scikit-network 0.32.1__cp311-cp311-macosx_11_0_arm64.whl → 0.33.1__cp311-cp311-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (67) hide show
  1. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/AUTHORS.rst +0 -1
  2. scikit_network-0.33.1.dist-info/METADATA +120 -0
  3. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/RECORD +66 -54
  4. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/WHEEL +1 -1
  5. sknetwork/__init__.py +1 -1
  6. sknetwork/classification/diffusion.py +4 -3
  7. sknetwork/classification/knn.py +4 -3
  8. sknetwork/classification/metrics.py +3 -3
  9. sknetwork/classification/pagerank.py +1 -1
  10. sknetwork/classification/propagation.py +7 -6
  11. sknetwork/classification/vote.cpp +27581 -0
  12. sknetwork/classification/vote.cpython-311-darwin.so +0 -0
  13. sknetwork/clustering/leiden.py +2 -1
  14. sknetwork/clustering/leiden_core.cpp +31572 -0
  15. sknetwork/clustering/leiden_core.cpython-311-darwin.so +0 -0
  16. sknetwork/clustering/louvain.py +6 -6
  17. sknetwork/clustering/louvain_core.cpp +31217 -0
  18. sknetwork/clustering/louvain_core.cpython-311-darwin.so +0 -0
  19. sknetwork/clustering/metrics.py +1 -1
  20. sknetwork/clustering/tests/test_kcenters.py +5 -37
  21. sknetwork/clustering/tests/test_louvain.py +6 -0
  22. sknetwork/data/__init__.py +1 -1
  23. sknetwork/data/base.py +7 -2
  24. sknetwork/data/load.py +18 -21
  25. sknetwork/data/models.py +15 -15
  26. sknetwork/data/parse.py +19 -17
  27. sknetwork/data/tests/test_API.py +3 -3
  28. sknetwork/data/tests/test_base.py +2 -2
  29. sknetwork/data/tests/test_toy_graphs.py +33 -33
  30. sknetwork/data/toy_graphs.py +35 -43
  31. sknetwork/embedding/base.py +3 -0
  32. sknetwork/embedding/louvain_embedding.py +0 -26
  33. sknetwork/embedding/svd.py +0 -4
  34. sknetwork/embedding/tests/test_louvain_embedding.py +9 -4
  35. sknetwork/embedding/tests/test_svd.py +6 -0
  36. sknetwork/gnn/gnn_classifier.py +1 -1
  37. sknetwork/hierarchy/louvain_hierarchy.py +10 -6
  38. sknetwork/hierarchy/metrics.py +3 -3
  39. sknetwork/hierarchy/paris.cpp +37883 -0
  40. sknetwork/hierarchy/paris.cpython-311-darwin.so +0 -0
  41. sknetwork/hierarchy/paris.pyx +4 -3
  42. sknetwork/hierarchy/tests/test_metrics.py +4 -4
  43. sknetwork/linalg/diteration.cpp +27397 -0
  44. sknetwork/linalg/diteration.cpython-311-darwin.so +0 -0
  45. sknetwork/linalg/push.cpp +31087 -0
  46. sknetwork/linalg/push.cpython-311-darwin.so +0 -0
  47. sknetwork/linalg/sparse_lowrank.py +1 -1
  48. sknetwork/ranking/betweenness.cpp +9704 -0
  49. sknetwork/ranking/betweenness.cpython-311-darwin.so +0 -0
  50. sknetwork/regression/diffusion.py +6 -4
  51. sknetwork/topology/cliques.cpp +32580 -0
  52. sknetwork/topology/cliques.cpython-311-darwin.so +0 -0
  53. sknetwork/topology/core.cpp +30666 -0
  54. sknetwork/topology/core.cpython-311-darwin.so +0 -0
  55. sknetwork/topology/cycles.py +1 -1
  56. sknetwork/topology/minheap.cpp +27329 -0
  57. sknetwork/topology/minheap.cpython-311-darwin.so +0 -0
  58. sknetwork/topology/triangles.cpp +8891 -0
  59. sknetwork/topology/triangles.cpython-311-darwin.so +0 -0
  60. sknetwork/topology/weisfeiler_lehman_core.cpp +27632 -0
  61. sknetwork/topology/weisfeiler_lehman_core.cpython-311-darwin.so +0 -0
  62. sknetwork/utils/__init__.py +1 -1
  63. sknetwork/utils/values.py +5 -3
  64. sknetwork/visualization/graphs.py +1 -1
  65. scikit_network-0.32.1.dist-info/METADATA +0 -511
  66. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/LICENSE +0 -0
  67. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/top_level.txt +0 -0
@@ -13,7 +13,6 @@ Development Lead
13
13
  * Simon Delarue <simon.delarue@telecom-paris.fr>
14
14
  * Marc Jeanmougin <marc.jeanmougin@telecom-paris.fr>
15
15
 
16
-
17
16
  Former lead
18
17
  -----------
19
18
 
@@ -0,0 +1,120 @@
1
+ Metadata-Version: 2.1
2
+ Name: scikit-network
3
+ Version: 0.33.1
4
+ Summary: Graph algorithms
5
+ Author: Scikit-network team
6
+ Maintainer-email: Thomas Bonald <bonald@enst.fr>
7
+ License: BSD License
8
+ Project-URL: Repository, https://github.com/sknetwork-team/scikit-network
9
+ Project-URL: Documentation, https://scikit-network.readthedocs.io/
10
+ Project-URL: Changelog, https://github.com/sknetwork-team/scikit-network/blob/master/HISTORY.rst
11
+ Keywords: sknetwork
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Information Technology
15
+ Classifier: Intended Audience :: Education
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: License :: OSI Approved :: BSD License
18
+ Classifier: Natural Language :: English
19
+ Classifier: Programming Language :: Cython
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Requires-Python: >=3.9
25
+ Description-Content-Type: text/x-rst
26
+ License-File: LICENSE
27
+ License-File: AUTHORS.rst
28
+ Requires-Dist: numpy >=1.22.4
29
+ Requires-Dist: scipy >=1.7.3
30
+ Provides-Extra: test
31
+ Requires-Dist: pytest ; extra == 'test'
32
+ Requires-Dist: note ; extra == 'test'
33
+ Requires-Dist: pluggy >=0.7.1 ; extra == 'test'
34
+
35
+ .. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
36
+ :align: right
37
+ :width: 150px
38
+ :alt: logo sknetwork
39
+
40
+
41
+
42
+ .. image:: https://img.shields.io/pypi/v/scikit-network.svg
43
+ :target: https://pypi.python.org/pypi/scikit-network
44
+
45
+ .. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
46
+ :target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
47
+
48
+ .. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
49
+ :target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
50
+ :alt: Documentation Status
51
+
52
+ .. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
53
+ :target: https://codecov.io/gh/sknetwork-team/scikit-network
54
+
55
+ .. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
56
+ :target: https://pypi.python.org/pypi/scikit-network
57
+
58
+ Free software library in Python for machine learning on graphs:
59
+
60
+ * Memory-efficient representation of graphs as sparse matrices in scipy_ format
61
+ * Fast algorithms
62
+ * Simple API inspired by scikit-learn_
63
+
64
+ .. _scipy: https://www.scipy.org
65
+ .. _scikit-learn: https://scikit-learn.org/
66
+
67
+ Resources
68
+ ---------
69
+
70
+ * Free software: BSD license
71
+ * GitHub: https://github.com/sknetwork-team/scikit-network
72
+ * Documentation: https://scikit-network.readthedocs.io
73
+
74
+ Quick start
75
+ -----------
76
+
77
+ Install scikit-network:
78
+
79
+ .. code-block:: console
80
+
81
+ $ pip install scikit-network
82
+
83
+ Import scikit-network::
84
+
85
+ import sknetwork
86
+
87
+ Overview
88
+ --------
89
+
90
+ An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
91
+
92
+ Documentation
93
+ -------------
94
+
95
+ The documentation is structured as follows:
96
+
97
+ * `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
98
+ * `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
99
+ * `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
100
+ * `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
101
+ * `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
102
+
103
+ Citing
104
+ ------
105
+
106
+ If you want to cite scikit-network, please refer to the publication in
107
+ the `Journal of Machine Learning Research <https://jmlr.org>`_:
108
+
109
+ .. code::
110
+
111
+ @article{JMLR:v21:20-412,
112
+ author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
113
+ title = {Scikit-network: Graph Analysis in Python},
114
+ journal = {Journal of Machine Learning Research},
115
+ year = {2020},
116
+ volume = {21},
117
+ number = {185},
118
+ pages = {1-6},
119
+ url = {http://jmlr.org/papers/v21/20-412.html}
120
+ }
@@ -1,25 +1,26 @@
1
- scikit_network-0.32.1.dist-info/RECORD,,
2
- scikit_network-0.32.1.dist-info/LICENSE,sha256=zKbJMpbSKgGEUaNr_fKgvJrvw_3W4gnJs5XdLCK5Sxo,1622
3
- scikit_network-0.32.1.dist-info/WHEEL,sha256=qZ5gUYMG4t2JcLLcFLlOXld9g3WjqyANneXZkxLH8gU,110
4
- scikit_network-0.32.1.dist-info/AUTHORS.rst,sha256=OZUa1KqaPu_waik7LZVTdyXcvmQWkD3M3HBDVGEtkG0,924
5
- scikit_network-0.32.1.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
6
- scikit_network-0.32.1.dist-info/METADATA,sha256=9bZ9qVhnKisHTj6oMLI6AyDg6uHJReQGXGVFbA8Du_E,14392
1
+ scikit_network-0.33.1.dist-info/RECORD,,
2
+ scikit_network-0.33.1.dist-info/LICENSE,sha256=zKbJMpbSKgGEUaNr_fKgvJrvw_3W4gnJs5XdLCK5Sxo,1622
3
+ scikit_network-0.33.1.dist-info/WHEEL,sha256=PF0Mgwtv_oDs_mWYUtLpGhYaIa8jOhCqBxSqdxy2gqE,109
4
+ scikit_network-0.33.1.dist-info/AUTHORS.rst,sha256=MIEWJmfpIVmBPo03Xl_6j8kg7cjXicp9WVRQpuVDj9o,923
5
+ scikit_network-0.33.1.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
6
+ scikit_network-0.33.1.dist-info/METADATA,sha256=_6-yEkWqRiHUm5vhsIL4y6A9A-Jv6LobmkJxqZZwQfo,4404
7
7
  sknetwork/log.py,sha256=ORInAVh_cWIfxwaFWSblSRxwT-jG05XPRnYTTAHSKy4,443
8
- sknetwork/__init__.py,sha256=nClqZuN1bFjz8awU3Qpm8dd3s4apgBBW40r84eAmItg,533
8
+ sknetwork/__init__.py,sha256=SZAI5otUFjW-KNf_HNvDY7g_mjFAcPTNg5SIcBjU4WM,533
9
9
  sknetwork/test_log.py,sha256=V4t6Ggi_fh8px5Iq7CDLlJvbXfz24macQ43Ss0tPb5I,319
10
10
  sknetwork/test_base.py,sha256=PB_kJ7cNvhBXmlL-KzyLu2hf6mG7b1OQY759aYplW4k,912
11
11
  sknetwork/sknetwork.py,sha256=VYoI-gwqwBKPx84cA0KnYDRofrgIXs8xtASD2nu5fE0,44
12
12
  sknetwork/base.py,sha256=XJJ6MicVcSiQBWQ9fYlmUJYkXq0PRldQzExhZKuaFBo,1951
13
- sknetwork/classification/metrics.py,sha256=kn6rkcn6r9jOsF7_bhP4SX20hrgydiA2UfCTdM12dKA,6802
13
+ sknetwork/classification/metrics.py,sha256=NHRldLX4fnZ9FrfrEgQUEjyxYivu7rIqTGdiFDpipws,6827
14
14
  sknetwork/classification/vote.pyx,sha256=Bbf74XCPH8uYDP-SrXRaA7k6Ax2x-wDzpbHMeg9le7A,1584
15
- sknetwork/classification/diffusion.py,sha256=zE3_TRi05GgQU9TqMSuMKieVR1srnZONnpGLCUrnHWQ,5537
15
+ sknetwork/classification/diffusion.py,sha256=8OTfIVQcBCAC3rgKLsUpwDNoSwXQxrSzUT57vu0sYKY,5571
16
16
  sknetwork/classification/__init__.py,sha256=yVv7wSuUfNLxeNBF-AhWCJys3C-XatPtMzi1wyp9Bz4,475
17
- sknetwork/classification/vote.cpython-311-darwin.so,sha256=wyTMd1k1lXxehUcZubKEwE4-wUaK7Oh04u-bkyZcdmU,221447
17
+ sknetwork/classification/vote.cpython-311-darwin.so,sha256=DzUgUhgBFviqQYkoNHRSg820YRLmkHjaJuN4xsoBNh0,212856
18
18
  sknetwork/classification/base_rank.py,sha256=RGElYD6PuP4nhnenNnzpOiBojs49Afg5ahjBFEi566I,4522
19
- sknetwork/classification/propagation.py,sha256=TqTNqnuZjelX3A7Ghw3M6k8u9fOh-Ag_eBh6FN0f5gI,5754
20
- sknetwork/classification/pagerank.py,sha256=CBUeCqZisr6s5lh3VXYWA6rbiPdLyNzuSMbjazy80eA,2586
19
+ sknetwork/classification/propagation.py,sha256=1NkRPE5v59IgJGlnQLQh77XC0Q7Ph3MrPm7BdoFZ6Ek,5800
20
+ sknetwork/classification/pagerank.py,sha256=3xHBcuiwMZb-xKpDQ9KIgRtSGE_vbpskVyFK3hkyWcs,2593
21
21
  sknetwork/classification/base.py,sha256=WS-QHh4553Dr1VwJqjggSqO6hHFIAs50oPah_L23eFo,4290
22
- sknetwork/classification/knn.py,sha256=7tiXPNOzRLPCAoELXWtqXdnPUIIDqtGdku3r1KGiE8Q,5306
22
+ sknetwork/classification/vote.cpp,sha256=730ceHZXDHHacl8F08BujlyCKDbp2YCokO_9XilpRvE,1020376
23
+ sknetwork/classification/knn.py,sha256=MpF1y3oH-ZDV3Pxqu8KGW7n7Eoh4WtUJ1Td4j7wXWI0,5340
23
24
  sknetwork/classification/tests/test_metrics.py,sha256=eBs-5uAEz2s8gukMyfhQ07GSFoyvxtsslLuc6VgUxBU,2303
24
25
  sknetwork/classification/tests/__init__.py,sha256=sy9uRiPhYG2i7uqM3P07-VUf4UcZEHeOoH9BvKCpU3s,31
25
26
  sknetwork/classification/tests/test_pagerank.py,sha256=5IJpYqnz31cWT0iXjTdo1xE8Kfj3YTK0cSZnnTlyJBs,620
@@ -29,26 +30,31 @@ sknetwork/classification/tests/test_API.py,sha256=FA1d0NQz3vaNVVeFbhEljPe0fD_ryR
29
30
  sknetwork/classification/tests/test_propagation.py,sha256=m0Jyq59k3taoikyBxcZGILzG7dWQV3SGE45MPm0RPao,850
30
31
  sknetwork/visualization/dendrograms.py,sha256=m4FbBfvJUW_gXccZWF8OWxAsbhsEcKa1fXNNCp_y4MA,9901
31
32
  sknetwork/visualization/__init__.py,sha256=8rLiR13WHSWLsEVTTL6lzOZms0LZf-ZujBqOI5VnKxk,216
32
- sknetwork/visualization/graphs.py,sha256=7iNHW3NJ7kxLw2y3SoEY_rmyCfmxLPmi0tCJ2dkS3q0,41175
33
+ sknetwork/visualization/graphs.py,sha256=kxFjEbg5b_bHpapLyf1L01CIwzxpWE6KLtS_ji2yZyY,41176
33
34
  sknetwork/visualization/colors.py,sha256=DjcXt9aMgLan7bRg7TZI8m_8SLWQOZ-g2HoguB1-3qA,2509
34
35
  sknetwork/visualization/tests/test_graphs.py,sha256=g2YPJn9m8wD-UHZ_BL37xuJqE7ygOx3EztKLVVqphYk,9421
35
36
  sknetwork/visualization/tests/__init__.py,sha256=yOVrqUD9UuI_HdYuqRP5PS7QhS-pO4RE_Ls5PLiIC_w,30
36
37
  sknetwork/visualization/tests/test_dendrograms.py,sha256=UuS3VZ5XnV1u5BtW-QKbFv0wavllQpbgtsOIe5XvTlg,2466
38
+ sknetwork/topology/core.cpp,sha256=V36mdDa2ymR4NF0nDW5EKlYYOuN_PlF9htoriVe2tIM,1160767
37
39
  sknetwork/topology/cliques.pyx,sha256=BuezL9-zJOicL1zffkpcf8uIEgqhik6dgK_agXX4gaU,4510
40
+ sknetwork/topology/triangles.cpp,sha256=9p2UoqYX1W9vCKF1Gc-h1IgODKh7XGlgsqnYHPGGh_o,352611
38
41
  sknetwork/topology/minheap.pyx,sha256=iFWpXPYSAmWjYphYByAM6auUj1XHly6QovZvuy2Lpyc,3310
39
- sknetwork/topology/minheap.cpython-311-darwin.so,sha256=_glEnee40L5QxE8BtlGJrAbH_nGpOJnM34wFDj-lK-8,204266
42
+ sknetwork/topology/minheap.cpython-311-darwin.so,sha256=A4nvj_EyggeSbj9CLOnuVs1KWwlp3vkOTxIrwFFxqJc,195312
40
43
  sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=fi0rRrXHVZuIQYzPDcPCamCRQLKquchjV3N9dNuQ1Pk,3034
41
44
  sknetwork/topology/__init__.py,sha256=T2W2cWwcUdhfA86VuZAZqksbrgct4hiyp0HuizEnLg4,534
42
- sknetwork/topology/cycles.py,sha256=EV2UMDktEGdJxEmAZyyjBMttJ6DqYvvfZ6mqwIQqFu0,9003
45
+ sknetwork/topology/cycles.py,sha256=KOK6EQYwTTA9GXEJGmFyRYLjiwU21wV-molT3Lap_lQ,9043
43
46
  sknetwork/topology/weisfeiler_lehman.py,sha256=ACJDAmZbwDrZAvO-LsHnRaef-8KX7esM1LxVUglXtLw,4308
44
- sknetwork/topology/cliques.cpython-311-darwin.so,sha256=5BZ03602v8UaNQIyjaUObxokIiSWl5FTFioJwTDf2no,259482
45
- sknetwork/topology/core.cpython-311-darwin.so,sha256=Uw6XIr0wg5Vtwi83vfGz0ZPUDWyIVjZge6vORGNldFI,218183
47
+ sknetwork/topology/cliques.cpython-311-darwin.so,sha256=VNq3I7WUk-8vjuGVEbA8sTJEG0Iiab7zQmXt5Ol2WMQ,249664
48
+ sknetwork/topology/core.cpython-311-darwin.so,sha256=3hQ4YzCbKI5mZWz79I8Q3OoOKnNso8XxINEL2bKBHFI,210280
46
49
  sknetwork/topology/minheap.pxd,sha256=Y_oRh8H-sNZYAWv0XM9T-ZLzYBhb5TrBM4VjlH-ZqPQ,564
47
50
  sknetwork/topology/structure.py,sha256=CDfN7SL70wTHm2HPfqd7ncsZEaV1SQO3tJKYl1CdtNI,7285
51
+ sknetwork/topology/cliques.cpp,sha256=EVl16UjYYu1h7fq9WTwP9P94Q2UWklFD8QsGFxhrcJw,1251558
52
+ sknetwork/topology/minheap.cpp,sha256=bZeH9IggCfcXVJw75XPDhf4oe_oX2wgWILmqWOsfYts,1013630
48
53
  sknetwork/topology/triangles.pyx,sha256=JOkA9k0CQTsT7zdPaEoW7-PdHYuoXHsB0XSuPKFLJSI,4349
54
+ sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=RQTSGR56zIflHvu3uwlg1-TjCrDF_sxtBYwVsH701k8,1024428
49
55
  sknetwork/topology/core.pyx,sha256=HwGbC84p9F9fkEw8ouNNMQtlYrAoEWhQS5hU9Cf1h94,2465
50
- sknetwork/topology/triangles.cpython-311-darwin.so,sha256=D6Lxxdx5moJoZuRkejJ-BQnl52ETeJp70Quv4twE5kQ,108732
51
- sknetwork/topology/weisfeiler_lehman_core.cpython-311-darwin.so,sha256=YYX83I_L09T1uK0BrcongNUz03ftLvADq76eQ_pKF7w,222329
56
+ sknetwork/topology/triangles.cpython-311-darwin.so,sha256=baLNFarqAApLJyxMJvSz5Q4tKTvrCdTKVXqnYDHmN8o,106272
57
+ sknetwork/topology/weisfeiler_lehman_core.cpython-311-darwin.so,sha256=1SnsuzLunTW6sqUkY1BGEHON6Te-33o_f5XCzc_Nb5U,214704
52
58
  sknetwork/topology/tests/test_cycles.py,sha256=KZzMKS5ILfC_J0Fj5MFlEOL7Z9nOnlRfo4TnGdXEPWY,3150
53
59
  sknetwork/topology/tests/test_structure.py,sha256=CzcZ1LxV-mI_buxz6LcTeCy3h5ofMLfOu2HUHwNSMi8,3948
54
60
  sknetwork/topology/tests/test_wl.py,sha256=EJY_4xTi_-qzFsqZJkgnwLteoakdkpRAczzdMCGeXe0,2218
@@ -56,10 +62,11 @@ sknetwork/topology/tests/test_core.py,sha256=Zh9IYHGfqDqIlLycucLzqZbHvYmU-IB-J03
56
62
  sknetwork/topology/tests/__init__.py,sha256=9lKrPX4BnSJbK-VlDi9TsmAgDwqF3H423KhJ1u1Uaos,25
57
63
  sknetwork/topology/tests/test_triangles.py,sha256=9g3nml3TNOiIFHLJDih5PTxWunDJemmpLQy2tmoQw4Y,1275
58
64
  sknetwork/topology/tests/test_cliques.py,sha256=t97pKDMxT9RC-_YsgY-c8tQxrekyAE6i2_guvxAYHhQ,838
65
+ sknetwork/ranking/betweenness.cpp,sha256=nd9EulMxQ7JQxcKNBRVx8FkmllAkWB7JdfcdkqnwOKo,378933
59
66
  sknetwork/ranking/postprocess.py,sha256=-3wqBPvTM7jDdfTytINEXxM2eugJjbCZRLiLy9pkmac,919
60
67
  sknetwork/ranking/__init__.py,sha256=UeYw8y0HFoBnPziqnVYXSt8jqFtkDgkCCMPhYTEIaF0,348
61
68
  sknetwork/ranking/closeness.py,sha256=pETMD8uaXfADZhmzVaH4YIGX57S2vvhzVInONaAwBUM,2840
62
- sknetwork/ranking/betweenness.cpython-311-darwin.so,sha256=OlyOVsNmIwqEuYtJOyx-vX9ADR2bzilZQCIEeD5PYgw,130206
69
+ sknetwork/ranking/betweenness.cpython-311-darwin.so,sha256=MIWYkxYEf0lZWLoeMXNc7WCYsu03rTil0nd49ImdbiQ,127616
63
70
  sknetwork/ranking/katz.py,sha256=uPyXkEL73_6MS4dP5XTSVSIrD5h5QJipVTVEa0L_y48,2535
64
71
  sknetwork/ranking/hits.py,sha256=L39a9Ze3ITUbikmNhA_Lx-V5s_RQr0XnNkOsIgG8m98,2761
65
72
  sknetwork/ranking/pagerank.py,sha256=Qt2SOUoLO76JVDnT4-x-b-hah9IlaHECsYNu45AnpY8,4749
@@ -73,16 +80,18 @@ sknetwork/ranking/tests/test_API.py,sha256=PZ4Q5X1WT1HSAojZX72fUm4o9Y0PwocewJEoC
73
80
  sknetwork/ranking/tests/test_betweenness.py,sha256=8XA1ycLQQ7-Cm3CBfkcSDQOvD6xagAIP1--mPe9VFzo,1135
74
81
  sknetwork/ranking/tests/test_hits.py,sha256=zStzrWZ-pv2Nsd-pB282FgW3KAn1TyKjz_l85tJaPJ0,491
75
82
  sknetwork/linalg/diteration.pyx,sha256=gk9W6SwIxXgmjQujXWBUIoM_OwevjE3jTzFrIEkGnWI,1384
76
- sknetwork/linalg/diteration.cpython-311-darwin.so,sha256=okw_M2kJc-yVAqDXklCTDFYX2MjeV5fv7Fp6J02xnKw,217117
83
+ sknetwork/linalg/diteration.cpython-311-darwin.so,sha256=a6KYfUfAdJ2UAtgrmtw7LWgi3zhir0bx4XKw6QPK7nE,192608
77
84
  sknetwork/linalg/__init__.py,sha256=awBDY2wWiO40L5eED3H8K1BM8qtHz7aQRv1p3PcSK94,533
85
+ sknetwork/linalg/push.cpp,sha256=IUZ9fBWHzzCTC7UHQQ445y0UQzLHyc2uAqc1K9_xzfA,1184690
78
86
  sknetwork/linalg/laplacian.py,sha256=_gQr8YLqMUtK_IMNgvJoQX7-uODVlvCVmc-oTsgw7MA,401
79
87
  sknetwork/linalg/eig_solver.py,sha256=yq_prP5p1jbALby69wkzzH0vYKc1btmRQoiVUtTh-eA,2700
80
88
  sknetwork/linalg/push.pyx,sha256=caxCZa5h9zsHhxJgDBaaetqpB0wUbFLdOUwHwj0q_t0,2358
81
89
  sknetwork/linalg/ppr_solver.py,sha256=mQkCnik-vvv_oFa9n1vtMzxgvi78qW-QQONdcmC9CXA,6533
82
- sknetwork/linalg/push.cpython-311-darwin.so,sha256=-eE4UmKRu0ata8NGLwvZZdRTV7c6YpXoQc39cFJiRG4,237831
83
- sknetwork/linalg/sparse_lowrank.py,sha256=LUhbqa01p51SYhoIb2Dmx2b9fMc-iOu69CAVHscR2Xs,5028
90
+ sknetwork/linalg/push.cpython-311-darwin.so,sha256=KIDsw9t6UtQg9DD_k921yUu21Xtg6SmEAgoMhzN79BE,229336
91
+ sknetwork/linalg/sparse_lowrank.py,sha256=AHIP-eErNKm1EtuulbNo8ct2Ux-Xe2YdvWUNPez1r-M,5035
84
92
  sknetwork/linalg/basics.py,sha256=8AFph_1G5SZP_24jrIv6qIWooO0UMglL4jMgx3ZdYIQ,1142
85
93
  sknetwork/linalg/normalizer.py,sha256=kOFDPPdiGqG-KcWNiRwbS_y_nmw5fTKYTvuj_x8yBd0,2473
94
+ sknetwork/linalg/diteration.cpp,sha256=bZP_uiKh2fhvVSxL01KqDhN4L7Kjp2J7XIluglb_y5o,1017186
86
95
  sknetwork/linalg/operators.py,sha256=fxitao4UYW4Hq7B258T_cAq2H3R2FN1-mwdy138w8fE,7432
87
96
  sknetwork/linalg/polynome.py,sha256=_dP9Nu_6XCV0-WEQJ7E5nG6pxZWMtbj-LREu0vtxeWk,2125
88
97
  sknetwork/linalg/svd_solver.py,sha256=vhcXwCsOar0cYDPZo7IF_ulRDsGGvZzePIeSpSCVgLk,2681
@@ -95,15 +104,16 @@ sknetwork/linalg/tests/test_ppr.py,sha256=Bh1n7W3We2N8u1RIWPyE5QQGE7esnNoUOLLRCL
95
104
  sknetwork/linalg/tests/test_laplacian.py,sha256=B6UhJOmYUdNlXwNoxLLtb--nv9mx96Orl-W1Vl6PLyM,434
96
105
  sknetwork/linalg/tests/test_eig.py,sha256=lUAgo4UfWuuSG5DhSk5SIT7ToLDgPG-5JCgmOe_M7Vw,1504
97
106
  sknetwork/linalg/tests/test_normalization.py,sha256=nASuMYxKcsWj3gk9DF5uPKYOw93oJ-UQUWi99Fw3kmE,887
98
- sknetwork/hierarchy/metrics.py,sha256=_wYGKx_VDE_sfbg-uUEFMhOjSLFqzC8rFHjJo1hdVL8,8046
99
- sknetwork/hierarchy/paris.pyx,sha256=10Fu048FPklcgYiLmMKWpRW87UY04ubU0NpjESTOsLA,11683
107
+ sknetwork/hierarchy/metrics.py,sha256=rgD2izsy6HhIYpYE8kftvg4X1gDS780UUGQBlboksXQ,8067
108
+ sknetwork/hierarchy/paris.pyx,sha256=DX8p3LOtrNxyQ8pOZZE_Q2b5rBKjYwKArsmMZbvb0xY,11813
100
109
  sknetwork/hierarchy/postprocess.py,sha256=d1Fll3eqDIjiMf1c5nGuKF6I0fN93elnglkp59LARGU,12072
101
110
  sknetwork/hierarchy/__init__.py,sha256=YgE2eqnwS8Q2NWP9pNY-M1bpdxRn5-C-CdykydNW7iM,412
102
- sknetwork/hierarchy/paris.cpython-311-darwin.so,sha256=9vY45S7OrOUPdgc9zLb241VX_WPBZMYUP-8XRaL_pHw,302872
103
- sknetwork/hierarchy/louvain_hierarchy.py,sha256=YfwhhEe1eL7DBbs0t1-a-vdzFB2xA5LXh0VT9OL-jus,9558
111
+ sknetwork/hierarchy/paris.cpython-311-darwin.so,sha256=LWg80JCEW2YVt2Ws9sCZaUuIxXH1ZPwBeIRoGqLl0KM,292888
112
+ sknetwork/hierarchy/louvain_hierarchy.py,sha256=PhetHYpmsnI7yC-rbYAUXhNiBV9QNKMDbrfz9l0fskc,9846
113
+ sknetwork/hierarchy/paris.cpp,sha256=hKI-Hlu9NlEnx31qRYlEw-yki1I5ujIrTELyp7wbLRY,1500583
104
114
  sknetwork/hierarchy/base.py,sha256=MoxBiSsEJOq77YmXj_bpf4vUiPLSpQn8fnUX7YIqyd8,2693
105
115
  sknetwork/hierarchy/tests/test_postprocess.py,sha256=OSrWE0gT0AcPI4LKmUL-Blfg5ErxnjS3d4rPNnA63_Y,2209
106
- sknetwork/hierarchy/tests/test_metrics.py,sha256=UydXtXgGud9MgTKT4l_j7BplKToO2cQKuoGvkBPirAw,3160
116
+ sknetwork/hierarchy/tests/test_metrics.py,sha256=IHlsdJXeHqPU8_SBm4eIXua5ZhyRIAUH4cAtVNNR7Ng,3160
107
117
  sknetwork/hierarchy/tests/__init__.py,sha256=l2HHDiDLpoTQlwzh1mtCyp6bS8RxBdJK2DP1FGiQJMY,26
108
118
  sknetwork/hierarchy/tests/test_algos.py,sha256=xMt2xzAYEm6MuK-8OKOqBwZS89aJspX2tr7T6QMHz6E,1361
109
119
  sknetwork/hierarchy/tests/test_API.py,sha256=tLF-jLsfM2OFqbyVHK1o9jXVW_1PbTkMcxkAXuGjMO8,720
@@ -119,48 +129,50 @@ sknetwork/path/tests/__init__.py,sha256=_COAjci7RJ_XtBDGwy5aOgZ9dPSQH3j7d6qMlLHs
119
129
  sknetwork/path/tests/test_distances.py,sha256=zItygI9cLMrQonLhOubvorElU5qaZumFfjMethx4rDw,2695
120
130
  sknetwork/embedding/random_projection.py,sha256=NuJoPHYLjdb8dUdKOwGr7Q6lGZBSPbwmMuuY6CRzgoI,5002
121
131
  sknetwork/embedding/__init__.py,sha256=ASeieiOc46EuKMUArW3kt_WJbsLxUzz0BVYycmag5Pw,410
122
- sknetwork/embedding/svd.py,sha256=0q6a2EwnbXGxzsDpmQu0HUS_9e_VwA0lMKqes2e-77I,14734
132
+ sknetwork/embedding/svd.py,sha256=fK84a57Js4Hvh9Rtz2FDFA7eKhLThUO256e8xdIkJm4,14642
123
133
  sknetwork/embedding/force_atlas.py,sha256=amYr0E08F8TDoIxjPx3lx35JFwEP41jc4KKed1PQeZs,7452
124
134
  sknetwork/embedding/spring.py,sha256=5fyHQzmIp8gY9DdI-DFvMc37mjMb64bs22ZZZ9YFDXM,7151
125
135
  sknetwork/embedding/spectral.py,sha256=ds91hH6JFBsfLcTS8QEz-gP5tZUcrrGqjfnL-xMIdU0,5548
126
- sknetwork/embedding/louvain_embedding.py,sha256=QYKxrTNLEm69PS7D0YR_k3diZQKBt6PT1T6N3xPGrMU,6950
127
- sknetwork/embedding/base.py,sha256=D-UkpCOTw_PAjs1YFyq7jdrn3Akx4yjl5nxN2iMnd0Q,2590
136
+ sknetwork/embedding/louvain_embedding.py,sha256=Q51zN2yNVeUrwfF98nnozpSaB_vUSVUi4pi9KwNkUOA,6082
137
+ sknetwork/embedding/base.py,sha256=zIaj7TdsRzBXYdl3MCuiDf4ShV6T8sAtm22IzGajho4,2663
128
138
  sknetwork/embedding/tests/test_spring.py,sha256=tanArc4vstNZ36CLr7S8uEVdXX0iP2K9UWKQLTcsPsQ,1643
129
- sknetwork/embedding/tests/test_svd.py,sha256=Yg9qgSdPPZR4n_DYN5bXZMJLIEz1tny1rirsPL8ejQc,1195
130
- sknetwork/embedding/tests/test_louvain_embedding.py,sha256=GtHU8vt4X8nNLLVol08Ot4NgbMcDzQEvWcm7qWbN_BA,825
139
+ sknetwork/embedding/tests/test_svd.py,sha256=xkfgHiQCDTRp8seWCdBvQFGwONoM6VYn6g9xp3FJIOs,1463
140
+ sknetwork/embedding/tests/test_louvain_embedding.py,sha256=XXz_2Jul1Rv3sILYFz4HLy2OWRsdZWRWWRnVBxOU68o,1116
131
141
  sknetwork/embedding/tests/__init__.py,sha256=QkDQtTJReK7Ldp0Y4f5-tbTdcp224r1AF7jU26alSgQ,26
132
142
  sknetwork/embedding/tests/test_API.py,sha256=2c0O8S0u0hF23iys7QLHJJOz2W79rHMeEO2OMDQbglk,1489
133
143
  sknetwork/embedding/tests/test_force_atlas.py,sha256=-YM4HSF5Nvpm8e4SoCHiA2o7yAkm0h_ys7GRaJ1wloI,1120
134
144
  sknetwork/embedding/tests/test_random_projection.py,sha256=2bUOCw66tUKP775pGPd5STj0UmRuwvBtI5CgY8HeHKI,1193
135
145
  sknetwork/embedding/tests/test_spectral.py,sha256=CH-F8fM3cYoxhjpob1m7wZV-tEr8XFD6Lxa_bFsLv3A,3897
136
- sknetwork/clustering/leiden_core.cpython-311-darwin.so,sha256=9vMD1HefnftNyQAaB7iXdeVqX0Jtc89MHTgRwsNX338,261614
146
+ sknetwork/clustering/leiden_core.cpython-311-darwin.so,sha256=36aQp_fMggERqpJNKfCkKwRTb0yN9vUAdbKGjjCvBx0,250992
137
147
  sknetwork/clustering/leiden_core.pyx,sha256=7HGdeX6iMnSs52Px44-__kN9JhHueaQUvCmrkIGTalg,4300
138
- sknetwork/clustering/metrics.py,sha256=VJPgmB1OvxA0SOaIQIGyJDUP1cgWFElnfdVaQ2krYrg,3060
139
- sknetwork/clustering/leiden.py,sha256=w0oUbQLR7zCMy4wXgDa7eN2K488jjGuTdOcgWG6Eb9A,9680
148
+ sknetwork/clustering/metrics.py,sha256=qnQo70cLs_Rebj3Z1cxmktGw1qQGAAA8yzqj-lC8Tss,3067
149
+ sknetwork/clustering/leiden.py,sha256=yL5N-9ny6XAj6La2-PBcsieRl4SVx8wxwVGvS1tMr-o,9682
150
+ sknetwork/clustering/louvain_core.cpp,sha256=ziRso3xa3j7uAXJrlXSBrHmy7PX_UlZIHna1EuAed_k,1182950
140
151
  sknetwork/clustering/postprocess.py,sha256=4hx5VTQmqS2Ld2P2kvXoyvVanXVg3bMA619IHS2jWHM,2039
141
152
  sknetwork/clustering/__init__.py,sha256=Ab-rmioxlaMoghrzd1RMr-L4zyrqIM8XznqrjBPGE28,435
142
153
  sknetwork/clustering/kcenters.py,sha256=RFEx35vPUm9a4mzCbDwv-PmePCsdQwbuKAeaRizBMxY,8689
143
- sknetwork/clustering/louvain.py,sha256=1mGcmy_Fd97V6bDmZb2Aa4JziCusru-gFHv5Vdxfm_0,10791
154
+ sknetwork/clustering/louvain.py,sha256=4IfTjO_WbYi5XfJWC86kOswOPRhE4LSufsiRBcd52nU,10825
144
155
  sknetwork/clustering/propagation_clustering.py,sha256=ABZZtyojkrXfzsMwEcxqphzHgFC5q8sECOyanvK9D3o,3781
145
- sknetwork/clustering/louvain_core.cpython-311-darwin.so,sha256=LPjTq2Gp-UXhHzqTzH14MCJALpT2xmpWBPXRvr0rSjg,260559
156
+ sknetwork/clustering/louvain_core.cpython-311-darwin.so,sha256=dOq0hBQRRB7yJUVt1wyj-KMeM76JBUmEW9F0JIj3ZBU,250352
146
157
  sknetwork/clustering/louvain_core.pyx,sha256=pMqt7WukTkBOpjofmiXMYHqRX69mkquEMapDdoskiQM,4089
147
158
  sknetwork/clustering/base.py,sha256=dCF4K3nbKY24kzFeDAy7Fp-b9jDBzEoG3jj1ozuu_W8,5932
159
+ sknetwork/clustering/leiden_core.cpp,sha256=zB0Hjy6Ej7wv-JdzneS-dKWEooVTNOCa0qp6cvIRimM,1202386
148
160
  sknetwork/clustering/tests/test_postprocess.py,sha256=WSmAlqB-6Nw3eoL3NaOyNlpPr7GVnNnllkPVdyE9rXI,1378
149
- sknetwork/clustering/tests/test_kcenters.py,sha256=3euzkt79tPZul5rP_HuJZHXydUdqT-Xk5N01qWOuaks,3477
161
+ sknetwork/clustering/tests/test_kcenters.py,sha256=laO1QSJ-yGlroB5XtrC15jbRK0krYZK5sIRDHBUZL30,1977
150
162
  sknetwork/clustering/tests/test_metrics.py,sha256=fbVYg2s8DXQdiYHUNuVjFMtEJg4od1Vej25mgHhGDu0,1818
151
163
  sknetwork/clustering/tests/__init__.py,sha256=Ta0XKY7pklRvHyUY3Jlow3A2V4REa5geZG74xPz80Tc,27
152
164
  sknetwork/clustering/tests/test_leiden.py,sha256=3KSXvxUP9H4tCJQXUfWt-45-ltyD0FrVgYjXDvRN-yQ,1155
153
- sknetwork/clustering/tests/test_louvain.py,sha256=6eQPoKodZLBafNgpX1_zBzPzGY5w7QKzWsLuoEVZEaE,4678
165
+ sknetwork/clustering/tests/test_louvain.py,sha256=R9GI3IymlwJGHD5owOJZSrYJ5pJp9WdRWH2xnNO2QC8,4871
154
166
  sknetwork/clustering/tests/test_API.py,sha256=Eez17EngcirVHVVoybClXS5314_Yz54JFzXldubEdgg,1528
155
167
  sknetwork/linkpred/nn.py,sha256=tY-qYlp0j9WCvdoHkZ9EKzCD_GlDu7tQpKD7-aC20rE,4030
156
168
  sknetwork/linkpred/__init__.py,sha256=pFtM52OhDK69ceeiRyH1MDse0EbD8fqyhOsWWih47gM,72
157
169
  sknetwork/linkpred/base.py,sha256=aXgWqajDYjDE-YQcooI6j0qEByJxHQiQtSjmFiID3Qk,995
158
170
  sknetwork/linkpred/tests/__init__.py,sha256=05sK8Ihh9Gi2_uobPC_ErMVE4KOt0761NzzV_vJh15U,32
159
171
  sknetwork/linkpred/tests/test_nn.py,sha256=T79txY2DlPgnI4JqzC88EcwCobJiM9P9v_5_ZvBTDeU,983
160
- sknetwork/utils/values.py,sha256=UK6wck_frtPz0Q6hRugpUMNg6AARcBQ0_MIlG5CyAkc,2510
172
+ sknetwork/utils/values.py,sha256=E-_gcqVOYjUPiG_iz9j2avVh1ENANVIZt7AydYzyeyg,2595
161
173
  sknetwork/utils/check.py,sha256=tNOelam8GGdVjMzmk-7otNTyFBgJNKwq1z-zWmHOb9Y,12940
162
174
  sknetwork/utils/neighbors.py,sha256=XNqwPM_PPpf_x-YhjEMVZJDxmazrVw9Eky3hNv9IGz0,3351
163
- sknetwork/utils/__init__.py,sha256=FX-906qqZsXt9Q2nZdd3JT4rM0Aj39bc2O0wDpp_q-0,329
175
+ sknetwork/utils/__init__.py,sha256=z1kLaO6ZFBg9g3MoeuxV-6UPmcqKAxTs0fjqoYQOgc4,325
164
176
  sknetwork/utils/format.py,sha256=qAa5jmp_fkQBlVL4LW14N7rrMPNk3yMApNFLxREPuiU,8766
165
177
  sknetwork/utils/membership.py,sha256=dG2xJTWEjRcxyKTs5A7DFyNhO50-7UKpBIaWFfmyH_M,2162
166
178
  sknetwork/utils/tfidf.py,sha256=C1qZCwZSwypi-C_II9D7lkfyxsOFefiDopTO3pBEwkc,956
@@ -178,7 +190,7 @@ sknetwork/gnn/loss.py,sha256=P0un3iqbnFLrBbYODznVAoU_J2qAZuqHAPLiae0LCtI,5162
178
190
  sknetwork/gnn/activation.py,sha256=D7o4FdbDMrBa2PQrWrvplCf14QOSzZ67d9eWN9bHY-M,3560
179
191
  sknetwork/gnn/neighbor_sampler.py,sha256=TXdMRFwiT8sOdl6-S-flQZ5Rjrx1hwTzFqqiR_8PHTQ,1864
180
192
  sknetwork/gnn/utils.py,sha256=A0kuBe29Eg90cEzRAgw4YmnShnzoq6ai_-01IBAf63g,4349
181
- sknetwork/gnn/gnn_classifier.py,sha256=wSZQXjRu9ou9cEqcOXPD4gY_vKOYeC8iWXj6j1-uFrM,12613
193
+ sknetwork/gnn/gnn_classifier.py,sha256=ofqyqkBrRSAbDK5fr6cWjZVP6DMVhEQZr2wiF0i7y64,12617
182
194
  sknetwork/gnn/layer.py,sha256=i0XiAutNal9ImAGqMtSLVEq_QiqZoGAlAWwlSGrNY8Q,5526
183
195
  sknetwork/gnn/optimizer.py,sha256=vsCgfPoJtYMWREnR4tBsfPb0Ed-rHR0poBr-75lE57s,5782
184
196
  sknetwork/gnn/base.py,sha256=QZ_pNi2-edAUpu-2C93DWfooS_sHulO6HL6vK108lhc,5708
@@ -192,25 +204,25 @@ sknetwork/gnn/tests/test_neigh_sampler.py,sha256=zc_6G3JhZvKrFLJAk2UJSOHZwN7sGoj
192
204
  sknetwork/gnn/tests/test_base_layer.py,sha256=1PXvS3338vu-fI77ZnGgHfY20zkPRv_GcZKxLQmyj7I,1381
193
205
  sknetwork/gnn/tests/test_loss.py,sha256=W5DA6FRd-OppeRKFgj2gtLqNvjkXkCQPmV6lg3ENu-c,1045
194
206
  sknetwork/gnn/tests/test_base.py,sha256=HVsz5zABud8ZlrIJIFuAKP6N7mu2ClrTaleZbPhGOR0,3393
195
- sknetwork/regression/diffusion.py,sha256=dV-uPGEaBLpI_sY6pl52rkKeSDQV9MZsQfSo1frYKbc,7845
207
+ sknetwork/regression/diffusion.py,sha256=p4o62jxuz3z3Kd2WizmV1GYM9MO_c3yp70_KQUim0jM,7905
196
208
  sknetwork/regression/__init__.py,sha256=nRlbcR8bA2Lz-OmLPMIPhBzgDCol8oSA19qL3IninXA,141
197
209
  sknetwork/regression/base.py,sha256=KIsVpnbACRH4h5W3ifMJOTlZNuztGbQP1QbZKj5aj_0,1496
198
210
  sknetwork/regression/tests/__init__.py,sha256=BT8kCCMN_pv7znhIR5GSQ_XxU5brmrCYDwm4QJNRCV0,27
199
211
  sknetwork/regression/tests/test_diffusion.py,sha256=-QBRgES_BF-QIgFevozLt9YXmGxJ6vxgLeYVZe92Wn8,2061
200
212
  sknetwork/regression/tests/test_API.py,sha256=7fQulvKzF9yEBlLie7fL5G1ZdyiG4DAFZQZ4Lix96qs,1024
201
- sknetwork/data/models.py,sha256=QyC_5ft7lkYzp3smmv54fHnyMUs88TYUq2FBU_KStMs,13156
213
+ sknetwork/data/models.py,sha256=j3k2LKtxNjyihfJH3SyzA5jhFNBgaA17UCzihD59Lqo,13186
202
214
  sknetwork/data/test_graphs.py,sha256=OM6-7CiBN4UEAQUtE_2k5e5I72zDBL3r5fj_C2JXzNw,2484
203
215
  sknetwork/data/timeout.py,sha256=kwHOLZFnOTrRhiEjtcwATYhsXbf5e8zV1OCoEKuG8Zg,1047
204
- sknetwork/data/__init__.py,sha256=ejVS9hqX1Jf912UAazfaqIsNlppXCahEVDBv2IFdRUM,259
205
- sknetwork/data/toy_graphs.py,sha256=2Cy7EABhYKPtjtfrW71Drz51A3mSuGu7G0P24tYiwHY,25035
206
- sknetwork/data/parse.py,sha256=bRawtsCpm0CNgxjZ9CqpR_8nRJnW0ac561GoIlMOq1Y,26897
207
- sknetwork/data/load.py,sha256=gC61jqFdyhPXc4-vazK85UdB4hnFQFjH9f1xpQ7JScI,14360
208
- sknetwork/data/base.py,sha256=jeCwL-1O21CNkX1F9_eX4gl_BVNbeYabq_DSZr6ukB8,630
216
+ sknetwork/data/__init__.py,sha256=xTK1qf-dIJomjDwSLXrYL6nUcNwo118YxN7b_6gozak,255
217
+ sknetwork/data/toy_graphs.py,sha256=8-QKuwURndJ1_KEWlDqs-lBWBeoFxU3V3oUui4PsSDY,24632
218
+ sknetwork/data/parse.py,sha256=Qrn2_i8XdVx7QNWhweI9Fu3i33C8PO_sOb8vPzReaYM,26995
219
+ sknetwork/data/load.py,sha256=zN0fhEjEm0Mxp0bsdc13CW1zkb877vbo3om25nwpKrY,14356
220
+ sknetwork/data/base.py,sha256=Jp0MJKcpfJCRZO_Nz18g1JqYFMMD1Rz8zLhnqlgO7tg,673
209
221
  sknetwork/data/tests/test_test_graphs.py,sha256=dVRds-3P8JVnwfAp32fGif3zhocfPK0p2rgcYwJWsUQ,849
210
222
  sknetwork/data/tests/test_parse.py,sha256=JOTFNWr77ZxKUKjw8TSbN-2dk-6YwmqN2OcrNkh7JVc,12717
211
223
  sknetwork/data/tests/__init__.py,sha256=FSfkSYRKjDqIuEiEZ39Otve50qSxi7QObNnNrHHPx5s,19
212
- sknetwork/data/tests/test_toy_graphs.py,sha256=kxOb7QpXGi8O7Kb6RmWoRUbAoyllM_-SXCRcYoH8B00,2137
224
+ sknetwork/data/tests/test_toy_graphs.py,sha256=lknaYy5AWJjiqKfhgWhQEolN8e4CDe5ilNDpC5lenww,2197
213
225
  sknetwork/data/tests/test_models.py,sha256=oP-X_k0vbSB4CwlV4GQVVBAQ9uI_8frFicde5yhVYAc,1915
214
- sknetwork/data/tests/test_API.py,sha256=wJ4F4wPI3uI5WF_Pj2pMNSxSkY24Q7CO3kU8Sd5E-ac,957
215
- sknetwork/data/tests/test_base.py,sha256=I_0BXdj-BKvdm1LpPIRtlnPChVoYRTCC9ZvTuLT2_W8,308
226
+ sknetwork/data/tests/test_API.py,sha256=LUWZX9pPpZLVuzgAz85sJk6tgKDaXKqc2Fhp91x-E6c,963
227
+ sknetwork/data/tests/test_base.py,sha256=b-0CM1ResLoJXg6-jGmBWFii5JtZrXAhfYiAG70dW1w,312
216
228
  sknetwork/data/tests/test_load.py,sha256=9EXkw2TbDAUmpwE-kUTgxZieB4XDLF5drLVvyugX96M,3550
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.42.0)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp311-cp311-macosx_11_0_arm64
5
5
 
sknetwork/__init__.py CHANGED
@@ -4,7 +4,7 @@
4
4
 
5
5
  __author__ = """scikit-network team"""
6
6
  __email__ = "thomas.bonald@telecom-paris.fr"
7
- __version__ = '0.32.1'
7
+ __version__ = '0.33.0'
8
8
 
9
9
  import sknetwork.topology
10
10
  import sknetwork.path
@@ -55,7 +55,7 @@ class DiffusionClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = diffusion.fit_predict(adjacency, labels)
58
- >>> np.round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.97
60
60
 
61
61
  References
@@ -74,8 +74,9 @@ class DiffusionClassifier(BaseClassifier):
74
74
  self.scale = scale
75
75
 
76
76
  def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray],
77
- labels: Optional[Union[dict, np.ndarray]] = None, labels_row: Optional[Union[dict, np.ndarray]] = None,
78
- labels_col: Optional[Union[dict, np.ndarray]] = None, force_bipartite: bool = False) \
77
+ labels: Optional[Union[dict, list, np.ndarray]] = None,
78
+ labels_row: Optional[Union[dict, list, np.ndarray]] = None,
79
+ labels_col: Optional[Union[dict, list, np.ndarray]] = None, force_bipartite: bool = False) \
79
80
  -> 'DiffusionClassifier':
80
81
  """Compute the solution to the Dirichlet problem (temperatures at equilibrium).
81
82
 
@@ -55,7 +55,7 @@ class NNClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = classifier.fit_predict(adjacency, labels)
58
- >>> np.round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.82
60
60
  """
61
61
  def __init__(self, n_neighbors: int = 3, embedding_method: Optional[BaseEmbedding] = None, normalize: bool = True):
@@ -97,8 +97,9 @@ class NNClassifier(BaseClassifier):
97
97
 
98
98
  return probs, labels
99
99
 
100
- def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, dict] = None,
101
- labels_row: Union[np.ndarray, dict] = None, labels_col: Union[np.ndarray, dict] = None) -> 'NNClassifier':
100
+ def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, list, dict] = None,
101
+ labels_row: Union[np.ndarray, list, dict] = None,
102
+ labels_col: Union[np.ndarray, list, dict] = None) -> 'NNClassifier':
102
103
  """Node classification by k-nearest neighbors in the embedding space.
103
104
 
104
105
  Parameters
@@ -34,7 +34,7 @@ def get_accuracy_score(labels_true: np.ndarray, labels_pred: np.ndarray) -> floa
34
34
  >>> import numpy as np
35
35
  >>> labels_true = np.array([0, 0, 1, 1])
36
36
  >>> labels_pred = np.array([0, 0, 0, 1])
37
- >>> get_accuracy_score(labels_true, labels_pred)
37
+ >>> float(round(get_accuracy_score(labels_true, labels_pred), 2))
38
38
  0.75
39
39
  """
40
40
  check_vector_format(labels_true, labels_pred)
@@ -105,7 +105,7 @@ def get_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, return_precis
105
105
  >>> import numpy as np
106
106
  >>> labels_true = np.array([0, 0, 1, 1])
107
107
  >>> labels_pred = np.array([0, 0, 0, 1])
108
- >>> np.round(get_f1_score(labels_true, labels_pred), 2)
108
+ >>> float(round(get_f1_score(labels_true, labels_pred), 2))
109
109
  0.67
110
110
  """
111
111
  values = set(labels_true[labels_true >= 0]) | set(labels_pred[labels_pred >= 0])
@@ -188,7 +188,7 @@ def get_average_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, avera
188
188
  >>> import numpy as np
189
189
  >>> labels_true = np.array([0, 0, 1, 1])
190
190
  >>> labels_pred = np.array([0, 0, 0, 1])
191
- >>> np.round(get_average_f1_score(labels_true, labels_pred), 2)
191
+ >>> float(round(get_average_f1_score(labels_true, labels_pred), 2))
192
192
  0.73
193
193
  """
194
194
  if average == 'micro':
@@ -51,7 +51,7 @@ class PageRankClassifier(RankClassifier):
51
51
  >>> labels_true = graph.labels
52
52
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
53
53
  >>> labels_pred = pagerank.fit_predict(adjacency, labels)
54
- >>> np.round(np.mean(labels_pred == labels_true), 2)
54
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
55
55
  0.97
56
56
 
57
57
  References
@@ -58,7 +58,7 @@ class Propagation(BaseClassifier):
58
58
  >>> labels_true = graph.labels
59
59
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
60
60
  >>> labels_pred = propagation.fit_predict(adjacency, labels)
61
- >>> np.round(np.mean(labels_pred == labels_true), 2)
61
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
62
62
  0.94
63
63
 
64
64
  References
@@ -91,19 +91,20 @@ class Propagation(BaseClassifier):
91
91
  labels = labels[index_seed]
92
92
  return index_seed.astype(np.int32), index_remain.astype(np.int32), labels.astype(np.int32)
93
93
 
94
- def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, dict] = None,
95
- labels_row: Union[np.ndarray, dict] = None, labels_col: Union[np.ndarray, dict] = None) -> 'Propagation':
94
+ def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, list, dict] = None,
95
+ labels_row: Union[np.ndarray, list, dict] = None,
96
+ labels_col: Union[np.ndarray, list, dict] = None) -> 'Propagation':
96
97
  """Node classification by label propagation.
97
98
 
98
99
  Parameters
99
100
  ----------
100
101
  input_matrix : sparse.csr_matrix, np.ndarray
101
102
  Adjacency matrix or biadjacency matrix of the graph.
102
- labels : np.ndarray, dict
103
+ labels : array, list or dict
103
104
  Known labels. Negative values ignored.
104
- labels_row : np.ndarray, dict
105
+ labels_row : array, list or dict
105
106
  Known labels of rows, for bipartite graphs.
106
- labels_col : np.ndarray, dict
107
+ labels_col : array, list or dict
107
108
  Known labels of columns, for bipartite graphs.
108
109
 
109
110
  Returns