scikit-network 0.31.0__cp38-cp38-win_amd64.whl → 0.32.1__cp38-cp38-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/AUTHORS.rst +3 -0
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/METADATA +19 -3
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/RECORD +112 -105
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/WHEEL +1 -1
- sknetwork/__init__.py +1 -1
- sknetwork/classification/base.py +1 -1
- sknetwork/classification/base_rank.py +3 -3
- sknetwork/classification/diffusion.py +21 -13
- sknetwork/classification/knn.py +19 -13
- sknetwork/classification/metrics.py +1 -1
- sknetwork/classification/pagerank.py +12 -8
- sknetwork/classification/propagation.py +22 -15
- sknetwork/classification/tests/test_diffusion.py +10 -0
- sknetwork/classification/vote.cp38-win_amd64.pyd +0 -0
- sknetwork/classification/vote.cpp +14549 -8668
- sknetwork/clustering/__init__.py +3 -1
- sknetwork/clustering/base.py +1 -1
- sknetwork/clustering/kcenters.py +253 -0
- sknetwork/clustering/leiden.py +241 -0
- sknetwork/clustering/leiden_core.cp38-win_amd64.pyd +0 -0
- sknetwork/clustering/leiden_core.cpp +31564 -0
- sknetwork/clustering/leiden_core.pyx +124 -0
- sknetwork/clustering/louvain.py +118 -83
- sknetwork/clustering/louvain_core.cp38-win_amd64.pyd +0 -0
- sknetwork/clustering/louvain_core.cpp +21876 -16332
- sknetwork/clustering/louvain_core.pyx +86 -94
- sknetwork/clustering/postprocess.py +2 -2
- sknetwork/clustering/propagation_clustering.py +4 -4
- sknetwork/clustering/tests/test_API.py +7 -3
- sknetwork/clustering/tests/test_kcenters.py +92 -0
- sknetwork/clustering/tests/test_leiden.py +34 -0
- sknetwork/clustering/tests/test_louvain.py +2 -3
- sknetwork/data/load.py +2 -4
- sknetwork/data/parse.py +41 -20
- sknetwork/data/tests/test_parse.py +9 -12
- sknetwork/embedding/__init__.py +0 -1
- sknetwork/embedding/base.py +20 -19
- sknetwork/embedding/force_atlas.py +3 -2
- sknetwork/embedding/louvain_embedding.py +1 -1
- sknetwork/embedding/random_projection.py +5 -3
- sknetwork/embedding/spectral.py +0 -73
- sknetwork/embedding/tests/test_API.py +4 -28
- sknetwork/embedding/tests/test_louvain_embedding.py +4 -9
- sknetwork/embedding/tests/test_spectral.py +2 -5
- sknetwork/embedding/tests/test_svd.py +1 -1
- sknetwork/gnn/base_layer.py +3 -3
- sknetwork/gnn/gnn_classifier.py +40 -86
- sknetwork/gnn/layer.py +1 -1
- sknetwork/gnn/loss.py +1 -1
- sknetwork/gnn/optimizer.py +4 -3
- sknetwork/gnn/tests/test_base_layer.py +4 -4
- sknetwork/gnn/tests/test_gnn_classifier.py +12 -39
- sknetwork/gnn/utils.py +8 -8
- sknetwork/hierarchy/base.py +27 -0
- sknetwork/hierarchy/louvain_hierarchy.py +45 -41
- sknetwork/hierarchy/paris.cp38-win_amd64.pyd +0 -0
- sknetwork/hierarchy/paris.cpp +27719 -20959
- sknetwork/hierarchy/paris.pyx +7 -7
- sknetwork/hierarchy/postprocess.py +16 -16
- sknetwork/hierarchy/tests/test_algos.py +5 -0
- sknetwork/linalg/__init__.py +1 -1
- sknetwork/linalg/diteration.cp38-win_amd64.pyd +0 -0
- sknetwork/linalg/diteration.cpp +13916 -8050
- sknetwork/linalg/{normalization.py → normalizer.py} +17 -14
- sknetwork/linalg/operators.py +1 -1
- sknetwork/linalg/ppr_solver.py +1 -1
- sknetwork/linalg/push.cp38-win_amd64.pyd +0 -0
- sknetwork/linalg/push.cpp +23144 -16920
- sknetwork/linalg/tests/test_normalization.py +3 -7
- sknetwork/linalg/tests/test_operators.py +2 -6
- sknetwork/linalg/tests/test_ppr.py +1 -1
- sknetwork/linkpred/base.py +12 -1
- sknetwork/linkpred/nn.py +6 -6
- sknetwork/path/distances.py +11 -4
- sknetwork/path/shortest_path.py +1 -1
- sknetwork/path/tests/test_distances.py +7 -0
- sknetwork/path/tests/test_search.py +2 -2
- sknetwork/ranking/base.py +11 -6
- sknetwork/ranking/betweenness.cp38-win_amd64.pyd +0 -0
- sknetwork/ranking/betweenness.cpp +5256 -2190
- sknetwork/ranking/pagerank.py +13 -12
- sknetwork/ranking/tests/test_API.py +0 -2
- sknetwork/ranking/tests/test_betweenness.py +1 -1
- sknetwork/ranking/tests/test_pagerank.py +11 -5
- sknetwork/regression/base.py +18 -1
- sknetwork/regression/diffusion.py +24 -10
- sknetwork/regression/tests/test_diffusion.py +8 -0
- sknetwork/topology/__init__.py +3 -1
- sknetwork/topology/cliques.cp38-win_amd64.pyd +0 -0
- sknetwork/topology/cliques.cpp +23147 -16457
- sknetwork/topology/core.cp38-win_amd64.pyd +0 -0
- sknetwork/topology/core.cpp +22854 -16576
- sknetwork/topology/cycles.py +243 -0
- sknetwork/topology/minheap.cp38-win_amd64.pyd +0 -0
- sknetwork/topology/minheap.cpp +19495 -13469
- sknetwork/topology/structure.py +2 -42
- sknetwork/topology/tests/test_cycles.py +65 -0
- sknetwork/topology/tests/test_structure.py +2 -16
- sknetwork/topology/triangles.cp38-win_amd64.pyd +0 -0
- sknetwork/topology/triangles.cpp +5283 -1397
- sknetwork/topology/triangles.pyx +7 -4
- sknetwork/topology/weisfeiler_lehman_core.cp38-win_amd64.pyd +0 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +14781 -8915
- sknetwork/utils/format.py +1 -1
- sknetwork/utils/membership.py +2 -2
- sknetwork/visualization/__init__.py +2 -2
- sknetwork/visualization/dendrograms.py +55 -7
- sknetwork/visualization/graphs.py +261 -44
- sknetwork/visualization/tests/test_dendrograms.py +9 -9
- sknetwork/visualization/tests/test_graphs.py +63 -57
- sknetwork/embedding/louvain_hierarchy.py +0 -142
- sknetwork/embedding/tests/test_louvain_hierarchy.py +0 -19
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/LICENSE +0 -0
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/top_level.txt +0 -0
sknetwork/topology/structure.py
CHANGED
|
@@ -6,13 +6,14 @@ Created in July 2019
|
|
|
6
6
|
@author: Quentin Lutz <qlutz@enst.fr>
|
|
7
7
|
@author: Thomas Bonald <tbonald@enst.fr>
|
|
8
8
|
"""
|
|
9
|
-
from typing import Tuple, Optional, Union
|
|
9
|
+
from typing import Tuple, Optional, Union, List
|
|
10
10
|
|
|
11
11
|
import numpy as np
|
|
12
12
|
from scipy import sparse
|
|
13
13
|
|
|
14
14
|
from sknetwork.utils.check import is_symmetric, check_format
|
|
15
15
|
from sknetwork.utils.format import get_adjacency
|
|
16
|
+
from sknetwork.path import get_distances
|
|
16
17
|
|
|
17
18
|
|
|
18
19
|
def get_connected_components(input_matrix: sparse.csr_matrix, connection: str = 'weak', force_bipartite: bool = False) \
|
|
@@ -191,44 +192,3 @@ def is_bipartite(adjacency: sparse.csr_matrix, return_biadjacency: bool = False)
|
|
|
191
192
|
return True
|
|
192
193
|
|
|
193
194
|
|
|
194
|
-
def is_acyclic(adjacency: sparse.csr_matrix, directed: Optional[bool] = None) -> bool:
|
|
195
|
-
"""Check whether a graph has no cycle.
|
|
196
|
-
|
|
197
|
-
Parameters
|
|
198
|
-
----------
|
|
199
|
-
adjacency:
|
|
200
|
-
Adjacency matrix of the graph.
|
|
201
|
-
directed:
|
|
202
|
-
Whether to consider the graph as directed (inferred if not specified).
|
|
203
|
-
Returns
|
|
204
|
-
-------
|
|
205
|
-
is_acyclic : bool
|
|
206
|
-
A boolean with value True if the graph has no cycle and False otherwise.
|
|
207
|
-
|
|
208
|
-
Example
|
|
209
|
-
-------
|
|
210
|
-
>>> from sknetwork.topology import is_acyclic
|
|
211
|
-
>>> from sknetwork.data import star, grid
|
|
212
|
-
>>> is_acyclic(star())
|
|
213
|
-
True
|
|
214
|
-
>>> is_acyclic(grid())
|
|
215
|
-
False
|
|
216
|
-
"""
|
|
217
|
-
if directed is False:
|
|
218
|
-
# the graph must be undirected
|
|
219
|
-
if not is_symmetric(adjacency):
|
|
220
|
-
raise ValueError("The adjacency matrix is not symmetric. The parameter 'directed' must be True.")
|
|
221
|
-
elif directed is None:
|
|
222
|
-
# if not specified, infer from the graph
|
|
223
|
-
directed = not is_symmetric(adjacency)
|
|
224
|
-
has_loops = (adjacency.diagonal() > 0).any()
|
|
225
|
-
if has_loops:
|
|
226
|
-
return False
|
|
227
|
-
else:
|
|
228
|
-
n_cc = sparse.csgraph.connected_components(adjacency, directed, connection='strong', return_labels=False)
|
|
229
|
-
n_nodes = adjacency.shape[0]
|
|
230
|
-
if directed:
|
|
231
|
-
return n_cc == n_nodes
|
|
232
|
-
else:
|
|
233
|
-
n_edges = adjacency.nnz // 2
|
|
234
|
-
return n_cc == n_nodes - n_edges
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
""""tests for cycles.py"""
|
|
4
|
+
import unittest
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
from scipy import sparse
|
|
8
|
+
|
|
9
|
+
from sknetwork.data import star_wars, house, cyclic_digraph, cyclic_graph, linear_digraph, linear_graph
|
|
10
|
+
from sknetwork.topology import is_connected, is_acyclic, get_cycles, break_cycles
|
|
11
|
+
from sknetwork.utils.format import bipartite2undirected, directed2undirected
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class TestCycle(unittest.TestCase):
|
|
15
|
+
|
|
16
|
+
def test_is_acyclic(self):
|
|
17
|
+
adjacency_with_self_loops = sparse.identity(2, format='csr')
|
|
18
|
+
self.assertFalse(is_acyclic(adjacency_with_self_loops))
|
|
19
|
+
self.assertFalse(is_acyclic(adjacency_with_self_loops, directed=True))
|
|
20
|
+
directed_cycle = cyclic_digraph(3)
|
|
21
|
+
self.assertFalse(is_acyclic(directed_cycle))
|
|
22
|
+
with self.assertRaises(ValueError):
|
|
23
|
+
is_acyclic(directed_cycle, directed=False)
|
|
24
|
+
undirected_line = linear_graph(2)
|
|
25
|
+
self.assertTrue(is_acyclic(undirected_line))
|
|
26
|
+
self.assertFalse(is_acyclic(undirected_line, directed=True))
|
|
27
|
+
acyclic_graph = linear_digraph(2)
|
|
28
|
+
self.assertTrue(is_acyclic(acyclic_graph))
|
|
29
|
+
|
|
30
|
+
def test_get_cycles(self):
|
|
31
|
+
adjacency_with_self_loops = sparse.identity(2, format='csr')
|
|
32
|
+
node_cycles = get_cycles(adjacency_with_self_loops, directed=True)
|
|
33
|
+
self.assertEqual(node_cycles, [[0], [1]])
|
|
34
|
+
|
|
35
|
+
cycle_adjacency = cyclic_digraph(4)
|
|
36
|
+
node_cycles = get_cycles(cycle_adjacency, directed=True)
|
|
37
|
+
self.assertEqual(sorted(node_cycles[0]), [0, 1, 2, 3])
|
|
38
|
+
adjacency_with_subcycles = cycle_adjacency + sparse.csr_matrix(([1], ([1], [3])), shape=cycle_adjacency.shape)
|
|
39
|
+
node_cycles = get_cycles(adjacency_with_subcycles, directed=True)
|
|
40
|
+
self.assertEqual(node_cycles, [[0, 1, 3], [0, 1, 2, 3]])
|
|
41
|
+
|
|
42
|
+
undirected_cycle = cyclic_graph(4)
|
|
43
|
+
node_cycles = get_cycles(undirected_cycle, directed=False)
|
|
44
|
+
self.assertEqual(sorted(node_cycles[0]), [0, 1, 2, 3])
|
|
45
|
+
|
|
46
|
+
disconnected_cycles = sparse.csr_matrix(([1, 1, 1], ([1, 2, 3], [2, 3, 1])), shape=(4, 4))
|
|
47
|
+
node_cycles = get_cycles(disconnected_cycles, directed=True)
|
|
48
|
+
self.assertEqual(sorted(node_cycles[0]), [1, 2, 3])
|
|
49
|
+
|
|
50
|
+
def test_break_cycles(self):
|
|
51
|
+
cycle_adjacency = cyclic_digraph(4)
|
|
52
|
+
acyclic_graph = break_cycles(cycle_adjacency, root=0, directed=True)
|
|
53
|
+
self.assertTrue(is_acyclic(acyclic_graph))
|
|
54
|
+
adjacency_with_subcycles = cycle_adjacency + sparse.csr_matrix(([1], ([1], [0])), shape=cycle_adjacency.shape)
|
|
55
|
+
acyclic_graph = break_cycles(adjacency_with_subcycles, root=0, directed=True)
|
|
56
|
+
self.assertTrue(is_acyclic(acyclic_graph))
|
|
57
|
+
|
|
58
|
+
undirected_cycle = house(metadata=False)
|
|
59
|
+
acyclic_graph = break_cycles(undirected_cycle, root=0, directed=False)
|
|
60
|
+
self.assertTrue(is_acyclic(acyclic_graph))
|
|
61
|
+
|
|
62
|
+
disconnected_cycles = sparse.csr_matrix(([1, 1, 1, 1, 1], ([0, 1, 2, 3, 4], [1, 0, 3, 4, 2])), shape=(5, 5))
|
|
63
|
+
self.assertFalse(is_connected(disconnected_cycles))
|
|
64
|
+
acyclic_graph = break_cycles(disconnected_cycles, root=[0, 2], directed=True)
|
|
65
|
+
self.assertTrue(is_acyclic(acyclic_graph))
|
|
@@ -6,9 +6,9 @@ import unittest
|
|
|
6
6
|
import numpy as np
|
|
7
7
|
from scipy import sparse
|
|
8
8
|
|
|
9
|
-
from sknetwork.data import star_wars, cyclic_digraph, linear_digraph, linear_graph
|
|
9
|
+
from sknetwork.data import star_wars, house, cyclic_digraph, cyclic_graph, linear_digraph, linear_graph
|
|
10
10
|
from sknetwork.topology import get_connected_components, get_largest_connected_component
|
|
11
|
-
from sknetwork.topology import is_connected, is_bipartite
|
|
11
|
+
from sknetwork.topology import is_connected, is_bipartite
|
|
12
12
|
from sknetwork.utils.format import bipartite2undirected, directed2undirected
|
|
13
13
|
|
|
14
14
|
|
|
@@ -83,17 +83,3 @@ class TestStructure(unittest.TestCase):
|
|
|
83
83
|
adjacency = directed2undirected(cyclic_digraph(3))
|
|
84
84
|
bipartite = is_bipartite(adjacency, return_biadjacency=False)
|
|
85
85
|
self.assertEqual(bipartite, False)
|
|
86
|
-
|
|
87
|
-
def test_is_acyclic(self):
|
|
88
|
-
adjacency_with_self_loops = sparse.identity(2, format='csr')
|
|
89
|
-
self.assertFalse(is_acyclic(adjacency_with_self_loops))
|
|
90
|
-
self.assertFalse(is_acyclic(adjacency_with_self_loops, directed=True))
|
|
91
|
-
directed_cycle = cyclic_digraph(3)
|
|
92
|
-
self.assertFalse(is_acyclic(directed_cycle))
|
|
93
|
-
with self.assertRaises(ValueError):
|
|
94
|
-
is_acyclic(directed_cycle, directed=False)
|
|
95
|
-
undirected_line = linear_graph(2)
|
|
96
|
-
self.assertTrue(is_acyclic(undirected_line))
|
|
97
|
-
self.assertFalse(is_acyclic(undirected_line, directed=True))
|
|
98
|
-
acyclic_graph = linear_digraph(2)
|
|
99
|
-
self.assertTrue(is_acyclic(acyclic_graph))
|
|
Binary file
|