxZieB4XDLF5drLVvyugX96M,3550
211
- scikit_network-0.33.0.dist-info/RECORD,,
212
- scikit_network-0.33.0.dist-info/LICENSE,sha256=zKbJMpbSKgGEUaNr_fKgvJrvw_3W4gnJs5XdLCK5Sxo,1622
213
- scikit_network-0.33.0.dist-info/WHEEL,sha256=ANsQuXN11eSX1PFSD4UW7vUcpdaOm9VfCH5CSYqUC20,109
214
- scikit_network-0.33.0.dist-info/AUTHORS.rst,sha256=MIEWJmfpIVmBPo03Xl_6j8kg7cjXicp9WVRQpuVDj9o,923
215
- scikit_network-0.33.0.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
216
- scikit_network-0.33.0.dist-info/METADATA,sha256=KSryYoew7nGXScWKHnpxhItQbesZ7N1FBL7mKyZMg_U,14471
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.3.0)
2
+ Generator: setuptools (80.4.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp311-cp311-macosx_11_0_arm64
5
5
 
@@ -55,7 +55,7 @@ class DiffusionClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = diffusion.fit_predict(adjacency, labels)
58
- >>> round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.97
60
60
 
61
61
  References
@@ -55,7 +55,7 @@ class NNClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = classifier.fit_predict(adjacency, labels)
58
- >>> round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.82
60
60
  """
61
61
  def __init__(self, n_neighbors: int = 3, embedding_method: Optional[BaseEmbedding] = None, normalize: bool = True):
@@ -34,7 +34,7 @@ def get_accuracy_score(labels_true: np.ndarray, labels_pred: np.ndarray) -> floa
34
34
  >>> import numpy as np
35
35
  >>> labels_true = np.array([0, 0, 1, 1])
36
36
  >>> labels_pred = np.array([0, 0, 0, 1])
37
- >>> round(get_accuracy_score(labels_true, labels_pred), 2)
37
+ >>> float(round(get_accuracy_score(labels_true, labels_pred), 2))
38
38
  0.75
39
39
  """
40
40
  check_vector_format(labels_true, labels_pred)
@@ -105,7 +105,7 @@ def get_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, return_precis
105
105
  >>> import numpy as np
106
106
  >>> labels_true = np.array([0, 0, 1, 1])
107
107
  >>> labels_pred = np.array([0, 0, 0, 1])
108
- >>> round(get_f1_score(labels_true, labels_pred), 2)
108
+ >>> float(round(get_f1_score(labels_true, labels_pred), 2))
109
109
  0.67
110
110
  """
111
111
  values = set(labels_true[labels_true >= 0]) | set(labels_pred[labels_pred >= 0])
@@ -188,7 +188,7 @@ def get_average_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, avera
188
188
  >>> import numpy as np
189
189
  >>> labels_true = np.array([0, 0, 1, 1])
190
190
  >>> labels_pred = np.array([0, 0, 0, 1])
191
- >>> round(get_average_f1_score(labels_true, labels_pred), 2)
191
+ >>> float(round(get_average_f1_score(labels_true, labels_pred), 2))
192
192
  0.73
193
193
  """
194
194
  if average == 'micro':
@@ -51,7 +51,7 @@ class PageRankClassifier(RankClassifier):
51
51
  >>> labels_true = graph.labels
52
52
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
53
53
  >>> labels_pred = pagerank.fit_predict(adjacency, labels)
54
- >>> np.round(np.mean(labels_pred == labels_true), 2)
54
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
55
55
  0.97
56
56
 
57
57
  References
@@ -58,7 +58,7 @@ class Propagation(BaseClassifier):
58
58
  >>> labels_true = graph.labels
59
59
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
60
60
  >>> labels_pred = propagation.fit_predict(adjacency, labels)
61
- >>> np.round(np.mean(labels_pred == labels_true), 2)
61
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
62
62
  0.94
63
63
 
64
64
  References