scikit-network 0.32.1__cp311-cp311-win_amd64.whl → 0.33.1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (67) hide show
  1. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/AUTHORS.rst +0 -1
  2. scikit_network-0.33.1.dist-info/METADATA +120 -0
  3. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/RECORD +66 -66
  4. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/WHEEL +1 -1
  5. sknetwork/__init__.py +1 -1
  6. sknetwork/classification/diffusion.py +4 -3
  7. sknetwork/classification/knn.py +4 -3
  8. sknetwork/classification/metrics.py +3 -3
  9. sknetwork/classification/pagerank.py +1 -1
  10. sknetwork/classification/propagation.py +7 -6
  11. sknetwork/classification/vote.cp311-win_amd64.pyd +0 -0
  12. sknetwork/classification/vote.cpp +684 -677
  13. sknetwork/clustering/leiden.py +2 -1
  14. sknetwork/clustering/leiden_core.cp311-win_amd64.pyd +0 -0
  15. sknetwork/clustering/leiden_core.cpp +713 -702
  16. sknetwork/clustering/louvain.py +6 -6
  17. sknetwork/clustering/louvain_core.cp311-win_amd64.pyd +0 -0
  18. sknetwork/clustering/louvain_core.cpp +713 -702
  19. sknetwork/clustering/metrics.py +1 -1
  20. sknetwork/clustering/tests/test_kcenters.py +5 -37
  21. sknetwork/clustering/tests/test_louvain.py +6 -0
  22. sknetwork/data/__init__.py +1 -1
  23. sknetwork/data/base.py +7 -2
  24. sknetwork/data/load.py +18 -21
  25. sknetwork/data/models.py +15 -15
  26. sknetwork/data/parse.py +19 -17
  27. sknetwork/data/tests/test_API.py +3 -3
  28. sknetwork/data/tests/test_base.py +2 -2
  29. sknetwork/data/tests/test_toy_graphs.py +33 -33
  30. sknetwork/data/toy_graphs.py +35 -43
  31. sknetwork/embedding/base.py +3 -0
  32. sknetwork/embedding/louvain_embedding.py +0 -26
  33. sknetwork/embedding/svd.py +0 -4
  34. sknetwork/embedding/tests/test_louvain_embedding.py +9 -4
  35. sknetwork/embedding/tests/test_svd.py +6 -0
  36. sknetwork/gnn/gnn_classifier.py +1 -1
  37. sknetwork/hierarchy/louvain_hierarchy.py +10 -6
  38. sknetwork/hierarchy/metrics.py +3 -3
  39. sknetwork/hierarchy/paris.cp311-win_amd64.pyd +0 -0
  40. sknetwork/hierarchy/paris.cpp +2651 -2027
  41. sknetwork/hierarchy/paris.pyx +4 -3
  42. sknetwork/hierarchy/tests/test_metrics.py +4 -4
  43. sknetwork/linalg/diteration.cp311-win_amd64.pyd +0 -0
  44. sknetwork/linalg/diteration.cpp +684 -677
  45. sknetwork/linalg/push.cp311-win_amd64.pyd +0 -0
  46. sknetwork/linalg/push.cpp +1769 -1153
  47. sknetwork/linalg/sparse_lowrank.py +1 -1
  48. sknetwork/ranking/betweenness.cp311-win_amd64.pyd +0 -0
  49. sknetwork/ranking/betweenness.cpp +563 -557
  50. sknetwork/regression/diffusion.py +6 -4
  51. sknetwork/topology/cliques.cp311-win_amd64.pyd +0 -0
  52. sknetwork/topology/cliques.cpp +1729 -1110
  53. sknetwork/topology/core.cp311-win_amd64.pyd +0 -0
  54. sknetwork/topology/core.cpp +1755 -1139
  55. sknetwork/topology/cycles.py +1 -1
  56. sknetwork/topology/minheap.cp311-win_amd64.pyd +0 -0
  57. sknetwork/topology/minheap.cpp +687 -677
  58. sknetwork/topology/triangles.cp311-win_amd64.pyd +0 -0
  59. sknetwork/topology/triangles.cpp +437 -432
  60. sknetwork/topology/weisfeiler_lehman_core.cp311-win_amd64.pyd +0 -0
  61. sknetwork/topology/weisfeiler_lehman_core.cpp +684 -677
  62. sknetwork/utils/__init__.py +1 -1
  63. sknetwork/utils/values.py +5 -3
  64. sknetwork/visualization/graphs.py +1 -1
  65. scikit_network-0.32.1.dist-info/METADATA +0 -511
  66. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/LICENSE +0 -0
  67. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,5 @@
1
1
  """utils module"""
2
- from sknetwork.data import Bunch
2
+ from sknetwork.data import *
3
3
  from sknetwork.utils.check import is_symmetric
4
4
  from sknetwork.utils.format import *
5
5
  from sknetwork.utils.membership import get_membership, from_membership
sknetwork/utils/values.py CHANGED
@@ -10,9 +10,11 @@ from typing import Optional, Union
10
10
  import numpy as np
11
11
 
12
12
 
13
- def get_values(shape: tuple, values: Union[np.ndarray, dict], default_value: float = -1) -> np.ndarray:
13
+ def get_values(shape: tuple, values: Union[np.ndarray, list, dict], default_value: float = -1) -> np.ndarray:
14
14
  """Get values as array."""
15
15
  n = shape[0]
16
+ if isinstance(values, list):
17
+ values = np.array(values)
16
18
  if isinstance(values, np.ndarray):
17
19
  if len(values) != n:
18
20
  raise ValueError('Dimensions mismatch between adjacency and values.')
@@ -29,8 +31,8 @@ def get_values(shape: tuple, values: Union[np.ndarray, dict], default_value: flo
29
31
  return values
30
32
 
31
33
 
32
- def stack_values(shape: tuple, values_row: Optional[Union[np.ndarray, dict]],
33
- values_col: Optional[Union[np.ndarray, dict]] = None, default_value: float = -1) -> np.ndarray:
34
+ def stack_values(shape: tuple, values_row: Optional[Union[np.ndarray, list, dict]],
35
+ values_col: Optional[Union[np.ndarray, list, dict]] = None, default_value: float = -1) -> np.ndarray:
34
36
  """Process values for rows and columns and stack the results into a single vector."""
35
37
  n_row, n_col = shape
36
38
  if values_row is None and values_col is None:
@@ -368,7 +368,7 @@ def visualize_graph(adjacency: Optional[sparse.csr_matrix] = None, position: Opt
368
368
  node_width: float = 1, node_width_max: float = 3, node_color: str = 'gray',
369
369
  display_edges: bool = True, edge_labels: Optional[list] = None,
370
370
  edge_width: float = 1, edge_width_min: float = 0.5,
371
- edge_width_max: float = 20, display_edge_weight: bool = True,
371
+ edge_width_max: float = 20, display_edge_weight: bool = False,
372
372
  edge_color: Optional[str] = None, label_colors: Optional[Iterable] = None,
373
373
  font_size: int = 12, directed: Optional[bool] = None, filename: Optional[str] = None) -> str:
374
374
  """Return the image of a graph in SVG format.
@@ -1,511 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: scikit-network
3
- Version: 0.32.1
4
- Summary: Graph algorithms
5
- Home-page: https://github.com/sknetwork-team/scikit-network
6
- Author: Scikit-network team
7
- Author-email: bonald@enst.fr
8
- License: BSD license
9
- Keywords: sknetwork
10
- Classifier: Development Status :: 3 - Alpha
11
- Classifier: Intended Audience :: Developers
12
- Classifier: Intended Audience :: Information Technology
13
- Classifier: Intended Audience :: Education
14
- Classifier: Intended Audience :: Science/Research
15
- Classifier: License :: OSI Approved :: BSD License
16
- Classifier: Natural Language :: English
17
- Classifier: Programming Language :: Cython
18
- Classifier: Programming Language :: Python :: 3.8
19
- Classifier: Programming Language :: Python :: 3.9
20
- Classifier: Programming Language :: Python :: 3.10
21
- Classifier: Programming Language :: Python :: 3.11
22
- Requires-Python: >=3.8
23
- Description-Content-Type: text/x-rst
24
- License-File: LICENSE
25
- License-File: AUTHORS.rst
26
- Requires-Dist: numpy >=1.22.4
27
- Requires-Dist: scipy >=1.7.3
28
-
29
- .. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
30
- :align: right
31
- :width: 150px
32
- :alt: logo sknetwork
33
-
34
-
35
-
36
- .. image:: https://img.shields.io/pypi/v/scikit-network.svg
37
- :target: https://pypi.python.org/pypi/scikit-network
38
-
39
- .. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
40
- :target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
41
-
42
- .. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
43
- :target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
44
- :alt: Documentation Status
45
-
46
- .. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
47
- :target: https://codecov.io/gh/sknetwork-team/scikit-network
48
-
49
- .. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
50
- :target: https://pypi.python.org/pypi/scikit-network
51
-
52
- Free software library in Python for machine learning on graphs:
53
-
54
- * Memory-efficient representation of graphs as sparse matrices in scipy_ format
55
- * Fast algorithms
56
- * Simple API inspired by scikit-learn_
57
-
58
- .. _scipy: https://www.scipy.org
59
- .. _scikit-learn: https://scikit-learn.org/
60
-
61
- Resources
62
- ---------
63
-
64
- * Free software: BSD license
65
- * GitHub: https://github.com/sknetwork-team/scikit-network
66
- * Documentation: https://scikit-network.readthedocs.io
67
-
68
- Quick start
69
- -----------
70
-
71
- Install scikit-network:
72
-
73
- .. code-block:: console
74
-
75
- $ pip install scikit-network
76
-
77
- Import scikit-network::
78
-
79
- import sknetwork
80
-
81
- Overview
82
- --------
83
-
84
- An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
85
-
86
- Documentation
87
- -------------
88
-
89
- The documentation is structured as follows:
90
-
91
- * `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
92
- * `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
93
- * `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
94
- * `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
95
- * `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
96
-
97
- Citing
98
- ------
99
-
100
- If you want to cite scikit-network, please refer to the publication in
101
- the `Journal of Machine Learning Research <https://jmlr.org>`_:
102
-
103
- .. code::
104
-
105
- @article{JMLR:v21:20-412,
106
- author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
107
- title = {Scikit-network: Graph Analysis in Python},
108
- journal = {Journal of Machine Learning Research},
109
- year = {2020},
110
- volume = {21},
111
- number = {185},
112
- pages = {1-6},
113
- url = {http://jmlr.org/papers/v21/20-412.html}
114
- }
115
-
116
-
117
- =======
118
- History
119
- =======
120
-
121
- 0.32.1 (2024-04-02)
122
- -------------------
123
-
124
- * Fix documentation
125
- * Fix wheel upload
126
-
127
- 0.32.0 (2024-03-29)
128
- -------------------
129
-
130
- * Add Leiden clustering algorithm
131
- * Add k-center clustering algorithm
132
- * Add functions to detect and break cycles
133
- * Add damping factor in diffusion
134
- * Fix F1 scores
135
- * Remove hierarchical Louvain embedding
136
- * Get clustering coefficient for directed graphs
137
-
138
- 0.31.0 (2023-05-22)
139
- -------------------
140
-
141
- * Add Python 3.11
142
- * Add set_param / get_param to algorithms, suggested by Franz Kiraly (#557)
143
- * Compute shortest paths by matrix-vector multiplications
144
- * Make tools on topology (cliques, code-decomposition, etc.) as functions
145
- * Rename parameter membership -> probs for soft classification / clustering
146
- * Add softmax to classification by diffusion
147
-
148
- 0.30.0 (2023-04-12)
149
- -------------------
150
-
151
- * Add overview
152
- * Add predict_proba method to classification and clustering
153
-
154
- 0.29.0 (2023-03-30)
155
- -------------------
156
-
157
- * Change API for clustering (predict / transform)
158
- * Change API for classification (seeds -> labels)
159
- * Change API for ranking (seeds -> weights)
160
- * Change API for GNN (same as classifiers)
161
- * Remove first order methods for link prediction
162
- * Add nearest neighbor methods for link prediction
163
- * Add KNN classifier without embedding
164
- * Add TF-IDF
165
- * Solve security issues by upgrade of wheels and ipython
166
-
167
- 0.28.3 (2023-01-06)
168
- -------------------
169
-
170
- * Drop Python 3.7
171
- * Update Numpy requirement
172
-
173
- 0.28.2 (2022-11-30)
174
- -------------------
175
-
176
- * Allow Python 3.7, by Thomas Bonald
177
- * Fix input format for KMeans, issue #548 raised by @sgerbe
178
-
179
- 0.28.1 (2022-11-22)
180
- -------------------
181
-
182
- * Fix sampling for GraphSage, by Simon Delarue
183
- * Fix leakage on GNNs, by Thomas Bonald and Simon Delarue
184
- * Update tutorial on GNNs with node inference, by Thomas Bonald and Simon Delarue
185
-
186
- 0.28.0 (2022-11-16)
187
- -------------------
188
-
189
- * Update Graph neural networks (e.g., add GraphSAGE), by Simon Delarue
190
- * Clean data home folder (set one folder per dataset collection, NetSet, Konect, ...), by Thomas Bonald
191
- * Improve classification by diffusion, setting -1 to unreached nodes, by Thomas Bonald
192
- * Fix bug on modularity, raised by Alessandro (#543)
193
- * Clean up source distribution, by Nicholas Bollweg (#544)
194
- * Safe file extraction, by TrellixVulnTeam
195
- * Fix bug on dendrogram cut, raised by Nina Sachdev (#546)
196
- * Add a function to aggregate a graph per label, by Thomas Bonald
197
-
198
- 0.27.1 (2022-07-29)
199
- -------------------
200
-
201
- * Fix documentation
202
-
203
- 0.27.0 (2022-07-29)
204
- -------------------
205
-
206
- * Drop Python 3.7
207
- * Update NumPy and SciPy requirements
208
- * Add graph neural networks, by Simon Delarue (#533)
209
- * Add fit_predict / fit_transform where appropriate, by Thomas Bonald
210
- * Add Louvain hierarchical clustering (bottom-up), by Thomas Bonald
211
- * Improve classification by diffusion (vectorial), by Thomas Bonald
212
- * Add F1 scores for classification, by Thomas Bonald
213
- * Add cosine similarity metric for embeddings, by Thomas Bonald
214
- * Add acyclic test for undirected graphs, by Thomas Bonald
215
- * Update algorithms to accept all sparse matrix formats of scipy, by Thomas Bonald
216
-
217
- 0.26.0 (2022-05-03)
218
- -------------------
219
-
220
- * Add module on regression, by Thomas Bonald
221
- * Add connected components for bipartite graphs, by Thomas Bonald
222
- * Update functions for loading graphs, by Thomas Bonald
223
- * Fix shuffling nodes in Louvain (issue #521), by Thomas Bonald
224
- * Add radius and eccentricity metrics, by Henry Carscadden (#522)
225
- * Add new use case (recommendation), by Thomas Bonald
226
-
227
- 0.25.0 (2022-03-15)
228
- -------------------
229
-
230
- * Add use cases as notebooks, by Thomas Bonald
231
- * Add list/dict of neighbors for building graphs, by Thomas Bonald
232
- * Update Spectral embedding, by Thomas Bonald
233
- * Update Block models, by Thomas Bonald (#507)
234
- * Fix Tree sampling divergence, by Thomas Bonald (#505)
235
- * Allow parsers to return weighted graphs, by Thomas Bonald
236
- * Add Apple Silicon and Python 3.10 wheels, by Quentin Lutz (#503)
237
-
238
- 0.24.0 (2021-07-27)
239
- -------------------
240
-
241
- * Merge Bi* algorithms (e.g., BiLouvain -> Louvain) by Thomas Bonald (#490)
242
- * Transition from Travis to Github actions by Quentin Lutz (#488)
243
- * Added sdist build for conda recipes
244
- * Added name position for graph visualization
245
- * Removed randomized algorithms
246
-
247
- 0.23.1 (2021-04-24)
248
- -------------------
249
-
250
- * Updated NumPy and SciPy requirements
251
-
252
- 0.23.0 (2021-04-23)
253
- -------------------
254
-
255
- * New push-based implementation of PageRank by Wenzhuo Zhao (#475)
256
- * Fixed cut_balanced in hierarchy
257
- * Dropped Python 3.6, wheels for Python 3.9 (switched to manylinux2014)
258
-
259
- 0.22.0 (2021-02-09)
260
- -------------------
261
-
262
- * Added hierarchical Louvain embedding by Quentin Lutz (#468)
263
- * Doc fixes and updates
264
- * Requirements update
265
-
266
- 0.21.0 (2021-01-29)
267
- -------------------
268
-
269
- * Added random projection embedding by Thomas Bonald (#461)
270
- * Added PCA-based embedding by Thomas Bonald (#461)
271
- * Added 64-bit support for Louvain by Flávio Juvenal (#450)
272
- * Added verbosity options for dataset loaders
273
- * Fixed Louvain embedding
274
- * Various doc and tutorial updates
275
-
276
- 0.20.0 (2020-10-20)
277
- -------------------
278
-
279
- * Added betweenness algorithm by Tiphaine Viard (#444)
280
-
281
- 0.19.3 (2020-09-17)
282
- -------------------
283
-
284
- * Added Louvain-based embedding
285
- * Fix documentation with new dataset website URLs
286
-
287
- 0.19.2 (2020-09-14)
288
- -------------------
289
-
290
- * Fix documentation with new dataset website URLs.
291
-
292
- 0.19.1 (2020-09-09)
293
- -------------------
294
-
295
- * Fix visualization features
296
- * Fix documentation
297
-
298
- 0.19.0 (2020-09-02)
299
- -------------------
300
-
301
- * Added link prediction module
302
- * Added pie-node visualization of memberships
303
- * Added Weisfeiler-Lehman graph coloring by Pierre Pebereau and Alexis Barreaux (#394)
304
- * Added Force Atlas 2 graph layout by Victor Manach and Rémi Jaylet (#396)
305
- * Added triangle listing algorithm for directed and undirected graph by Julien Simonnet and Yohann Robert (#376)
306
- * Added k-core decomposition algorithm by Julien Simonnet and Yohann Robert (#377)
307
- * Added k-clique listing algorithm by Julien Simonnet and Yohann Robert (#377)
308
- * Added color map option in visualization module
309
- * Updated NetSet URL
310
-
311
- 0.18.0 (2020-06-08)
312
- -------------------
313
-
314
- * Added Katz centrality
315
- * Refactor connectivity module into paths and topology
316
- * Refactor Diffusion into Dirichlet
317
- * Added parsers for adjacency list TSV and GraphML
318
- * Added shortest paths and distances
319
-
320
- 0.17.0 (2020-05-07)
321
- -------------------
322
-
323
- * Add clustering by label propagation
324
- * Add models
325
- * Add function to build graph from edge list
326
- * Change a parameter in SVG visualization functions
327
- * Minor corrections
328
-
329
- 0.16.0 (2020-04-30)
330
- -------------------
331
-
332
- * Refactor basics module into connectivity
333
- * Cython version for label propagation
334
- * Minor corrections
335
-
336
- 0.15.2 (2020-04-24)
337
- -------------------
338
-
339
- * Clarified requirements
340
- * Minor corrections
341
-
342
- 0.15.1 (2020-04-21)
343
- -------------------
344
-
345
- * Added OpenMP support for all platforms
346
-
347
- 0.15.0 (2020-04-20)
348
- -------------------
349
-
350
- * Updated ranking module : new pagerank solver, new HITS params, post-processing
351
- * Polynomes in linear algebra
352
- * Added meta.name attribute for Bunch
353
- * Minor corrections
354
-
355
- 0.14.0 (2020-04-17)
356
- -------------------
357
-
358
- * Added spring layout in embedding
359
- * Added label propagation in classification
360
- * Added save / load functions in data
361
- * Added display edges parameter in svg graph exports
362
- * Corrected typos in documentation
363
-
364
- 0.13.3 (2020-04-13)
365
- -------------------
366
-
367
- * Minor bug
368
-
369
- 0.13.2 (2020-04-13)
370
- -------------------
371
-
372
- * Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)
373
- * Documentation update (SVG dendrograms, tutorial updates)
374
-
375
- 0.13.1a (2020-04-09)
376
- --------------------
377
-
378
- * Minor bug
379
-
380
- 0.13.0a (2020-04-09)
381
- --------------------
382
-
383
- * Changed from Numba to Cython for better performance
384
- * Added visualization module
385
- * Added k-nearest neighbors classifier
386
- * Added Louvain hierarchy
387
- * Added predict method in embedding
388
- * Added soft clustering to clustering algorithms
389
- * Added soft classification to classification algorithms
390
- * Added graphs in data module
391
- * Various API change
392
-
393
- 0.12.1 (2020-01-20)
394
- -------------------
395
-
396
- * Added heat kernel based node classifier
397
- * Updated loaders for WikiLinks
398
- * Fixed file-related issues for Windows
399
-
400
- 0.12.0 (2019-12-10)
401
- -------------------
402
-
403
- * Added VerboseMixin for verbosity features
404
- * Added Loaders for WikiLinks & Konect databases
405
-
406
- 0.11.0 (2019-11-28)
407
- -------------------
408
-
409
- * sknetwork: new API for bipartite graphs
410
- * new module: Soft node classification
411
- * new module: Node classification
412
- * new module: data (merge toy graphs + loader)
413
- * clustering: Spectral Clustering
414
- * ranking: new algorithms
415
- * utils: K-neighbors
416
- * hierarchy: Spectral WardDense
417
- * data: loader (Vital Wikipedia)
418
-
419
- 0.10.1 (2019-08-26)
420
- -------------------
421
-
422
- * Minor bug
423
-
424
- 0.10.0 (2019-08-26)
425
- -------------------
426
-
427
- * Clustering (and related metrics) for directed and bipartite graphs
428
- * Hierarchical clustering (and related metrics) for directed and bipartite graphs
429
- * Fix bugs on embedding algorithms
430
-
431
-
432
- 0.9.0 (2019-07-24)
433
- ------------------
434
-
435
- * Change parser output
436
- * Fix bugs in ranking algorithms (zero-degree nodes)
437
- * Add notebooks
438
- * Import algorithms from scipy (shortest path, connected components, bfs/dfs)
439
- * Change SVD embedding (now in decreasing order of singular values)
440
-
441
- 0.8.2 (2019-07-19)
442
- ------------------
443
-
444
- * Minor bug
445
-
446
- 0.8.1 (2019-07-18)
447
- ------------------
448
-
449
- * Added diffusion ranking
450
- * Minor fixes
451
- * Minor doc tweaking
452
-
453
- 0.8.0 (2019-07-17)
454
- ------------------
455
-
456
- * Changed Louvain, BiLouvain, Paris and PageRank APIs
457
- * Changed PageRank method
458
- * Documentation overhaul
459
- * Improved Jupyter tutorials
460
-
461
- 0.7.1 (2019-07-04)
462
- ------------------
463
-
464
- * Added Algorithm class for nicer repr of some classes
465
- * Added Jupyter notebooks as tutorials in the docs
466
- * Minor fixes
467
-
468
- 0.7.0 (2019-06-24)
469
- ------------------
470
-
471
- * Updated PageRank
472
- * Added tests for Numba versioning
473
-
474
- 0.6.1 (2019-06-19)
475
- ------------------
476
-
477
- * Minor bug
478
-
479
- 0.6.0 (2019-06-19)
480
- ------------------
481
-
482
- * Largest connected component
483
- * Simplex projection
484
- * Sparse Low Rank Decomposition
485
- * Numba support for Paris
486
- * Various fixes and updates
487
-
488
- 0.5.0 (2019-04-18)
489
- ------------------
490
-
491
- * Unified Louvain.
492
-
493
- 0.4.0 (2019-04-03)
494
- ------------------
495
-
496
- * Added Louvain for directed graphs and ComboLouvain for bipartite graphs.
497
-
498
- 0.3.0 (2019-03-29)
499
- ------------------
500
-
501
- * Updated clustering module and documentation.
502
-
503
- 0.2.0 (2019-03-21)
504
- ------------------
505
-
506
- * First real release on PyPI.
507
-
508
- 0.1.1 (2018-05-29)
509
- ------------------
510
-
511
- * First release on PyPI.