scikit-network 0.32.1__cp310-cp310-win_amd64.whl → 0.33.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (67) hide show
  1. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/AUTHORS.rst +0 -1
  2. scikit_network-0.33.1.dist-info/METADATA +120 -0
  3. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/RECORD +66 -66
  4. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/WHEEL +1 -1
  5. sknetwork/__init__.py +1 -1
  6. sknetwork/classification/diffusion.py +4 -3
  7. sknetwork/classification/knn.py +4 -3
  8. sknetwork/classification/metrics.py +3 -3
  9. sknetwork/classification/pagerank.py +1 -1
  10. sknetwork/classification/propagation.py +7 -6
  11. sknetwork/classification/vote.cp310-win_amd64.pyd +0 -0
  12. sknetwork/classification/vote.cpp +684 -677
  13. sknetwork/clustering/leiden.py +2 -1
  14. sknetwork/clustering/leiden_core.cp310-win_amd64.pyd +0 -0
  15. sknetwork/clustering/leiden_core.cpp +713 -702
  16. sknetwork/clustering/louvain.py +6 -6
  17. sknetwork/clustering/louvain_core.cp310-win_amd64.pyd +0 -0
  18. sknetwork/clustering/louvain_core.cpp +713 -702
  19. sknetwork/clustering/metrics.py +1 -1
  20. sknetwork/clustering/tests/test_kcenters.py +5 -37
  21. sknetwork/clustering/tests/test_louvain.py +6 -0
  22. sknetwork/data/__init__.py +1 -1
  23. sknetwork/data/base.py +7 -2
  24. sknetwork/data/load.py +18 -21
  25. sknetwork/data/models.py +15 -15
  26. sknetwork/data/parse.py +19 -17
  27. sknetwork/data/tests/test_API.py +3 -3
  28. sknetwork/data/tests/test_base.py +2 -2
  29. sknetwork/data/tests/test_toy_graphs.py +33 -33
  30. sknetwork/data/toy_graphs.py +35 -43
  31. sknetwork/embedding/base.py +3 -0
  32. sknetwork/embedding/louvain_embedding.py +0 -26
  33. sknetwork/embedding/svd.py +0 -4
  34. sknetwork/embedding/tests/test_louvain_embedding.py +9 -4
  35. sknetwork/embedding/tests/test_svd.py +6 -0
  36. sknetwork/gnn/gnn_classifier.py +1 -1
  37. sknetwork/hierarchy/louvain_hierarchy.py +10 -6
  38. sknetwork/hierarchy/metrics.py +3 -3
  39. sknetwork/hierarchy/paris.cp310-win_amd64.pyd +0 -0
  40. sknetwork/hierarchy/paris.cpp +2651 -2027
  41. sknetwork/hierarchy/paris.pyx +4 -3
  42. sknetwork/hierarchy/tests/test_metrics.py +4 -4
  43. sknetwork/linalg/diteration.cp310-win_amd64.pyd +0 -0
  44. sknetwork/linalg/diteration.cpp +684 -677
  45. sknetwork/linalg/push.cp310-win_amd64.pyd +0 -0
  46. sknetwork/linalg/push.cpp +1769 -1153
  47. sknetwork/linalg/sparse_lowrank.py +1 -1
  48. sknetwork/ranking/betweenness.cp310-win_amd64.pyd +0 -0
  49. sknetwork/ranking/betweenness.cpp +563 -557
  50. sknetwork/regression/diffusion.py +6 -4
  51. sknetwork/topology/cliques.cp310-win_amd64.pyd +0 -0
  52. sknetwork/topology/cliques.cpp +1729 -1110
  53. sknetwork/topology/core.cp310-win_amd64.pyd +0 -0
  54. sknetwork/topology/core.cpp +1755 -1139
  55. sknetwork/topology/cycles.py +1 -1
  56. sknetwork/topology/minheap.cp310-win_amd64.pyd +0 -0
  57. sknetwork/topology/minheap.cpp +687 -677
  58. sknetwork/topology/triangles.cp310-win_amd64.pyd +0 -0
  59. sknetwork/topology/triangles.cpp +437 -432
  60. sknetwork/topology/weisfeiler_lehman_core.cp310-win_amd64.pyd +0 -0
  61. sknetwork/topology/weisfeiler_lehman_core.cpp +684 -677
  62. sknetwork/utils/__init__.py +1 -1
  63. sknetwork/utils/values.py +5 -3
  64. sknetwork/visualization/graphs.py +1 -1
  65. scikit_network-0.32.1.dist-info/METADATA +0 -511
  66. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/LICENSE +0 -0
  67. {scikit_network-0.32.1.dist-info → scikit_network-0.33.1.dist-info}/top_level.txt +0 -0
@@ -13,7 +13,6 @@ Development Lead
13
13
  * Simon Delarue <simon.delarue@telecom-paris.fr>
14
14
  * Marc Jeanmougin <marc.jeanmougin@telecom-paris.fr>
15
15
 
16
-
17
16
  Former lead
18
17
  -----------
19
18
 
@@ -0,0 +1,120 @@
1
+ Metadata-Version: 2.1
2
+ Name: scikit-network
3
+ Version: 0.33.1
4
+ Summary: Graph algorithms
5
+ Author: Scikit-network team
6
+ Maintainer-email: Thomas Bonald <bonald@enst.fr>
7
+ License: BSD License
8
+ Project-URL: Repository, https://github.com/sknetwork-team/scikit-network
9
+ Project-URL: Documentation, https://scikit-network.readthedocs.io/
10
+ Project-URL: Changelog, https://github.com/sknetwork-team/scikit-network/blob/master/HISTORY.rst
11
+ Keywords: sknetwork
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Information Technology
15
+ Classifier: Intended Audience :: Education
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: License :: OSI Approved :: BSD License
18
+ Classifier: Natural Language :: English
19
+ Classifier: Programming Language :: Cython
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Requires-Python: >=3.9
25
+ Description-Content-Type: text/x-rst
26
+ License-File: LICENSE
27
+ License-File: AUTHORS.rst
28
+ Requires-Dist: numpy >=1.22.4
29
+ Requires-Dist: scipy >=1.7.3
30
+ Provides-Extra: test
31
+ Requires-Dist: pytest ; extra == 'test'
32
+ Requires-Dist: note ; extra == 'test'
33
+ Requires-Dist: pluggy >=0.7.1 ; extra == 'test'
34
+
35
+ .. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
36
+ :align: right
37
+ :width: 150px
38
+ :alt: logo sknetwork
39
+
40
+
41
+
42
+ .. image:: https://img.shields.io/pypi/v/scikit-network.svg
43
+ :target: https://pypi.python.org/pypi/scikit-network
44
+
45
+ .. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
46
+ :target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
47
+
48
+ .. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
49
+ :target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
50
+ :alt: Documentation Status
51
+
52
+ .. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
53
+ :target: https://codecov.io/gh/sknetwork-team/scikit-network
54
+
55
+ .. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
56
+ :target: https://pypi.python.org/pypi/scikit-network
57
+
58
+ Free software library in Python for machine learning on graphs:
59
+
60
+ * Memory-efficient representation of graphs as sparse matrices in scipy_ format
61
+ * Fast algorithms
62
+ * Simple API inspired by scikit-learn_
63
+
64
+ .. _scipy: https://www.scipy.org
65
+ .. _scikit-learn: https://scikit-learn.org/
66
+
67
+ Resources
68
+ ---------
69
+
70
+ * Free software: BSD license
71
+ * GitHub: https://github.com/sknetwork-team/scikit-network
72
+ * Documentation: https://scikit-network.readthedocs.io
73
+
74
+ Quick start
75
+ -----------
76
+
77
+ Install scikit-network:
78
+
79
+ .. code-block:: console
80
+
81
+ $ pip install scikit-network
82
+
83
+ Import scikit-network::
84
+
85
+ import sknetwork
86
+
87
+ Overview
88
+ --------
89
+
90
+ An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
91
+
92
+ Documentation
93
+ -------------
94
+
95
+ The documentation is structured as follows:
96
+
97
+ * `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
98
+ * `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
99
+ * `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
100
+ * `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
101
+ * `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
102
+
103
+ Citing
104
+ ------
105
+
106
+ If you want to cite scikit-network, please refer to the publication in
107
+ the `Journal of Machine Learning Research <https://jmlr.org>`_:
108
+
109
+ .. code::
110
+
111
+ @article{JMLR:v21:20-412,
112
+ author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
113
+ title = {Scikit-network: Graph Analysis in Python},
114
+ journal = {Journal of Machine Learning Research},
115
+ year = {2020},
116
+ volume = {21},
117
+ number = {185},
118
+ pages = {1-6},
119
+ url = {http://jmlr.org/papers/v21/20-412.html}
120
+ }
@@ -1,4 +1,4 @@
1
- sknetwork/__init__.py,sha256=hbJ__5rv06WI2XnJW8lWLpJkXp3Ju9hyR0aGBzdG0IY,554
1
+ sknetwork/__init__.py,sha256=qVhfMlfW4ek8wa9mv2zIyb_BiMWl5twz8457vyHTAEg,554
2
2
  sknetwork/base.py,sha256=_63mkwqXFDke_0ve9DIZJiMHboMYqBONa7B08gao440,2018
3
3
  sknetwork/log.py,sha256=qDR-dnlzJC0ETlotPAy_IbLiQPgu8Vn90mgkqfvT5W0,462
4
4
  sknetwork/sknetwork.py,sha256=Qtq3EpSkdAFqQNQPDXTAouXS784LkR8Rh2D5s5w5_tc,47
@@ -7,13 +7,13 @@ sknetwork/test_log.py,sha256=ucX3w138eDyD0Wnpk9QEsPoQgAPTJNPy9twzMf5TjQ8,334
7
7
  sknetwork/classification/__init__.py,sha256=QoS3fTnCZ0nFdlDkEphEYqj1NDEf23_aqsfP0G4zLMM,483
8
8
  sknetwork/classification/base.py,sha256=a6JczKf23arkC4Xx6rUEI0gLFAPoyPXKTXCdhV6_bWI,4432
9
9
  sknetwork/classification/base_rank.py,sha256=BChHu6sDkdq_M6coJsC3hac3HWPE2lholi3g97J6lWw,4655
10
- sknetwork/classification/diffusion.py,sha256=uliGned1_GGJLACzXMNFtkYbTyvHgfaUNgS535ZzreQ,5670
11
- sknetwork/classification/knn.py,sha256=p9ZHNdaMOnrd6dmVNyieGBYrhFMrjXnkD8MFCxVmJqw,5444
12
- sknetwork/classification/metrics.py,sha256=f66RlKyauNJFr8iuud4s9tntnEa4_Lp28zVWuwhUE44,7007
13
- sknetwork/classification/pagerank.py,sha256=Nvmj-Y1YFXQxCZpcUhXfKlc6S5BebnIkJZ8DRsyzDTs,2652
14
- sknetwork/classification/propagation.py,sha256=WkB4yG3V13a0d5yYuuecuHblQ2Z0L5PKLpL3gUgy8zs,5905
15
- sknetwork/classification/vote.cp310-win_amd64.pyd,sha256=LGBbwSa7oUn20re1vIy5FCuqltxT0gQrHXNVZw2-K3s,155648
16
- sknetwork/classification/vote.cpp,sha256=v5lbYo4Fj9ILOzFZqoucaep3okd78WhBGzIWDHlSHhw,1023081
10
+ sknetwork/classification/diffusion.py,sha256=YcPTJKZDw9xraZSWraxIBh8x0RmOD1ANsg2lseotQXY,5705
11
+ sknetwork/classification/knn.py,sha256=RIlLqksGOWLCAhgQ3X8KqCVD6Qcj9C0Tgrz4spk_LDE,5479
12
+ sknetwork/classification/metrics.py,sha256=BY3RPwnFCCX3HYmHJiZtNWSzKPtVTACUVX3u1TMGe2c,7032
13
+ sknetwork/classification/pagerank.py,sha256=GTbTSplrDoxpKb-LZmjibEHPgjeicGInCBEOI_bwVu4,2659
14
+ sknetwork/classification/propagation.py,sha256=soL5zmSIohmJw-song-2liwXuPB40N0_R4w6W1-tlIE,5952
15
+ sknetwork/classification/vote.cp310-win_amd64.pyd,sha256=ldQYEcNnT_mpZwnuTBDEV_k2sPvE_PTVi0sWHOjSUiY,155648
16
+ sknetwork/classification/vote.cpp,sha256=gklv54N-KytBROK_7_2DXzo1GnyqfQyX2mvQBbCbdRg,1020435
17
17
  sknetwork/classification/vote.pyx,sha256=-mNsL96aaA1UL-qfeUgZlbdvKZUK9R4MLmq0BNFWVKA,1640
18
18
  sknetwork/classification/tests/__init__.py,sha256=Per0oy1Frnm5jB7dnpod1g_xbgYhqkNteWQV5cemcH0,32
19
19
  sknetwork/classification/tests/test_API.py,sha256=WV5cY8yhTHBHYRbDE3InZ4v-agymxLPMKxa2NqjbWZo,1154
@@ -25,62 +25,62 @@ sknetwork/classification/tests/test_propagation.py,sha256=GzhpCpg0ijLvXuWtABolq0
25
25
  sknetwork/clustering/__init__.py,sha256=Ju06e1zwMUfOn_1soTOlxJJu1F5u9VNxFXWN8TTParo,443
26
26
  sknetwork/clustering/base.py,sha256=LsH_wlP19lDnIZWVUXbKwSta05ii5dWMqS-J-AkY6HE,6104
27
27
  sknetwork/clustering/kcenters.py,sha256=MKmsR7zWTITeEAqFyRDKpglU7yZZEjR8H0TLJXdDjtw,8942
28
- sknetwork/clustering/leiden.py,sha256=x2M1tVMlupu3KK8D7RpfB0hzV5iwf0den1y9NwC1Jko,9921
29
- sknetwork/clustering/leiden_core.cp310-win_amd64.pyd,sha256=LfsOIqM3fxzU1eXQcRGBQM8ub6k_G6WMhguxTjehc88,200704
30
- sknetwork/clustering/leiden_core.cpp,sha256=7zojeTDpKgEd8_krBMBnhVdqA1mFMZRiOSPBwqQGbx0,1205017
28
+ sknetwork/clustering/leiden.py,sha256=THQdYR_DhGF8xJLTEiSmd8cx0Y70ms5nZ1emnoqcxBg,9924
29
+ sknetwork/clustering/leiden_core.cp310-win_amd64.pyd,sha256=POl-7rPkDTbSNpHRKeNM6u9qAE3r67PTKatxYse6yVU,200192
30
+ sknetwork/clustering/leiden_core.cpp,sha256=YpizK6Tsj82Qq3Wuc7Bb4FTEk6J-UwvjRSvKU5NzgP0,1202445
31
31
  sknetwork/clustering/leiden_core.pyx,sha256=kEppO0iSs0UqK3ybtSVIHRSojJ4KNfe6pUNo9sShh7E,4424
32
- sknetwork/clustering/louvain.py,sha256=Em7A22oNamwBb0IAFySLa9HUmdu4LjAuo3XAtJqtHC0,11077
33
- sknetwork/clustering/louvain_core.cp310-win_amd64.pyd,sha256=SI2MPE4-l9uJSJp_NZUQ5jSzYqWZKO_aoYQVlemxvd8,196608
34
- sknetwork/clustering/louvain_core.cpp,sha256=Jyv0j1eqpSdAXvo-QfAdC0TqQZBz-HDxvQkA7uf9T3I,1185581
32
+ sknetwork/clustering/louvain.py,sha256=RMIPR068mPNkB4SzubwMhKZSUepnaju8ORr-SHUKe2g,11111
33
+ sknetwork/clustering/louvain_core.cp310-win_amd64.pyd,sha256=MhufXDVMhK9w1NKL3TeOOQVDp-DBaQ2Zjg2rvn57X_0,196096
34
+ sknetwork/clustering/louvain_core.cpp,sha256=3wQSOiqgqt2aSa9Bef3_5viblD-yGyh75Hr1WK4VuqQ,1183009
35
35
  sknetwork/clustering/louvain_core.pyx,sha256=2KPnBhBeSlIxmoScZW7jwsmVxJyAyHQs3pcH9AfBM2Y,4213
36
- sknetwork/clustering/metrics.py,sha256=ptLLtUpFtdKLZ4lcx_MN-PpOrzv--PWhAcEFoFghccM,3151
36
+ sknetwork/clustering/metrics.py,sha256=yBvtH97m66OTkgZnwcoMYFReMFdi9di37NDyMn56CxU,3158
37
37
  sknetwork/clustering/postprocess.py,sha256=uynPXvjYXiFNShxGZyLkpIwRl5nIlIVEm-auMCNZA0o,2105
38
38
  sknetwork/clustering/propagation_clustering.py,sha256=s-Y7EQEqGM2wdl1zAOQzfmy-8LGab1eB00u_AOkYzl0,3885
39
39
  sknetwork/clustering/tests/__init__.py,sha256=tCA27jkL3pdstka9XWQEA1NbC6ZqL7Rf-1V1UcySCEE,28
40
40
  sknetwork/clustering/tests/test_API.py,sha256=PKxuTh49IyKzwkLfgFAmJiuBhWJQBEYtNxzOEYgc5uE,1566
41
- sknetwork/clustering/tests/test_kcenters.py,sha256=f2nBCcj4TRZ9FJVn7r60w1AI5gzDP1s70ve9aW1PbDs,3569
41
+ sknetwork/clustering/tests/test_kcenters.py,sha256=BWvcTo8iNDFbKawVrRe8N6q4ujS0Co4MHpkT-P8_A9U,2037
42
42
  sknetwork/clustering/tests/test_leiden.py,sha256=oEN0Dz9popCEYE-qqEdmTEqqr3af9TB3WDmRNWYAidE,1189
43
- sknetwork/clustering/tests/test_louvain.py,sha256=rYZLrb8Ld_F2KDCos5RP9-1szkVXHnXLWHd4SbOwvAY,4807
43
+ sknetwork/clustering/tests/test_louvain.py,sha256=rnW-WGa9YA0u__JdXlODqbqAgPadeMlyu40VZ1ri29c,5006
44
44
  sknetwork/clustering/tests/test_metrics.py,sha256=ZTr4T-d-g6kQJinei9VH6Teb_rOScmj5XLG168EI5LQ,1868
45
45
  sknetwork/clustering/tests/test_postprocess.py,sha256=41l4coS_1CHqGOCnnucqxU6UkXws89YVMjef162ZTEQ,1417
46
- sknetwork/data/__init__.py,sha256=QScOMfOfm2j7rPaNLPGNc9TwHQGebWRZCBHHbmZarO8,265
47
- sknetwork/data/base.py,sha256=O_EN3j1hoSbHc96qxx-dAe5SsLGdLE1cqiX9fl0xjAw,658
48
- sknetwork/data/load.py,sha256=AkFI4qdzP2mPd43Rm321NQa4uSERb5D4Hs2lciuyn-Y,14769
49
- sknetwork/data/models.py,sha256=luDuvYYcruOEw94iXNEnl5IbYJCVGtxB6jhDWVBmJH0,13615
50
- sknetwork/data/parse.py,sha256=bmAM5LdMleZfYQ8hx1NEd3TIRjxwemoVOsNHEGv-0ss,27539
46
+ sknetwork/data/__init__.py,sha256=qt9xm8RuVQqJQct_A2aCytKjTkMmegnPaRFcHqFbyDY,261
47
+ sknetwork/data/base.py,sha256=m0nrETIA9bDkqP_hkUVjQlmbwgdQI_Z0M6wctao6N2A,706
48
+ sknetwork/data/load.py,sha256=cIHn3LDRo208n1Yrqq_kaqgrHKEn8qmi5YiX4gGGx3Y,14762
49
+ sknetwork/data/models.py,sha256=x4s-Ty3Rj0S6MZ4ml2qf9BJFGeUXh8_YzIzbOikBo5Q,13645
50
+ sknetwork/data/parse.py,sha256=k9iJSOrA3cPZwBYuMnTLvaBK3ycDsRStcVq00HCjNO0,27639
51
51
  sknetwork/data/test_graphs.py,sha256=KRRok5ElYWh1NV3i_2enLLjdeKe8zBg_3xqFXgOOY6I,2568
52
52
  sknetwork/data/timeout.py,sha256=mXSqgKFRc6AVZBlIobN2xPYJjAyQOClKH3KQJ5M_4Sw,1085
53
- sknetwork/data/toy_graphs.py,sha256=xdgNQjzwswpkCVioUR0_EzoQiS6QbuOAD0mgTs3Fphg,25654
53
+ sknetwork/data/toy_graphs.py,sha256=VDEwMLEuu562G2u22xpwobcNTl756ZiL6Moc4XtJbn4,25243
54
54
  sknetwork/data/tests/__init__.py,sha256=LtUcKFe5CeBpspRwa6A2uX2cVEf_uPpOo2mGkH7W8cI,20
55
- sknetwork/data/tests/test_API.py,sha256=aytP2cJV9px-d-SogJn4SYPnTFJ1Xt2coEW7-EiljjM,987
56
- sknetwork/data/tests/test_base.py,sha256=h1-1fEyWuVpAOnZDFmkSuhngrQdv3N2vEMa_Wpt8dVU,322
55
+ sknetwork/data/tests/test_API.py,sha256=4T9-zFggcr-0aJAENR8ZMOnOvmbltepFhdiQjPt5jC0,993
56
+ sknetwork/data/tests/test_base.py,sha256=2UZOH_c12jCOy-77-ahoj1uGdbmA42pFVrFV9NCAYbU,326
57
57
  sknetwork/data/tests/test_load.py,sha256=wuLVlJ-lquoIrsr0UBI-gakW7BjGBZaSyEPavxX0NVY,3645
58
58
  sknetwork/data/tests/test_models.py,sha256=_2y5xZrWbE3XZltd4n-z84YwyJhPcpaBa2TxXMvhXF4,1967
59
59
  sknetwork/data/tests/test_parse.py,sha256=K_HTO7L5axpnt2Fs3hmOMudufZZ2shps94COEABcMx4,12967
60
60
  sknetwork/data/tests/test_test_graphs.py,sha256=3QWshIikkBtRl3C7ATc_zO5UkwOh1wZwD7gYm0CEj8o,878
61
- sknetwork/data/tests/test_toy_graphs.py,sha256=wQ2X-CVv9oycBUAaB68aJqg-0o3yMlaVtZ9D4thZJrc,2205
61
+ sknetwork/data/tests/test_toy_graphs.py,sha256=vn-TTT9w8TX8Lzof9fV8eEnJr5_NyBj1Zd3rSPB7IU4,2265
62
62
  sknetwork/embedding/__init__.py,sha256=hTtHHVXNdwdGSZuAmLvTm3yMmHWxYKrFwwo1MuOPTUI,418
63
- sknetwork/embedding/base.py,sha256=YWKLjfChvWKWuD3FE5mlqtNVzczzvfojLQvvgV73ACM,2681
63
+ sknetwork/embedding/base.py,sha256=cm52qsqGsPesvDOF5LxOp8rwLhs36dvNlDu_e9jBU0A,2757
64
64
  sknetwork/embedding/force_atlas.py,sha256=yjlL5Qfv19KJdwtziTDOklrW_HP5CkMJIoOL6t2cYsA,7650
65
- sknetwork/embedding/louvain_embedding.py,sha256=3jSFxiWImFc1bUEY1ZXdbvslRxL9wl2CeERZFGF5qKM,7124
65
+ sknetwork/embedding/louvain_embedding.py,sha256=MWPaZyDtmeEsjDaHMqaztn-3T5U_Q7kWnaHTchPzITc,6230
66
66
  sknetwork/embedding/random_projection.py,sha256=b5zGehuWT-dpA1KSw5xv3UZXZGNcP8PalEjXYWfgPT8,5137
67
67
  sknetwork/embedding/spectral.py,sha256=xN_5yxJV2KJ--DOpv7tyy5yU25BHVBWnXbywQ0L_6YE,5689
68
68
  sknetwork/embedding/spring.py,sha256=Cl1airI_mSWmV1isKmcxqjY1uxw7NcH7xMwHc8ADmHA,7349
69
- sknetwork/embedding/svd.py,sha256=isI2y9GfCGA5VJmogHrtq2MDVaxuWCZsEvh4YqgfB2k,15097
69
+ sknetwork/embedding/svd.py,sha256=ycn5fIaw7K7vTz7_MGxKN8XtDsnTqUIqXIADO8_M_GE,15001
70
70
  sknetwork/embedding/tests/__init__.py,sha256=PsZQYFNrSmRW_KIuNX3qVtxtZVn8yV18d0mk8Y6ieck,27
71
71
  sknetwork/embedding/tests/test_API.py,sha256=0KKY3p_bF2f3QPsReW9IrAtC5KGw1Ok3J0kYUT1hrl8,1538
72
72
  sknetwork/embedding/tests/test_force_atlas.py,sha256=dYiyWroqB7UKNW9MTYpGP6e7tF_qPWqVZNmZBndd_ks,1155
73
- sknetwork/embedding/tests/test_louvain_embedding.py,sha256=yPKM_JG2v_kzYkp4lZ7laalZNq0qhjM6pWmyGWecCkk,853
73
+ sknetwork/embedding/tests/test_louvain_embedding.py,sha256=0WTNALEfnJoDo5P84DyXmwpcmbuUXqR3G5S_iM0W30A,1149
74
74
  sknetwork/embedding/tests/test_random_projection.py,sha256=zz6q0G-pG-G2gOefhr-yuPBQhNDNtXB8jz7_dld1ZpE,1221
75
75
  sknetwork/embedding/tests/test_spectral.py,sha256=w-gokQ_UgeXSQv69BB_Dk6shkWiO6iJbJGl5ih0JNRI,3978
76
76
  sknetwork/embedding/tests/test_spring.py,sha256=z3eT-mFcfNSoMWPKQF-Dz_ZjAsJplQrx1yspiaeFRBw,1693
77
- sknetwork/embedding/tests/test_svd.py,sha256=OZTpXRemHEpGYSfYb2AosXhLgruaRpAhyQjNcqQhw0Y,1232
77
+ sknetwork/embedding/tests/test_svd.py,sha256=LXIDhxUDxJBLnVnq567yVqs0eTJFPqBhzriPBOqa6k0,1506
78
78
  sknetwork/gnn/__init__.py,sha256=808PNZEYNHZrIBpKqPzAMKES8yhN6QXEVUWkZVJIJWI,529
79
79
  sknetwork/gnn/activation.py,sha256=rhvEXgrIix4nZ9I3WYZ0e1MID_DESCCC_XlVcOa4Wpo,3677
80
80
  sknetwork/gnn/base.py,sha256=qHnKsfsUW4LIdwm3vzfAahBjweCkIDRzk62i4piNBuc,5889
81
81
  sknetwork/gnn/base_activation.py,sha256=Kxs_d4aPOpMRXZMBAW7WKkA_uWLXRM7XM-JqE4nFHhc,2395
82
82
  sknetwork/gnn/base_layer.py,sha256=_zL_SyVYvhxch9N1i44Qkgar_M5xVRz7JcxqUjVwDjY,4057
83
- sknetwork/gnn/gnn_classifier.py,sha256=EyanIIdGfeshOU_3IwH90PX6GG5nCav6msQN9zfJixo,12918
83
+ sknetwork/gnn/gnn_classifier.py,sha256=OSy6BURNFW1-5AmwPnJYYcrAc_eH1pS_99pu8V2vyy4,12922
84
84
  sknetwork/gnn/layer.py,sha256=JBNFABBgGtMeXdQaS8wGnsSd7Jqs18jbIguITTOCQRE,5679
85
85
  sknetwork/gnn/loss.py,sha256=FwULPjbUe3OFIhIBKJoNfdYX41ALckX2ANKvC69yyoI,5342
86
86
  sknetwork/gnn/neighbor_sampler.py,sha256=l5OkylbRQsDpmkfeHAaSA7gHi5l7OUKtL4YvH-YTMWM,1929
@@ -98,21 +98,21 @@ sknetwork/gnn/tests/test_optimizer.py,sha256=OZnIeO__kNt8HXLHr-WHGzvDsTy4LvJ19p9
98
98
  sknetwork/gnn/tests/test_utils.py,sha256=MJvOXEWouRiIVaPM76W0hizt3jFb-1_BXHLd1zkPzSg,1884
99
99
  sknetwork/hierarchy/__init__.py,sha256=-2-y7iBVQRanXLSl9kY8VASJVqx37trYmVNcz74QsUc,418
100
100
  sknetwork/hierarchy/base.py,sha256=DvVUNgJgfaFlWyl4QbdHmp-VldPMFLPx9irt74kpyrU,2789
101
- sknetwork/hierarchy/louvain_hierarchy.py,sha256=MqIWRoqAl3ufgsV8r707T8qlwaqB_km_yczRcJWh_4w,9826
102
- sknetwork/hierarchy/metrics.py,sha256=5WZLsSLYKifLIQ9aPrXyzvPtTFN5ROSlNivhV-n9VuY,8280
103
- sknetwork/hierarchy/paris.cp310-win_amd64.pyd,sha256=55GVRQ6wl9o7ufnM5hHv7ZD-jlrrIehgPNDpSKo-N7s,225792
104
- sknetwork/hierarchy/paris.cpp,sha256=Da6P2bqOr4wlyBn1WZ-QZG2av-LK9hkdmOxxvTtS-_g,1471055
105
- sknetwork/hierarchy/paris.pyx,sha256=YfHQwrZx4ddzsKZ9K4yv1obIrZSVDzY0WjVhM5Qi8DI,11998
101
+ sknetwork/hierarchy/louvain_hierarchy.py,sha256=MoO0mlvuFUFNYssl1zOAWlcyg-2OLzJI6VFPjIS1FiA,10118
102
+ sknetwork/hierarchy/metrics.py,sha256=UzfTDFZExTn6j3wQQ_FXF7frHGNvfS5mpj1ZtlR63iQ,8301
103
+ sknetwork/hierarchy/paris.cp310-win_amd64.pyd,sha256=tm5xWEfhDtGah3xbpopbBb_SsZpVXSRWaptlzepuqMc,225792
104
+ sknetwork/hierarchy/paris.cpp,sha256=FeEzze9vnD9uONR6vb5IkgjdMob1cBv1Lm_6oRaG5Ag,1494314
105
+ sknetwork/hierarchy/paris.pyx,sha256=CSr7eJBGPQoHff3czQpDuaW3V16ZsgdnVoFQ_rkFWBk,12129
106
106
  sknetwork/hierarchy/postprocess.py,sha256=81Hj7eCHvU_2mdq0FTeYuZAqk4FIudZfZbvU39_sqyM,12422
107
107
  sknetwork/hierarchy/tests/__init__.py,sha256=jRlC4pbyKuxaiXvByYK-4ix7DwYWxpjwKNvSXZ7rQJE,27
108
108
  sknetwork/hierarchy/tests/test_API.py,sha256=f0QtuCDA5dRwhPogtwbjsVlDRTpk84ewkXgc6rHCSWU,744
109
109
  sknetwork/hierarchy/tests/test_algos.py,sha256=HbF1QCFcpbrybRLrz7C0-2yY7s97vciWNiktbbvubwg,1395
110
- sknetwork/hierarchy/tests/test_metrics.py,sha256=rcdFVeWf50bYnem55gmUaDfE6AmJuW8RtYEQcigqZ60,3222
110
+ sknetwork/hierarchy/tests/test_metrics.py,sha256=sljCTCIXNvanQ3Bf-g0x0jyjXs05EBlCR9Rcy-j9kTU,3222
111
111
  sknetwork/hierarchy/tests/test_postprocess.py,sha256=Bm1_XU6OgwZr_1B28IA5m_HZRqI7GMwlTLpzkXux__Y,2266
112
112
  sknetwork/linalg/__init__.py,sha256=COkAHs_EsxWzd_tHl6qq8laEfSsjoMuWVx3VbNFEgzU,542
113
113
  sknetwork/linalg/basics.py,sha256=WDlylrkBTCQpjXGtzs8kshJYfpo0h3uM8TMhHmnAnnM,1179
114
- sknetwork/linalg/diteration.cp310-win_amd64.pyd,sha256=Y9q1hY8Dabk8gTtWRlBiFLqn46rUU844wfKnJ4guGA0,145920
115
- sknetwork/linalg/diteration.cpp,sha256=1I-9mWJoMlpPgQ8cTukcb4os_Bpk296F4CahRPnk9cg,1019891
114
+ sknetwork/linalg/diteration.cp310-win_amd64.pyd,sha256=lmuYM6rDa9CU8hUC2fVXBxpCFEdoA7_PEvF8uOySq-g,145920
115
+ sknetwork/linalg/diteration.cpp,sha256=BuyxR83C5fmr3nDlNGPjz3BVUctC842PJE5c_0P15jk,1017245
116
116
  sknetwork/linalg/diteration.pyx,sha256=1r7a1usqftiBNTPOAwHFQPK__nZ67J-87wQLM25GqEU,1431
117
117
  sknetwork/linalg/eig_solver.py,sha256=lMqxTg66_T-LsgGqc9oo_ngxpTceekavnCFOANWEpPA,2793
118
118
  sknetwork/linalg/laplacian.py,sha256=qifd-8iltcTKCQW-7fG5z3XfwVrrrCeaBqbViBQCLf0,416
@@ -120,10 +120,10 @@ sknetwork/linalg/normalizer.py,sha256=Z0-paMHwp51aY_ssCP2RfXNVQqTFA9gsIHfy-fhG5Q
120
120
  sknetwork/linalg/operators.py,sha256=nNTtdI_I0HEhnpHOxUYRHmEzUDcz9CbwjDc5eEKzlNQ,7657
121
121
  sknetwork/linalg/polynome.py,sha256=qnIhfpRk26JMinuNCrZO1EDj5ci65ZLxkKJyhO7HxpE,2201
122
122
  sknetwork/linalg/ppr_solver.py,sha256=D7LUMQgFAtnGhh8pxpKrISH1H9d5MknFpHib8bPA5x4,6703
123
- sknetwork/linalg/push.cp310-win_amd64.pyd,sha256=SNdZTjwj7YBGgBDpILSmEjn7bllzLnkGtnJpmHa-PTg,164352
124
- sknetwork/linalg/push.cpp,sha256=w4doDr3ExAOgmgDvOPI8RSN91BVWNBaQX2HiR3TTgTQ,1156910
123
+ sknetwork/linalg/push.cp310-win_amd64.pyd,sha256=8A0or9hB3W17kJJJ1ra-FzlCgBq5rz74A9-KG9JNm3I,163840
124
+ sknetwork/linalg/push.cpp,sha256=FxZDQgfHgSf2oHgG-l4l2c7vV6ELY793UaDCyyksIgI,1178421
125
125
  sknetwork/linalg/push.pyx,sha256=79ycseJ1jOznzc1_KSexTGy_0dlX1jQVnf_WI8Ufvgc,2429
126
- sknetwork/linalg/sparse_lowrank.py,sha256=-6-cNRs6tpiNqA8ah3mBKWap3Nh9GQHTFIarPjIiC7U,5170
126
+ sknetwork/linalg/sparse_lowrank.py,sha256=rfyg9lg4HmWdce3eFi1IPaTPsd2SAWR_pAdqDOyvYyA,5177
127
127
  sknetwork/linalg/svd_solver.py,sha256=XxP4AyKQInBQN3imcbtahXseZ4YyKj4ZI2UAJK1mDs4,2772
128
128
  sknetwork/linalg/tests/__init__.py,sha256=i2cO6oXoryXdEJ-HdSFZsY7LZdNit7W3GC8J8LAUMU4,24
129
129
  sknetwork/linalg/tests/test_eig.py,sha256=c_BpjP_S7xCwYgk2N7kaFfsjV1-nfUYCu3Rys07bPeo,1548
@@ -151,8 +151,8 @@ sknetwork/path/tests/test_search.py,sha256=wJzwbbe86axJRmausJp-KcsNTB9n7kpo6YBd7
151
151
  sknetwork/path/tests/test_shortest_path.py,sha256=zeM-qgbTs3i29gvF568otKOKgv_pbryV_yGefThLEIY,1422
152
152
  sknetwork/ranking/__init__.py,sha256=lbkUSZ3alkLK0xGiUx5ptPqhQKIjIKK80uPk0KymJPc,356
153
153
  sknetwork/ranking/base.py,sha256=W3gw9j_ikhyETr3dpEYo9RINUUHlSn8Dez_eAnlIsDg,1573
154
- sknetwork/ranking/betweenness.cp310-win_amd64.pyd,sha256=u6zqrUDYQS9xDJXLWiczE8WcFPaKa8SGGXqq8CRHU8w,74752
155
- sknetwork/ranking/betweenness.cpp,sha256=YgPLKP6LRQH2UgCnhGgEgzf8c5qgSLHf7DDZlX4PnzQ,380617
154
+ sknetwork/ranking/betweenness.cp310-win_amd64.pyd,sha256=a957ZHoa1FVQC4r3zgEeDW_PyFK6ZoLq7nv0jxBRy4k,75264
155
+ sknetwork/ranking/betweenness.cpp,sha256=Qvl8bM8vadM6M0lDtjWS6JzqWHFj8mqsjW0GEGYPRTw,378992
156
156
  sknetwork/ranking/betweenness.pyx,sha256=fe5_gwRQ0TaFi_0-vUGfy6XC5kW5un5xly7-xVDgxrU,3184
157
157
  sknetwork/ranking/closeness.py,sha256=CvdAaqsM8HvAi6zGCuLcVF0BUu9n9UPBz_YxZhFF_sM,2932
158
158
  sknetwork/ranking/hits.py,sha256=uhGJH2C0U9hLsVRutI6M1ulbEIM7L6dCeYqiAhtTD9A,2855
@@ -168,29 +168,29 @@ sknetwork/ranking/tests/test_pagerank.py,sha256=LlRJLoq-By1WVOuY71OAh46vCIvERQ0q
168
168
  sknetwork/ranking/tests/test_postprocess.py,sha256=TpyU3_DKbnSwuf0HEuEYMiNbdI6Z5oP1JNO6kWigFkc,729
169
169
  sknetwork/regression/__init__.py,sha256=FYnlc-DKS1Mz2lKVCtKldjSgtvzxMmkd5kwKq2HdNmE,145
170
170
  sknetwork/regression/base.py,sha256=gTBqtaE-tMmtcnWh0pPsK9fg7eEUF1UaDdINE2nLNI8,1557
171
- sknetwork/regression/diffusion.py,sha256=sUKbAf0VNmMHQmw_-Dba25omL4oEpWhyYU1qZJ_QA2E,8053
171
+ sknetwork/regression/diffusion.py,sha256=CopcR4EN8xN3T-7bz5g65eJLoMioCN0jtSY77w9HR40,8115
172
172
  sknetwork/regression/tests/__init__.py,sha256=GvqvsSMbqMYwRmWw4VrZntwccz1jOPqrqufAZqw_NAc,28
173
173
  sknetwork/regression/tests/test_API.py,sha256=7x_n8bG8hUcJVRYDbdC6GvPmwW5cE7HmASlu5SHnwFI,1056
174
174
  sknetwork/regression/tests/test_diffusion.py,sha256=_ivBfsfmRQyiFChMS8N1J7HoJDhZtKdeydBIu7SuSvU,2117
175
175
  sknetwork/topology/__init__.py,sha256=Ho06JPdSeiy5sq-Cv3e9y4AiFVMUQ_RUNUDDpKegWnM,542
176
- sknetwork/topology/cliques.cp310-win_amd64.pyd,sha256=-Z9ZIc5KveeUsWbmMOMaMlKWGMQIwayDQ7VLzgx5qAI,184320
177
- sknetwork/topology/cliques.cpp,sha256=762ddfwY6s9XTf2HM-lK2Q0pwrGgy1-ZgfONCyeJlIc,1223705
176
+ sknetwork/topology/cliques.cp310-win_amd64.pyd,sha256=33S7SUWitd1_eCTGAlfLyQtJ4R7KzKHXrjcxPqHJyX4,185344
177
+ sknetwork/topology/cliques.cpp,sha256=AV27WKn_HaTRligv7zD6crsGvR0_cr9ZfraoGhQN8KY,1245289
178
178
  sknetwork/topology/cliques.pyx,sha256=y6Ee5oaX7IdVhXXjSOazqT5dYo4gSTQ8Mq0u1Abg0vw,4659
179
- sknetwork/topology/core.cp310-win_amd64.pyd,sha256=xNRD2qMK7XcL1RsAHxHkgOSLjH2U6ZRJjGj-4rOaciA,155136
180
- sknetwork/topology/core.cpp,sha256=GBjts7hqUv_R1OsZcmgkJYVifXdKRslSZBUg9oQ3RAM,1132988
179
+ sknetwork/topology/core.cp310-win_amd64.pyd,sha256=zMUfGhtMl1PNvdG-wzMssTgKTdp6PZiTslcCK2f12Ww,155648
180
+ sknetwork/topology/core.cpp,sha256=utd4phip7VOw9jrNFPGXqYlEImQfEQq3HOedOuZexJw,1154504
181
181
  sknetwork/topology/core.pyx,sha256=0PO4HnOYivjrFY1NMlXHd7wscu0R5Fg-Toj3YVRwXDo,2555
182
- sknetwork/topology/cycles.py,sha256=EgVtANHvY-MBcIe3yRVaBYzz1amsiV6GfuDEMIO3Kl0,9246
183
- sknetwork/topology/minheap.cp310-win_amd64.pyd,sha256=TBPbO1wrvMtazaqarIyTPhFnEY9yBcXIUhrwfsoaqfU,133632
184
- sknetwork/topology/minheap.cpp,sha256=ZXtqh-GOfD9yis9bGei2eO26NV57vQVMcciLwAUZdig,1016263
182
+ sknetwork/topology/cycles.py,sha256=Z4T65j4TuO0IKgPYzxESDF8g_CkmoUWaZS3U4qIcmtY,9286
183
+ sknetwork/topology/minheap.cp310-win_amd64.pyd,sha256=ChBBezM9Rc3i_ovFMm8KlKHXj_cOVypT38d1mU4rsE8,133120
184
+ sknetwork/topology/minheap.cpp,sha256=Xz41Q0mt2Kf9SD6bl9dvpjoCGEBHyc1unnVmldObHag,1013687
185
185
  sknetwork/topology/minheap.pxd,sha256=AHeBNN8wGzT429K6AyhbrFUoBkWVwbkyUIY6TkeJ80g,584
186
186
  sknetwork/topology/minheap.pyx,sha256=KOmjjlljgkGUJNL8PQ6WaNzx-Ro84QoSve_8baDN1B0,3419
187
187
  sknetwork/topology/structure.py,sha256=28mSnrukLU_GDil8e5ouLZ9PuoQyJ0UmQ4WgMu9Wzew,7479
188
- sknetwork/topology/triangles.cp310-win_amd64.pyd,sha256=YWAI9OmPR54hfQ3uFFPNjp3xqnkmQZe_hTmwZN7hyPA,59904
189
- sknetwork/topology/triangles.cpp,sha256=3iFxgYEvc9rQXnJ4fOCZWYFt0XjEwKM_rtjJG268Ces,354317
188
+ sknetwork/topology/triangles.cp310-win_amd64.pyd,sha256=yckO459TYtBwChHkdW6mnaL_HsDLZaSJmXg_HdVClQM,60416
189
+ sknetwork/topology/triangles.cpp,sha256=J69OEH_iCp5PZ_765gtjuwci6cYIbqsIgBRUQ-OrqMo,352670
190
190
  sknetwork/topology/triangles.pyx,sha256=q_f23ZidyizvR9P4X4OIX8o8bAZZTtV7tnjXqmyYZuY,4500
191
191
  sknetwork/topology/weisfeiler_lehman.py,sha256=U5b5RoTFtqBeFwkuBXs4g0Px2UWRFePyneu-tfgnY_I,4441
192
- sknetwork/topology/weisfeiler_lehman_core.cp310-win_amd64.pyd,sha256=sbiYkkyc7fQJy4uxHHNcTxo5uSzGL_JKEXJmqitzfM4,155648
193
- sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=vX8i6qOU-ybvxjInhnvc5vowmLTNPph6hS1RwSevt-c,1027133
192
+ sknetwork/topology/weisfeiler_lehman_core.cp310-win_amd64.pyd,sha256=jChJA44goBK1CGBHBXsit5Y9XC334XJrYnbSJQGKgk4,155136
193
+ sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=3jk_01os3zwlm0GbsWIUhpEZDsQ7n6JpOuDrpr1itnc,1024487
194
194
  sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=lpUV1BpxtedsGBfOl19b8OFXCIbyaAA4ZYlW6BzSxbw,3148
195
195
  sknetwork/topology/tests/__init__.py,sha256=84T-xv8JCFeA9D7Rxw9gy3_dNAoE8CY1k1pYcuG8K3s,26
196
196
  sknetwork/topology/tests/test_cliques.py,sha256=vdRMDmF8AKkIWE-LnU2yGzk1wzwzq9PdggpeS-8wfRw,866
@@ -199,13 +199,13 @@ sknetwork/topology/tests/test_cycles.py,sha256=iKhfvZf-GjlcVCFwRzo9OkxPfnT_pM-eL
199
199
  sknetwork/topology/tests/test_structure.py,sha256=BIJuO39ROQRA-xipUfk8PajHQ0Uk9EY6C-c3JYkmBSg,4033
200
200
  sknetwork/topology/tests/test_triangles.py,sha256=5AYxNQ8DkKTvpShWEWV-v1r7WZx1DuylChcEmVF0yTk,1313
201
201
  sknetwork/topology/tests/test_wl.py,sha256=vesYcnlJHPphk2RJLzKJH9N6aYpPeKLFJko1E8kBdtc,2290
202
- sknetwork/utils/__init__.py,sha256=ceT5UU4JRxCqpDlPj84gPBaKMRsI6b_YfaBzkK67Qo4,336
202
+ sknetwork/utils/__init__.py,sha256=ZF_Xx7FhOeHOsqmiBpwO1_bmGj2uoE6knq47oMpMN70,332
203
203
  sknetwork/utils/check.py,sha256=LWUkHwDzr9Z9IyT7AIsrQyDrRAMjO2bzWyFsv_P9Ask,13295
204
204
  sknetwork/utils/format.py,sha256=g_cfUlETJp7AppCiVKG2VZPexH-H9rVNGF4hXh2rshM,8987
205
205
  sknetwork/utils/membership.py,sha256=kan9WuytJCyBAZi0CfM0SJEf527XB4WAYMkIctD5D9w,2244
206
206
  sknetwork/utils/neighbors.py,sha256=-EwBXigM3mn2qvVTi_aPmG0XifDMojZgsMQ9_A8cLkk,3466
207
207
  sknetwork/utils/tfidf.py,sha256=vvISEaZJa7RZrNNgQEAHgMH2rJToARuNWcVjnA8u7po,993
208
- sknetwork/utils/values.py,sha256=aUc2fuI56J78_6P-S2mT4NhHgiiIZp6D2feNKcsQmG4,2584
208
+ sknetwork/utils/values.py,sha256=fqD2iGRwzPG44Vy6c1Us8koggqkWkRGSENZfJonJ2Uw,2671
209
209
  sknetwork/utils/tests/__init__.py,sha256=JQuARG8Ycb5apL6PUy_wuEHsLjmEZFOPQUKWRgTMdCY,23
210
210
  sknetwork/utils/tests/test_check.py,sha256=LxYAubg6YZ0RHYFz_R3byNtw3EQ6hsHxPPI3QgP1DLg,6954
211
211
  sknetwork/utils/tests/test_format.py,sha256=NJrRBI-kFF8dYFmTwuFF7VUnHS6Mz75DG-RB-iGk8ag,2308
@@ -216,13 +216,13 @@ sknetwork/utils/tests/test_values.py,sha256=K3ctTXpSy9fwiHnpFVlHX5KeTd2wNF4kbFiT
216
216
  sknetwork/visualization/__init__.py,sha256=Ww8O1hby1xf_mtRgFftc9srMzvbFgWOzj_khKkqq9Mg,220
217
217
  sknetwork/visualization/colors.py,sha256=NhyMQeetfH16khnJD2gD_uZJkBD3JQDV0K3Jzacamqw,2543
218
218
  sknetwork/visualization/dendrograms.py,sha256=HtubynuGsJ5b7bD5I8dIKL5UqhqynmqOhw_wJt6VGUA,10178
219
- sknetwork/visualization/graphs.py,sha256=SJDta3IUolBDI69kFdF7WGmjcLsfqkQNw5ixvJwoNuk,42214
219
+ sknetwork/visualization/graphs.py,sha256=vLsuL2AUyrc8B5nxM2K713QPRjf7i1PRaoRXYbY44L4,42215
220
220
  sknetwork/visualization/tests/__init__.py,sha256=hrso2pNVzMWn4D2pRyWA_xAMib-xacKjm-rf91MyGGk,31
221
221
  sknetwork/visualization/tests/test_dendrograms.py,sha256=e0u3qL9SlWlrQiVAeCVXxq7P6-mU0GaCz3FBu6cm_HA,2519
222
222
  sknetwork/visualization/tests/test_graphs.py,sha256=FPZcgGj9asTjOvtkXpENYjeE8xtwh1ES4XYWcYe56Jo,9597
223
- scikit_network-0.32.1.dist-info/AUTHORS.rst,sha256=t2CJQFYm_OvWod1zQx4Tw-BeKLVlpQjQ0APBIOnYRPE,968
224
- scikit_network-0.32.1.dist-info/LICENSE,sha256=BJ1Hth1QjBmjIfHcp1sVxlkEqHYM58Vn5bcpYcggMZE,1656
225
- scikit_network-0.32.1.dist-info/METADATA,sha256=cmHp6cheSqpUDU3TEOHmo-VKw-6fBXvAw2U5SewlIFQ,14907
226
- scikit_network-0.32.1.dist-info/WHEEL,sha256=5JPYeYl5ZdvdSkrGS4u21mmpPzpFx42qrXOSIgWf4pg,102
227
- scikit_network-0.32.1.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
228
- scikit_network-0.32.1.dist-info/RECORD,,
223
+ scikit_network-0.33.1.dist-info/AUTHORS.rst,sha256=_GVYaZmiOIOk8o_2X2dGicyCy-1seStrLAZdsk8zKEI,966
224
+ scikit_network-0.33.1.dist-info/LICENSE,sha256=BJ1Hth1QjBmjIfHcp1sVxlkEqHYM58Vn5bcpYcggMZE,1656
225
+ scikit_network-0.33.1.dist-info/METADATA,sha256=dvTU-9SmoSsqZhmqCCwHwbQgB08J4wdyQWJKQ-rYhYs,4524
226
+ scikit_network-0.33.1.dist-info/WHEEL,sha256=0ZjvOlAkRhiFz0IEm5kQrC9Db9zGCLzyOcgLl0kpzxU,101
227
+ scikit_network-0.33.1.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
228
+ scikit_network-0.33.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.42.0)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp310-cp310-win_amd64
5
5
 
sknetwork/__init__.py CHANGED
@@ -4,7 +4,7 @@
4
4
 
5
5
  __author__ = """scikit-network team"""
6
6
  __email__ = "thomas.bonald@telecom-paris.fr"
7
- __version__ = '0.32.1'
7
+ __version__ = '0.33.0'
8
8
 
9
9
  import sknetwork.topology
10
10
  import sknetwork.path
@@ -55,7 +55,7 @@ class DiffusionClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = diffusion.fit_predict(adjacency, labels)
58
- >>> np.round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.97
60
60
 
61
61
  References
@@ -74,8 +74,9 @@ class DiffusionClassifier(BaseClassifier):
74
74
  self.scale = scale
75
75
 
76
76
  def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray],
77
- labels: Optional[Union[dict, np.ndarray]] = None, labels_row: Optional[Union[dict, np.ndarray]] = None,
78
- labels_col: Optional[Union[dict, np.ndarray]] = None, force_bipartite: bool = False) \
77
+ labels: Optional[Union[dict, list, np.ndarray]] = None,
78
+ labels_row: Optional[Union[dict, list, np.ndarray]] = None,
79
+ labels_col: Optional[Union[dict, list, np.ndarray]] = None, force_bipartite: bool = False) \
79
80
  -> 'DiffusionClassifier':
80
81
  """Compute the solution to the Dirichlet problem (temperatures at equilibrium).
81
82
 
@@ -55,7 +55,7 @@ class NNClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = classifier.fit_predict(adjacency, labels)
58
- >>> np.round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.82
60
60
  """
61
61
  def __init__(self, n_neighbors: int = 3, embedding_method: Optional[BaseEmbedding] = None, normalize: bool = True):
@@ -97,8 +97,9 @@ class NNClassifier(BaseClassifier):
97
97
 
98
98
  return probs, labels
99
99
 
100
- def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, dict] = None,
101
- labels_row: Union[np.ndarray, dict] = None, labels_col: Union[np.ndarray, dict] = None) -> 'NNClassifier':
100
+ def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, list, dict] = None,
101
+ labels_row: Union[np.ndarray, list, dict] = None,
102
+ labels_col: Union[np.ndarray, list, dict] = None) -> 'NNClassifier':
102
103
  """Node classification by k-nearest neighbors in the embedding space.
103
104
 
104
105
  Parameters
@@ -34,7 +34,7 @@ def get_accuracy_score(labels_true: np.ndarray, labels_pred: np.ndarray) -> floa
34
34
  >>> import numpy as np
35
35
  >>> labels_true = np.array([0, 0, 1, 1])
36
36
  >>> labels_pred = np.array([0, 0, 0, 1])
37
- >>> get_accuracy_score(labels_true, labels_pred)
37
+ >>> float(round(get_accuracy_score(labels_true, labels_pred), 2))
38
38
  0.75
39
39
  """
40
40
  check_vector_format(labels_true, labels_pred)
@@ -105,7 +105,7 @@ def get_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, return_precis
105
105
  >>> import numpy as np
106
106
  >>> labels_true = np.array([0, 0, 1, 1])
107
107
  >>> labels_pred = np.array([0, 0, 0, 1])
108
- >>> np.round(get_f1_score(labels_true, labels_pred), 2)
108
+ >>> float(round(get_f1_score(labels_true, labels_pred), 2))
109
109
  0.67
110
110
  """
111
111
  values = set(labels_true[labels_true >= 0]) | set(labels_pred[labels_pred >= 0])
@@ -188,7 +188,7 @@ def get_average_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, avera
188
188
  >>> import numpy as np
189
189
  >>> labels_true = np.array([0, 0, 1, 1])
190
190
  >>> labels_pred = np.array([0, 0, 0, 1])
191
- >>> np.round(get_average_f1_score(labels_true, labels_pred), 2)
191
+ >>> float(round(get_average_f1_score(labels_true, labels_pred), 2))
192
192
  0.73
193
193
  """
194
194
  if average == 'micro':
@@ -51,7 +51,7 @@ class PageRankClassifier(RankClassifier):
51
51
  >>> labels_true = graph.labels
52
52
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
53
53
  >>> labels_pred = pagerank.fit_predict(adjacency, labels)
54
- >>> np.round(np.mean(labels_pred == labels_true), 2)
54
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
55
55
  0.97
56
56
 
57
57
  References
@@ -58,7 +58,7 @@ class Propagation(BaseClassifier):
58
58
  >>> labels_true = graph.labels
59
59
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
60
60
  >>> labels_pred = propagation.fit_predict(adjacency, labels)
61
- >>> np.round(np.mean(labels_pred == labels_true), 2)
61
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
62
62
  0.94
63
63
 
64
64
  References
@@ -91,19 +91,20 @@ class Propagation(BaseClassifier):
91
91
  labels = labels[index_seed]
92
92
  return index_seed.astype(np.int32), index_remain.astype(np.int32), labels.astype(np.int32)
93
93
 
94
- def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, dict] = None,
95
- labels_row: Union[np.ndarray, dict] = None, labels_col: Union[np.ndarray, dict] = None) -> 'Propagation':
94
+ def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, list, dict] = None,
95
+ labels_row: Union[np.ndarray, list, dict] = None,
96
+ labels_col: Union[np.ndarray, list, dict] = None) -> 'Propagation':
96
97
  """Node classification by label propagation.
97
98
 
98
99
  Parameters
99
100
  ----------
100
101
  input_matrix : sparse.csr_matrix, np.ndarray
101
102
  Adjacency matrix or biadjacency matrix of the graph.
102
- labels : np.ndarray, dict
103
+ labels : array, list or dict
103
104
  Known labels. Negative values ignored.
104
- labels_row : np.ndarray, dict
105
+ labels_row : array, list or dict
105
106
  Known labels of rows, for bipartite graphs.
106
- labels_col : np.ndarray, dict
107
+ labels_col : array, list or dict
107
108
  Known labels of columns, for bipartite graphs.
108
109
 
109
110
  Returns