scikit-network 0.33.0__cp310-cp310-macosx_11_0_arm64.whl → 0.33.1__cp310-cp310-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (43) hide show
  1. scikit_network-0.33.1.dist-info/METADATA +120 -0
  2. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/RECORD +42 -30
  3. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/WHEEL +1 -1
  4. sknetwork/classification/diffusion.py +1 -1
  5. sknetwork/classification/knn.py +1 -1
  6. sknetwork/classification/metrics.py +3 -3
  7. sknetwork/classification/pagerank.py +1 -1
  8. sknetwork/classification/propagation.py +1 -1
  9. sknetwork/classification/vote.cpp +27581 -0
  10. sknetwork/classification/vote.cpython-310-darwin.so +0 -0
  11. sknetwork/clustering/leiden_core.cpp +31572 -0
  12. sknetwork/clustering/leiden_core.cpython-310-darwin.so +0 -0
  13. sknetwork/clustering/louvain.py +3 -3
  14. sknetwork/clustering/louvain_core.cpp +31217 -0
  15. sknetwork/clustering/louvain_core.cpython-310-darwin.so +0 -0
  16. sknetwork/clustering/metrics.py +1 -1
  17. sknetwork/clustering/tests/test_louvain.py +6 -0
  18. sknetwork/gnn/gnn_classifier.py +1 -1
  19. sknetwork/hierarchy/metrics.py +3 -3
  20. sknetwork/hierarchy/paris.cpp +37883 -0
  21. sknetwork/hierarchy/paris.cpython-310-darwin.so +0 -0
  22. sknetwork/linalg/diteration.cpp +27397 -0
  23. sknetwork/linalg/diteration.cpython-310-darwin.so +0 -0
  24. sknetwork/linalg/push.cpp +31087 -0
  25. sknetwork/linalg/push.cpython-310-darwin.so +0 -0
  26. sknetwork/linalg/sparse_lowrank.py +1 -1
  27. sknetwork/ranking/betweenness.cpp +9704 -0
  28. sknetwork/ranking/betweenness.cpython-310-darwin.so +0 -0
  29. sknetwork/topology/cliques.cpp +32580 -0
  30. sknetwork/topology/cliques.cpython-310-darwin.so +0 -0
  31. sknetwork/topology/core.cpp +30666 -0
  32. sknetwork/topology/core.cpython-310-darwin.so +0 -0
  33. sknetwork/topology/cycles.py +1 -1
  34. sknetwork/topology/minheap.cpp +27329 -0
  35. sknetwork/topology/minheap.cpython-310-darwin.so +0 -0
  36. sknetwork/topology/triangles.cpp +8891 -0
  37. sknetwork/topology/triangles.cpython-310-darwin.so +0 -0
  38. sknetwork/topology/weisfeiler_lehman_core.cpp +27632 -0
  39. sknetwork/topology/weisfeiler_lehman_core.cpython-310-darwin.so +0 -0
  40. scikit_network-0.33.0.dist-info/METADATA +0 -517
  41. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/AUTHORS.rst +0 -0
  42. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/LICENSE +0 -0
  43. {scikit_network-0.33.0.dist-info → scikit_network-0.33.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,120 @@
1
+ Metadata-Version: 2.1
2
+ Name: scikit-network
3
+ Version: 0.33.1
4
+ Summary: Graph algorithms
5
+ Author: Scikit-network team
6
+ Maintainer-email: Thomas Bonald <bonald@enst.fr>
7
+ License: BSD License
8
+ Project-URL: Repository, https://github.com/sknetwork-team/scikit-network
9
+ Project-URL: Documentation, https://scikit-network.readthedocs.io/
10
+ Project-URL: Changelog, https://github.com/sknetwork-team/scikit-network/blob/master/HISTORY.rst
11
+ Keywords: sknetwork
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Information Technology
15
+ Classifier: Intended Audience :: Education
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: License :: OSI Approved :: BSD License
18
+ Classifier: Natural Language :: English
19
+ Classifier: Programming Language :: Cython
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Requires-Python: >=3.9
25
+ Description-Content-Type: text/x-rst
26
+ License-File: LICENSE
27
+ License-File: AUTHORS.rst
28
+ Requires-Dist: numpy >=1.22.4
29
+ Requires-Dist: scipy >=1.7.3
30
+ Provides-Extra: test
31
+ Requires-Dist: pytest ; extra == 'test'
32
+ Requires-Dist: note ; extra == 'test'
33
+ Requires-Dist: pluggy >=0.7.1 ; extra == 'test'
34
+
35
+ .. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
36
+ :align: right
37
+ :width: 150px
38
+ :alt: logo sknetwork
39
+
40
+
41
+
42
+ .. image:: https://img.shields.io/pypi/v/scikit-network.svg
43
+ :target: https://pypi.python.org/pypi/scikit-network
44
+
45
+ .. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
46
+ :target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
47
+
48
+ .. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
49
+ :target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
50
+ :alt: Documentation Status
51
+
52
+ .. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
53
+ :target: https://codecov.io/gh/sknetwork-team/scikit-network
54
+
55
+ .. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
56
+ :target: https://pypi.python.org/pypi/scikit-network
57
+
58
+ Free software library in Python for machine learning on graphs:
59
+
60
+ * Memory-efficient representation of graphs as sparse matrices in scipy_ format
61
+ * Fast algorithms
62
+ * Simple API inspired by scikit-learn_
63
+
64
+ .. _scipy: https://www.scipy.org
65
+ .. _scikit-learn: https://scikit-learn.org/
66
+
67
+ Resources
68
+ ---------
69
+
70
+ * Free software: BSD license
71
+ * GitHub: https://github.com/sknetwork-team/scikit-network
72
+ * Documentation: https://scikit-network.readthedocs.io
73
+
74
+ Quick start
75
+ -----------
76
+
77
+ Install scikit-network:
78
+
79
+ .. code-block:: console
80
+
81
+ $ pip install scikit-network
82
+
83
+ Import scikit-network::
84
+
85
+ import sknetwork
86
+
87
+ Overview
88
+ --------
89
+
90
+ An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
91
+
92
+ Documentation
93
+ -------------
94
+
95
+ The documentation is structured as follows:
96
+
97
+ * `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
98
+ * `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
99
+ * `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
100
+ * `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
101
+ * `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
102
+
103
+ Citing
104
+ ------
105
+
106
+ If you want to cite scikit-network, please refer to the publication in
107
+ the `Journal of Machine Learning Research <https://jmlr.org>`_:
108
+
109
+ .. code::
110
+
111
+ @article{JMLR:v21:20-412,
112
+ author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
113
+ title = {Scikit-network: Graph Analysis in Python},
114
+ journal = {Journal of Machine Learning Research},
115
+ year = {2020},
116
+ volume = {21},
117
+ number = {185},
118
+ pages = {1-6},
119
+ url = {http://jmlr.org/papers/v21/20-412.html}
120
+ }
@@ -1,19 +1,26 @@
1
+ scikit_network-0.33.1.dist-info/RECORD,,
2
+ scikit_network-0.33.1.dist-info/LICENSE,sha256=zKbJMpbSKgGEUaNr_fKgvJrvw_3W4gnJs5XdLCK5Sxo,1622
3
+ scikit_network-0.33.1.dist-info/WHEEL,sha256=1MPyPs9-MLQHZykOzeBqIZBROBGKPY6rzfLYqQeUsL8,109
4
+ scikit_network-0.33.1.dist-info/AUTHORS.rst,sha256=MIEWJmfpIVmBPo03Xl_6j8kg7cjXicp9WVRQpuVDj9o,923
5
+ scikit_network-0.33.1.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
6
+ scikit_network-0.33.1.dist-info/METADATA,sha256=_6-yEkWqRiHUm5vhsIL4y6A9A-Jv6LobmkJxqZZwQfo,4404
1
7
  sknetwork/log.py,sha256=ORInAVh_cWIfxwaFWSblSRxwT-jG05XPRnYTTAHSKy4,443
2
8
  sknetwork/__init__.py,sha256=SZAI5otUFjW-KNf_HNvDY7g_mjFAcPTNg5SIcBjU4WM,533
3
9
  sknetwork/test_log.py,sha256=V4t6Ggi_fh8px5Iq7CDLlJvbXfz24macQ43Ss0tPb5I,319
4
10
  sknetwork/test_base.py,sha256=PB_kJ7cNvhBXmlL-KzyLu2hf6mG7b1OQY759aYplW4k,912
5
11
  sknetwork/sknetwork.py,sha256=VYoI-gwqwBKPx84cA0KnYDRofrgIXs8xtASD2nu5fE0,44
6
12
  sknetwork/base.py,sha256=XJJ6MicVcSiQBWQ9fYlmUJYkXq0PRldQzExhZKuaFBo,1951
7
- sknetwork/classification/metrics.py,sha256=aaIfYddIAJsGXpXJ6TGcQScjzyJOo8kiWgcIE1kefSM,6806
13
+ sknetwork/classification/metrics.py,sha256=NHRldLX4fnZ9FrfrEgQUEjyxYivu7rIqTGdiFDpipws,6827
8
14
  sknetwork/classification/vote.pyx,sha256=Bbf74XCPH8uYDP-SrXRaA7k6Ax2x-wDzpbHMeg9le7A,1584
9
- sknetwork/classification/diffusion.py,sha256=h4l43kA_MR_hMthc5mqW__5jTkQq9Ne9Q_H8bLPhM6Q,5564
15
+ sknetwork/classification/diffusion.py,sha256=8OTfIVQcBCAC3rgKLsUpwDNoSwXQxrSzUT57vu0sYKY,5571
10
16
  sknetwork/classification/__init__.py,sha256=yVv7wSuUfNLxeNBF-AhWCJys3C-XatPtMzi1wyp9Bz4,475
11
17
  sknetwork/classification/base_rank.py,sha256=RGElYD6PuP4nhnenNnzpOiBojs49Afg5ahjBFEi566I,4522
12
- sknetwork/classification/propagation.py,sha256=0Cb1-mIMcPoes5oXR7BqhqEmlFMEMcTOMy_BNjX0lvY,5793
13
- sknetwork/classification/vote.cpython-310-darwin.so,sha256=BiwXtF8QkdzMgEBIFNIfGye5tDRJVUQvNgyJ7oOFjBo,212568
14
- sknetwork/classification/pagerank.py,sha256=CBUeCqZisr6s5lh3VXYWA6rbiPdLyNzuSMbjazy80eA,2586
18
+ sknetwork/classification/propagation.py,sha256=1NkRPE5v59IgJGlnQLQh77XC0Q7Ph3MrPm7BdoFZ6Ek,5800
19
+ sknetwork/classification/vote.cpython-310-darwin.so,sha256=Q-CwBgkSPUC28WJr62-H-ydFxI8fn3p0BoVtqsRquz8,212584
20
+ sknetwork/classification/pagerank.py,sha256=3xHBcuiwMZb-xKpDQ9KIgRtSGE_vbpskVyFK3hkyWcs,2593
15
21
  sknetwork/classification/base.py,sha256=WS-QHh4553Dr1VwJqjggSqO6hHFIAs50oPah_L23eFo,4290
16
- sknetwork/classification/knn.py,sha256=fLRZF2jhHq105QHMeW328JcF71wTaGP-ukmbJdyiw44,5333
22
+ sknetwork/classification/vote.cpp,sha256=gv2fAu73sDOtb1Ypr4FC1qvpG5XnnUPN7OpB_fp-nbg,1020376
23
+ sknetwork/classification/knn.py,sha256=MpF1y3oH-ZDV3Pxqu8KGW7n7Eoh4WtUJ1Td4j7wXWI0,5340
17
24
  sknetwork/classification/tests/test_metrics.py,sha256=eBs-5uAEz2s8gukMyfhQ07GSFoyvxtsslLuc6VgUxBU,2303
18
25
  sknetwork/classification/tests/__init__.py,sha256=sy9uRiPhYG2i7uqM3P07-VUf4UcZEHeOoH9BvKCpU3s,31
19
26
  sknetwork/classification/tests/test_pagerank.py,sha256=5IJpYqnz31cWT0iXjTdo1xE8Kfj3YTK0cSZnnTlyJBs,620
@@ -28,21 +35,26 @@ sknetwork/visualization/colors.py,sha256=DjcXt9aMgLan7bRg7TZI8m_8SLWQOZ-g2HoguB1
28
35
  sknetwork/visualization/tests/test_graphs.py,sha256=g2YPJn9m8wD-UHZ_BL37xuJqE7ygOx3EztKLVVqphYk,9421
29
36
  sknetwork/visualization/tests/__init__.py,sha256=yOVrqUD9UuI_HdYuqRP5PS7QhS-pO4RE_Ls5PLiIC_w,30
30
37
  sknetwork/visualization/tests/test_dendrograms.py,sha256=UuS3VZ5XnV1u5BtW-QKbFv0wavllQpbgtsOIe5XvTlg,2466
31
- sknetwork/topology/minheap.cpython-310-darwin.so,sha256=UdmIAA1DFOK4oUdSlDgchcUKUGJ_5NYRP5MrlZ4RuUI,195008
38
+ sknetwork/topology/minheap.cpython-310-darwin.so,sha256=rAhT17NsW5PosVC1t-baVTP9AXIYvMQTLehnYlUfjso,195040
39
+ sknetwork/topology/core.cpp,sha256=Fyj1ogwQ6V1dFR8zeoz8fTRYLmx_4-hAJg02FhjuOmw,1160767
32
40
  sknetwork/topology/cliques.pyx,sha256=BuezL9-zJOicL1zffkpcf8uIEgqhik6dgK_agXX4gaU,4510
41
+ sknetwork/topology/triangles.cpp,sha256=U-VMrX5X4ZjMRtNVKtk6XW163HHcZ8FI6_tzwMvkScc,352611
33
42
  sknetwork/topology/minheap.pyx,sha256=iFWpXPYSAmWjYphYByAM6auUj1XHly6QovZvuy2Lpyc,3310
34
43
  sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=fi0rRrXHVZuIQYzPDcPCamCRQLKquchjV3N9dNuQ1Pk,3034
35
44
  sknetwork/topology/__init__.py,sha256=T2W2cWwcUdhfA86VuZAZqksbrgct4hiyp0HuizEnLg4,534
36
- sknetwork/topology/cycles.py,sha256=EV2UMDktEGdJxEmAZyyjBMttJ6DqYvvfZ6mqwIQqFu0,9003
45
+ sknetwork/topology/cycles.py,sha256=KOK6EQYwTTA9GXEJGmFyRYLjiwU21wV-molT3Lap_lQ,9043
37
46
  sknetwork/topology/weisfeiler_lehman.py,sha256=ACJDAmZbwDrZAvO-LsHnRaef-8KX7esM1LxVUglXtLw,4308
38
- sknetwork/topology/triangles.cpython-310-darwin.so,sha256=8dfD4iLQg-dmuVg_bwBdNmKdbHLRFqxSUtqsbV6QCHQ,106160
47
+ sknetwork/topology/triangles.cpython-310-darwin.so,sha256=TQ8opHEP8SDH6xFrFH8_ZAoEevOhggrcNgzqGx_ZIIo,106208
39
48
  sknetwork/topology/minheap.pxd,sha256=Y_oRh8H-sNZYAWv0XM9T-ZLzYBhb5TrBM4VjlH-ZqPQ,564
40
49
  sknetwork/topology/structure.py,sha256=CDfN7SL70wTHm2HPfqd7ncsZEaV1SQO3tJKYl1CdtNI,7285
50
+ sknetwork/topology/cliques.cpp,sha256=s8vU0nd927wg2bw4JjgmdJTjt-x4Rx36ksH2HLCFWFM,1251558
51
+ sknetwork/topology/minheap.cpp,sha256=2A0PwZJ1yQBzvTGpPIWTgZOX28dIdHzMxAmqwBXtJRo,1013630
41
52
  sknetwork/topology/triangles.pyx,sha256=JOkA9k0CQTsT7zdPaEoW7-PdHYuoXHsB0XSuPKFLJSI,4349
42
- sknetwork/topology/weisfeiler_lehman_core.cpython-310-darwin.so,sha256=JHG2p1Irw8seGQxgQc9yyrndhj6pUBkkV-RI_ANrmFE,213872
53
+ sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=OB8H85GCp-p06itVcwZ4jG-yVK-keLSRTuuPpZwBVT4,1024428
54
+ sknetwork/topology/weisfeiler_lehman_core.cpython-310-darwin.so,sha256=RwuBHR-cNgsffijScGRP84qbm79hYB9G_kfl8rH6Pso,214432
43
55
  sknetwork/topology/core.pyx,sha256=HwGbC84p9F9fkEw8ouNNMQtlYrAoEWhQS5hU9Cf1h94,2465
44
- sknetwork/topology/cliques.cpython-310-darwin.so,sha256=0dZBSNa1CApxseMC0LIpiyHYRUPucNhDvVW9WCJF_z8,249280
45
- sknetwork/topology/core.cpython-310-darwin.so,sha256=DoyVbrh-mS20fCKNpogg4-8WMUivQj6qeLW5iMSTqRo,209928
56
+ sknetwork/topology/cliques.cpython-310-darwin.so,sha256=ZF7L4iZLPUysGnnnqC1rwZqseqXASsWxVo-qTJ5LBm4,249392
57
+ sknetwork/topology/core.cpython-310-darwin.so,sha256=c6zyTyepomPLfA8evN3kKKcK2bCwdU4bp9aIHT18Xlw,210008
46
58
  sknetwork/topology/tests/test_cycles.py,sha256=KZzMKS5ILfC_J0Fj5MFlEOL7Z9nOnlRfo4TnGdXEPWY,3150
47
59
  sknetwork/topology/tests/test_structure.py,sha256=CzcZ1LxV-mI_buxz6LcTeCy3h5ofMLfOu2HUHwNSMi8,3948
48
60
  sknetwork/topology/tests/test_wl.py,sha256=EJY_4xTi_-qzFsqZJkgnwLteoakdkpRAczzdMCGeXe0,2218
@@ -50,13 +62,14 @@ sknetwork/topology/tests/test_core.py,sha256=Zh9IYHGfqDqIlLycucLzqZbHvYmU-IB-J03
50
62
  sknetwork/topology/tests/__init__.py,sha256=9lKrPX4BnSJbK-VlDi9TsmAgDwqF3H423KhJ1u1Uaos,25
51
63
  sknetwork/topology/tests/test_triangles.py,sha256=9g3nml3TNOiIFHLJDih5PTxWunDJemmpLQy2tmoQw4Y,1275
52
64
  sknetwork/topology/tests/test_cliques.py,sha256=t97pKDMxT9RC-_YsgY-c8tQxrekyAE6i2_guvxAYHhQ,838
65
+ sknetwork/ranking/betweenness.cpp,sha256=MooiejVxmUa2A0jDw_vrOXwqf1Gbi2tnNdbGh6dLpfc,378933
53
66
  sknetwork/ranking/postprocess.py,sha256=-3wqBPvTM7jDdfTytINEXxM2eugJjbCZRLiLy9pkmac,919
54
67
  sknetwork/ranking/__init__.py,sha256=UeYw8y0HFoBnPziqnVYXSt8jqFtkDgkCCMPhYTEIaF0,348
55
68
  sknetwork/ranking/closeness.py,sha256=pETMD8uaXfADZhmzVaH4YIGX57S2vvhzVInONaAwBUM,2840
56
69
  sknetwork/ranking/katz.py,sha256=uPyXkEL73_6MS4dP5XTSVSIrD5h5QJipVTVEa0L_y48,2535
57
70
  sknetwork/ranking/hits.py,sha256=L39a9Ze3ITUbikmNhA_Lx-V5s_RQr0XnNkOsIgG8m98,2761
58
71
  sknetwork/ranking/pagerank.py,sha256=Qt2SOUoLO76JVDnT4-x-b-hah9IlaHECsYNu45AnpY8,4749
59
- sknetwork/ranking/betweenness.cpython-310-darwin.so,sha256=kyLr8IVFc6B8wupumDelAg-bF3gJG4DPhIwPrCnWKEQ,127184
72
+ sknetwork/ranking/betweenness.cpython-310-darwin.so,sha256=XVvX9onMNXuHy5-Chte_tTdw4s22SuncvBjLORXd5XE,127568
60
73
  sknetwork/ranking/base.py,sha256=Jo9LBK3TfXiYdxYqSmfeVC8O2D6fA5L-SRzQh3eqtnA,1512
61
74
  sknetwork/ranking/betweenness.pyx,sha256=Pq9EqOHV0P8TDN_w9siP3h8HyechaAErysNwz0JT0ow,3087
62
75
  sknetwork/ranking/tests/test_postprocess.py,sha256=jPLJKJYEltFpY2uct0JyJEkD1haOyNU8h_1KwiLMgZM,703
@@ -68,16 +81,18 @@ sknetwork/ranking/tests/test_betweenness.py,sha256=8XA1ycLQQ7-Cm3CBfkcSDQOvD6xag
68
81
  sknetwork/ranking/tests/test_hits.py,sha256=zStzrWZ-pv2Nsd-pB282FgW3KAn1TyKjz_l85tJaPJ0,491
69
82
  sknetwork/linalg/diteration.pyx,sha256=gk9W6SwIxXgmjQujXWBUIoM_OwevjE3jTzFrIEkGnWI,1384
70
83
  sknetwork/linalg/__init__.py,sha256=awBDY2wWiO40L5eED3H8K1BM8qtHz7aQRv1p3PcSK94,533
71
- sknetwork/linalg/diteration.cpython-310-darwin.so,sha256=zAliu_tnBx4p0rfyDvwcnKx830ITYP-COULxk739QUQ,192336
84
+ sknetwork/linalg/push.cpp,sha256=ZeHuPD5AnipqbSVbKl2cM8VftV2hfRgO1jMZH-VrysQ,1184690
85
+ sknetwork/linalg/diteration.cpython-310-darwin.so,sha256=j1REJCHX6mHIQhGlDQWX7FP4jmuZVDFMXps-u27zdx8,192336
72
86
  sknetwork/linalg/laplacian.py,sha256=_gQr8YLqMUtK_IMNgvJoQX7-uODVlvCVmc-oTsgw7MA,401
73
87
  sknetwork/linalg/eig_solver.py,sha256=yq_prP5p1jbALby69wkzzH0vYKc1btmRQoiVUtTh-eA,2700
74
88
  sknetwork/linalg/push.pyx,sha256=caxCZa5h9zsHhxJgDBaaetqpB0wUbFLdOUwHwj0q_t0,2358
75
89
  sknetwork/linalg/ppr_solver.py,sha256=mQkCnik-vvv_oFa9n1vtMzxgvi78qW-QQONdcmC9CXA,6533
76
- sknetwork/linalg/sparse_lowrank.py,sha256=LUhbqa01p51SYhoIb2Dmx2b9fMc-iOu69CAVHscR2Xs,5028
90
+ sknetwork/linalg/sparse_lowrank.py,sha256=AHIP-eErNKm1EtuulbNo8ct2Ux-Xe2YdvWUNPez1r-M,5035
77
91
  sknetwork/linalg/basics.py,sha256=8AFph_1G5SZP_24jrIv6qIWooO0UMglL4jMgx3ZdYIQ,1142
78
92
  sknetwork/linalg/normalizer.py,sha256=kOFDPPdiGqG-KcWNiRwbS_y_nmw5fTKYTvuj_x8yBd0,2473
93
+ sknetwork/linalg/diteration.cpp,sha256=YPKWFVNTav3BLjc7i_Dk6rCowImMdpBfhiTOCz1Vzec,1017186
79
94
  sknetwork/linalg/operators.py,sha256=fxitao4UYW4Hq7B258T_cAq2H3R2FN1-mwdy138w8fE,7432
80
- sknetwork/linalg/push.cpython-310-darwin.so,sha256=d5AjLy8cN1rpVRnLcRZGwnuwulb5YlCR7ymICkey5ug,212168
95
+ sknetwork/linalg/push.cpython-310-darwin.so,sha256=6V4sAJNI4Y3BNm1wEfRMnYfwZpxgo3Yj88D5BTzv7RE,229064
81
96
  sknetwork/linalg/polynome.py,sha256=_dP9Nu_6XCV0-WEQJ7E5nG6pxZWMtbj-LREu0vtxeWk,2125
82
97
  sknetwork/linalg/svd_solver.py,sha256=vhcXwCsOar0cYDPZo7IF_ulRDsGGvZzePIeSpSCVgLk,2681
83
98
  sknetwork/linalg/tests/test_svd.py,sha256=eLRmSiHt8uWzknImZtRSZmJC8OX0YDgUt9-8PePc3OA,1285
@@ -89,12 +104,13 @@ sknetwork/linalg/tests/test_ppr.py,sha256=Bh1n7W3We2N8u1RIWPyE5QQGE7esnNoUOLLRCL
89
104
  sknetwork/linalg/tests/test_laplacian.py,sha256=B6UhJOmYUdNlXwNoxLLtb--nv9mx96Orl-W1Vl6PLyM,434
90
105
  sknetwork/linalg/tests/test_eig.py,sha256=lUAgo4UfWuuSG5DhSk5SIT7ToLDgPG-5JCgmOe_M7Vw,1504
91
106
  sknetwork/linalg/tests/test_normalization.py,sha256=nASuMYxKcsWj3gk9DF5uPKYOw93oJ-UQUWi99Fw3kmE,887
92
- sknetwork/hierarchy/metrics.py,sha256=_wYGKx_VDE_sfbg-uUEFMhOjSLFqzC8rFHjJo1hdVL8,8046
107
+ sknetwork/hierarchy/metrics.py,sha256=rgD2izsy6HhIYpYE8kftvg4X1gDS780UUGQBlboksXQ,8067
93
108
  sknetwork/hierarchy/paris.pyx,sha256=DX8p3LOtrNxyQ8pOZZE_Q2b5rBKjYwKArsmMZbvb0xY,11813
94
- sknetwork/hierarchy/paris.cpython-310-darwin.so,sha256=awxfSA-5WJu6YVz1jL0lrW7L6e1OyyXw5Os4HgmD2Rs,292504
109
+ sknetwork/hierarchy/paris.cpython-310-darwin.so,sha256=fACVrGxv23CMWlO3pdeCx-4hcdpSSxr_FMLhEijLiGk,292616
95
110
  sknetwork/hierarchy/postprocess.py,sha256=d1Fll3eqDIjiMf1c5nGuKF6I0fN93elnglkp59LARGU,12072
96
111
  sknetwork/hierarchy/__init__.py,sha256=YgE2eqnwS8Q2NWP9pNY-M1bpdxRn5-C-CdykydNW7iM,412
97
112
  sknetwork/hierarchy/louvain_hierarchy.py,sha256=PhetHYpmsnI7yC-rbYAUXhNiBV9QNKMDbrfz9l0fskc,9846
113
+ sknetwork/hierarchy/paris.cpp,sha256=I4WmBNCN9B8UQs38IPSU5wmQd0W4nPN4xWaP7i6Ii9E,1500583
98
114
  sknetwork/hierarchy/base.py,sha256=MoxBiSsEJOq77YmXj_bpf4vUiPLSpQn8fnUX7YIqyd8,2693
99
115
  sknetwork/hierarchy/tests/test_postprocess.py,sha256=OSrWE0gT0AcPI4LKmUL-Blfg5ErxnjS3d4rPNnA63_Y,2209
100
116
  sknetwork/hierarchy/tests/test_metrics.py,sha256=IHlsdJXeHqPU8_SBm4eIXua5ZhyRIAUH4cAtVNNR7Ng,3160
@@ -128,23 +144,25 @@ sknetwork/embedding/tests/test_force_atlas.py,sha256=-YM4HSF5Nvpm8e4SoCHiA2o7yAk
128
144
  sknetwork/embedding/tests/test_random_projection.py,sha256=2bUOCw66tUKP775pGPd5STj0UmRuwvBtI5CgY8HeHKI,1193
129
145
  sknetwork/embedding/tests/test_spectral.py,sha256=CH-F8fM3cYoxhjpob1m7wZV-tEr8XFD6Lxa_bFsLv3A,3897
130
146
  sknetwork/clustering/leiden_core.pyx,sha256=7HGdeX6iMnSs52Px44-__kN9JhHueaQUvCmrkIGTalg,4300
131
- sknetwork/clustering/metrics.py,sha256=VJPgmB1OvxA0SOaIQIGyJDUP1cgWFElnfdVaQ2krYrg,3060
147
+ sknetwork/clustering/metrics.py,sha256=qnQo70cLs_Rebj3Z1cxmktGw1qQGAAA8yzqj-lC8Tss,3067
132
148
  sknetwork/clustering/leiden.py,sha256=yL5N-9ny6XAj6La2-PBcsieRl4SVx8wxwVGvS1tMr-o,9682
133
- sknetwork/clustering/leiden_core.cpython-310-darwin.so,sha256=nJc8asB5FRmgLKnukCnC_uIamA8DCNfR8VIgK2ZXfpY,250704
149
+ sknetwork/clustering/louvain_core.cpp,sha256=18UcxEuafEuqmULqsLBC_VFXxRpwwAJ3kVLrJ9zVqow,1182950
150
+ sknetwork/clustering/leiden_core.cpython-310-darwin.so,sha256=p6zORrefYV_xzUMBza7tLnL4hN5BOrqY1PgO6Qi6QDw,250720
134
151
  sknetwork/clustering/postprocess.py,sha256=4hx5VTQmqS2Ld2P2kvXoyvVanXVg3bMA619IHS2jWHM,2039
135
152
  sknetwork/clustering/__init__.py,sha256=Ab-rmioxlaMoghrzd1RMr-L4zyrqIM8XznqrjBPGE28,435
136
153
  sknetwork/clustering/kcenters.py,sha256=RFEx35vPUm9a4mzCbDwv-PmePCsdQwbuKAeaRizBMxY,8689
137
- sknetwork/clustering/louvain.py,sha256=nFKEsrEuOH2k9iruT7SGo0kGDtcYzW2Xn7wBAxe767o,10825
154
+ sknetwork/clustering/louvain.py,sha256=4IfTjO_WbYi5XfJWC86kOswOPRhE4LSufsiRBcd52nU,10825
138
155
  sknetwork/clustering/propagation_clustering.py,sha256=ABZZtyojkrXfzsMwEcxqphzHgFC5q8sECOyanvK9D3o,3781
139
156
  sknetwork/clustering/louvain_core.pyx,sha256=pMqt7WukTkBOpjofmiXMYHqRX69mkquEMapDdoskiQM,4089
140
157
  sknetwork/clustering/base.py,sha256=dCF4K3nbKY24kzFeDAy7Fp-b9jDBzEoG3jj1ozuu_W8,5932
141
- sknetwork/clustering/louvain_core.cpython-310-darwin.so,sha256=zqhCcUibL4C5kBcj60Eij4Jgv-21cBkzojMSfE-L5Ek,250048
158
+ sknetwork/clustering/leiden_core.cpp,sha256=6-_fEVvJ0nGhgmWpVmyjJ9gND9vRwFKU-Qz9cq7JjqQ,1202386
159
+ sknetwork/clustering/louvain_core.cpython-310-darwin.so,sha256=SP58uzqodIN62h0MR6vWEf2rf1J5ATz-i9OEzlPt7-g,250064
142
160
  sknetwork/clustering/tests/test_postprocess.py,sha256=WSmAlqB-6Nw3eoL3NaOyNlpPr7GVnNnllkPVdyE9rXI,1378
143
161
  sknetwork/clustering/tests/test_kcenters.py,sha256=laO1QSJ-yGlroB5XtrC15jbRK0krYZK5sIRDHBUZL30,1977
144
162
  sknetwork/clustering/tests/test_metrics.py,sha256=fbVYg2s8DXQdiYHUNuVjFMtEJg4od1Vej25mgHhGDu0,1818
145
163
  sknetwork/clustering/tests/__init__.py,sha256=Ta0XKY7pklRvHyUY3Jlow3A2V4REa5geZG74xPz80Tc,27
146
164
  sknetwork/clustering/tests/test_leiden.py,sha256=3KSXvxUP9H4tCJQXUfWt-45-ltyD0FrVgYjXDvRN-yQ,1155
147
- sknetwork/clustering/tests/test_louvain.py,sha256=6eQPoKodZLBafNgpX1_zBzPzGY5w7QKzWsLuoEVZEaE,4678
165
+ sknetwork/clustering/tests/test_louvain.py,sha256=R9GI3IymlwJGHD5owOJZSrYJ5pJp9WdRWH2xnNO2QC8,4871
148
166
  sknetwork/clustering/tests/test_API.py,sha256=Eez17EngcirVHVVoybClXS5314_Yz54JFzXldubEdgg,1528
149
167
  sknetwork/linkpred/nn.py,sha256=tY-qYlp0j9WCvdoHkZ9EKzCD_GlDu7tQpKD7-aC20rE,4030
150
168
  sknetwork/linkpred/__init__.py,sha256=pFtM52OhDK69ceeiRyH1MDse0EbD8fqyhOsWWih47gM,72
@@ -172,7 +190,7 @@ sknetwork/gnn/loss.py,sha256=P0un3iqbnFLrBbYODznVAoU_J2qAZuqHAPLiae0LCtI,5162
172
190
  sknetwork/gnn/activation.py,sha256=D7o4FdbDMrBa2PQrWrvplCf14QOSzZ67d9eWN9bHY-M,3560
173
191
  sknetwork/gnn/neighbor_sampler.py,sha256=TXdMRFwiT8sOdl6-S-flQZ5Rjrx1hwTzFqqiR_8PHTQ,1864
174
192
  sknetwork/gnn/utils.py,sha256=A0kuBe29Eg90cEzRAgw4YmnShnzoq6ai_-01IBAf63g,4349
175
- sknetwork/gnn/gnn_classifier.py,sha256=yvh5P3T3AmpEI8xNBERSkLumifBzz6gRLgQQ5aaASd0,12610
193
+ sknetwork/gnn/gnn_classifier.py,sha256=ofqyqkBrRSAbDK5fr6cWjZVP6DMVhEQZr2wiF0i7y64,12617
176
194
  sknetwork/gnn/layer.py,sha256=i0XiAutNal9ImAGqMtSLVEq_QiqZoGAlAWwlSGrNY8Q,5526
177
195
  sknetwork/gnn/optimizer.py,sha256=vsCgfPoJtYMWREnR4tBsfPb0Ed-rHR0poBr-75lE57s,5782
178
196
  sknetwork/gnn/base.py,sha256=QZ_pNi2-edAUpu-2C93DWfooS_sHulO6HL6vK108lhc,5708
@@ -208,9 +226,3 @@ sknetwork/data/tests/test_models.py,sha256=oP-X_k0vbSB4CwlV4GQVVBAQ9uI_8frFicde5
208
226
  sknetwork/data/tests/test_API.py,sha256=LUWZX9pPpZLVuzgAz85sJk6tgKDaXKqc2Fhp91x-E6c,963
209
227
  sknetwork/data/tests/test_base.py,sha256=b-0CM1ResLoJXg6-jGmBWFii5JtZrXAhfYiAG70dW1w,312
210
228
  sknetwork/data/tests/test_load.py,sha256=9EXkw2TbDAUmpwE-kUTgxZieB4XDLF5drLVvyugX96M,3550
211
- scikit_network-0.33.0.dist-info/RECORD,,
212
- scikit_network-0.33.0.dist-info/LICENSE,sha256=zKbJMpbSKgGEUaNr_fKgvJrvw_3W4gnJs5XdLCK5Sxo,1622
213
- scikit_network-0.33.0.dist-info/WHEEL,sha256=fquGSQcrf6h1_O3UYXCYNtgMDyMmum-8SgSiOTkx5gM,109
214
- scikit_network-0.33.0.dist-info/AUTHORS.rst,sha256=MIEWJmfpIVmBPo03Xl_6j8kg7cjXicp9WVRQpuVDj9o,923
215
- scikit_network-0.33.0.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
216
- scikit_network-0.33.0.dist-info/METADATA,sha256=KSryYoew7nGXScWKHnpxhItQbesZ7N1FBL7mKyZMg_U,14471
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.3.0)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp310-cp310-macosx_11_0_arm64
5
5
 
@@ -55,7 +55,7 @@ class DiffusionClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = diffusion.fit_predict(adjacency, labels)
58
- >>> round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.97
60
60
 
61
61
  References
@@ -55,7 +55,7 @@ class NNClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = classifier.fit_predict(adjacency, labels)
58
- >>> round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.82
60
60
  """
61
61
  def __init__(self, n_neighbors: int = 3, embedding_method: Optional[BaseEmbedding] = None, normalize: bool = True):
@@ -34,7 +34,7 @@ def get_accuracy_score(labels_true: np.ndarray, labels_pred: np.ndarray) -> floa
34
34
  >>> import numpy as np
35
35
  >>> labels_true = np.array([0, 0, 1, 1])
36
36
  >>> labels_pred = np.array([0, 0, 0, 1])
37
- >>> round(get_accuracy_score(labels_true, labels_pred), 2)
37
+ >>> float(round(get_accuracy_score(labels_true, labels_pred), 2))
38
38
  0.75
39
39
  """
40
40
  check_vector_format(labels_true, labels_pred)
@@ -105,7 +105,7 @@ def get_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, return_precis
105
105
  >>> import numpy as np
106
106
  >>> labels_true = np.array([0, 0, 1, 1])
107
107
  >>> labels_pred = np.array([0, 0, 0, 1])
108
- >>> round(get_f1_score(labels_true, labels_pred), 2)
108
+ >>> float(round(get_f1_score(labels_true, labels_pred), 2))
109
109
  0.67
110
110
  """
111
111
  values = set(labels_true[labels_true >= 0]) | set(labels_pred[labels_pred >= 0])
@@ -188,7 +188,7 @@ def get_average_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, avera
188
188
  >>> import numpy as np
189
189
  >>> labels_true = np.array([0, 0, 1, 1])
190
190
  >>> labels_pred = np.array([0, 0, 0, 1])
191
- >>> round(get_average_f1_score(labels_true, labels_pred), 2)
191
+ >>> float(round(get_average_f1_score(labels_true, labels_pred), 2))
192
192
  0.73
193
193
  """
194
194
  if average == 'micro':
@@ -51,7 +51,7 @@ class PageRankClassifier(RankClassifier):
51
51
  >>> labels_true = graph.labels
52
52
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
53
53
  >>> labels_pred = pagerank.fit_predict(adjacency, labels)
54
- >>> np.round(np.mean(labels_pred == labels_true), 2)
54
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
55
55
  0.97
56
56
 
57
57
  References
@@ -58,7 +58,7 @@ class Propagation(BaseClassifier):
58
58
  >>> labels_true = graph.labels
59
59
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
60
60
  >>> labels_pred = propagation.fit_predict(adjacency, labels)
61
- >>> np.round(np.mean(labels_pred == labels_true), 2)
61
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
62
62
  0.94
63
63
 
64
64
  References