scikit-network 0.30.0__cp39-cp39-win_amd64.whl → 0.32.1__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.1.dist-info}/AUTHORS.rst +3 -0
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.1.dist-info}/METADATA +31 -3
- scikit_network-0.32.1.dist-info/RECORD +228 -0
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.1.dist-info}/WHEEL +1 -1
- sknetwork/__init__.py +1 -1
- sknetwork/base.py +67 -0
- sknetwork/classification/base.py +24 -24
- sknetwork/classification/base_rank.py +17 -25
- sknetwork/classification/diffusion.py +35 -35
- sknetwork/classification/knn.py +24 -21
- sknetwork/classification/metrics.py +1 -1
- sknetwork/classification/pagerank.py +10 -10
- sknetwork/classification/propagation.py +23 -20
- sknetwork/classification/tests/test_diffusion.py +13 -3
- sknetwork/classification/vote.cp39-win_amd64.pyd +0 -0
- sknetwork/classification/vote.cpp +14482 -10351
- sknetwork/classification/vote.pyx +1 -3
- sknetwork/clustering/__init__.py +3 -1
- sknetwork/clustering/base.py +36 -40
- sknetwork/clustering/kcenters.py +253 -0
- sknetwork/clustering/leiden.py +241 -0
- sknetwork/clustering/leiden_core.cp39-win_amd64.pyd +0 -0
- sknetwork/clustering/leiden_core.cpp +31564 -0
- sknetwork/clustering/leiden_core.pyx +124 -0
- sknetwork/clustering/louvain.py +133 -102
- sknetwork/clustering/louvain_core.cp39-win_amd64.pyd +0 -0
- sknetwork/clustering/louvain_core.cpp +22457 -18792
- sknetwork/clustering/louvain_core.pyx +86 -96
- sknetwork/clustering/postprocess.py +2 -2
- sknetwork/clustering/propagation_clustering.py +15 -19
- sknetwork/clustering/tests/test_API.py +8 -4
- sknetwork/clustering/tests/test_kcenters.py +92 -0
- sknetwork/clustering/tests/test_leiden.py +34 -0
- sknetwork/clustering/tests/test_louvain.py +3 -4
- sknetwork/data/__init__.py +2 -1
- sknetwork/data/base.py +28 -0
- sknetwork/data/load.py +38 -37
- sknetwork/data/models.py +18 -18
- sknetwork/data/parse.py +54 -33
- sknetwork/data/test_graphs.py +2 -2
- sknetwork/data/tests/test_API.py +1 -1
- sknetwork/data/tests/test_base.py +14 -0
- sknetwork/data/tests/test_load.py +1 -1
- sknetwork/data/tests/test_parse.py +9 -12
- sknetwork/data/tests/test_test_graphs.py +1 -2
- sknetwork/data/toy_graphs.py +18 -18
- sknetwork/embedding/__init__.py +0 -1
- sknetwork/embedding/base.py +21 -20
- sknetwork/embedding/force_atlas.py +3 -2
- sknetwork/embedding/louvain_embedding.py +2 -2
- sknetwork/embedding/random_projection.py +5 -3
- sknetwork/embedding/spectral.py +0 -73
- sknetwork/embedding/tests/test_API.py +4 -28
- sknetwork/embedding/tests/test_louvain_embedding.py +4 -9
- sknetwork/embedding/tests/test_random_projection.py +2 -2
- sknetwork/embedding/tests/test_spectral.py +5 -8
- sknetwork/embedding/tests/test_svd.py +1 -1
- sknetwork/gnn/base.py +4 -4
- sknetwork/gnn/base_layer.py +3 -3
- sknetwork/gnn/gnn_classifier.py +45 -89
- sknetwork/gnn/layer.py +1 -1
- sknetwork/gnn/loss.py +1 -1
- sknetwork/gnn/optimizer.py +4 -3
- sknetwork/gnn/tests/test_base_layer.py +4 -4
- sknetwork/gnn/tests/test_gnn_classifier.py +12 -35
- sknetwork/gnn/utils.py +8 -8
- sknetwork/hierarchy/base.py +29 -2
- sknetwork/hierarchy/louvain_hierarchy.py +45 -41
- sknetwork/hierarchy/paris.cp39-win_amd64.pyd +0 -0
- sknetwork/hierarchy/paris.cpp +27369 -22852
- sknetwork/hierarchy/paris.pyx +7 -9
- sknetwork/hierarchy/postprocess.py +16 -16
- sknetwork/hierarchy/tests/test_API.py +1 -1
- sknetwork/hierarchy/tests/test_algos.py +5 -0
- sknetwork/hierarchy/tests/test_metrics.py +1 -1
- sknetwork/linalg/__init__.py +1 -1
- sknetwork/linalg/diteration.cp39-win_amd64.pyd +0 -0
- sknetwork/linalg/diteration.cpp +13474 -9454
- sknetwork/linalg/diteration.pyx +0 -2
- sknetwork/linalg/eig_solver.py +1 -1
- sknetwork/linalg/{normalization.py → normalizer.py} +18 -15
- sknetwork/linalg/operators.py +1 -1
- sknetwork/linalg/ppr_solver.py +1 -1
- sknetwork/linalg/push.cp39-win_amd64.pyd +0 -0
- sknetwork/linalg/push.cpp +22993 -18807
- sknetwork/linalg/push.pyx +0 -2
- sknetwork/linalg/svd_solver.py +1 -1
- sknetwork/linalg/tests/test_normalization.py +3 -7
- sknetwork/linalg/tests/test_operators.py +4 -8
- sknetwork/linalg/tests/test_ppr.py +1 -1
- sknetwork/linkpred/base.py +13 -2
- sknetwork/linkpred/nn.py +6 -6
- sknetwork/log.py +19 -0
- sknetwork/path/__init__.py +4 -3
- sknetwork/path/dag.py +54 -0
- sknetwork/path/distances.py +98 -0
- sknetwork/path/search.py +13 -47
- sknetwork/path/shortest_path.py +37 -162
- sknetwork/path/tests/test_dag.py +37 -0
- sknetwork/path/tests/test_distances.py +62 -0
- sknetwork/path/tests/test_search.py +26 -11
- sknetwork/path/tests/test_shortest_path.py +31 -36
- sknetwork/ranking/__init__.py +0 -1
- sknetwork/ranking/base.py +13 -8
- sknetwork/ranking/betweenness.cp39-win_amd64.pyd +0 -0
- sknetwork/ranking/betweenness.cpp +5709 -3017
- sknetwork/ranking/betweenness.pyx +0 -2
- sknetwork/ranking/closeness.py +7 -10
- sknetwork/ranking/pagerank.py +14 -14
- sknetwork/ranking/postprocess.py +12 -3
- sknetwork/ranking/tests/test_API.py +2 -4
- sknetwork/ranking/tests/test_betweenness.py +3 -3
- sknetwork/ranking/tests/test_closeness.py +3 -7
- sknetwork/ranking/tests/test_pagerank.py +11 -5
- sknetwork/ranking/tests/test_postprocess.py +5 -0
- sknetwork/regression/base.py +19 -2
- sknetwork/regression/diffusion.py +24 -10
- sknetwork/regression/tests/test_diffusion.py +8 -0
- sknetwork/test_base.py +35 -0
- sknetwork/test_log.py +15 -0
- sknetwork/topology/__init__.py +7 -8
- sknetwork/topology/cliques.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/{kcliques.cpp → cliques.cpp} +23412 -20276
- sknetwork/topology/cliques.pyx +149 -0
- sknetwork/topology/core.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/{kcore.cpp → core.cpp} +21732 -18867
- sknetwork/topology/core.pyx +90 -0
- sknetwork/topology/cycles.py +243 -0
- sknetwork/topology/minheap.cp39-win_amd64.pyd +0 -0
- sknetwork/{utils → topology}/minheap.cpp +19452 -15368
- sknetwork/{utils → topology}/minheap.pxd +1 -3
- sknetwork/{utils → topology}/minheap.pyx +1 -3
- sknetwork/topology/structure.py +3 -43
- sknetwork/topology/tests/test_cliques.py +11 -11
- sknetwork/topology/tests/test_core.py +19 -0
- sknetwork/topology/tests/test_cycles.py +65 -0
- sknetwork/topology/tests/test_structure.py +2 -16
- sknetwork/topology/tests/test_triangles.py +11 -15
- sknetwork/topology/tests/test_wl.py +72 -0
- sknetwork/topology/triangles.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/triangles.cpp +5056 -2696
- sknetwork/topology/triangles.pyx +74 -89
- sknetwork/topology/weisfeiler_lehman.py +56 -86
- sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +14727 -10622
- sknetwork/topology/weisfeiler_lehman_core.pyx +0 -2
- sknetwork/utils/__init__.py +1 -31
- sknetwork/utils/check.py +2 -2
- sknetwork/utils/format.py +5 -3
- sknetwork/utils/membership.py +2 -2
- sknetwork/utils/tests/test_check.py +3 -3
- sknetwork/utils/tests/test_format.py +3 -1
- sknetwork/utils/values.py +1 -1
- sknetwork/visualization/__init__.py +2 -2
- sknetwork/visualization/dendrograms.py +55 -7
- sknetwork/visualization/graphs.py +292 -72
- sknetwork/visualization/tests/test_dendrograms.py +9 -9
- sknetwork/visualization/tests/test_graphs.py +71 -62
- scikit_network-0.30.0.dist-info/RECORD +0 -227
- sknetwork/embedding/louvain_hierarchy.py +0 -142
- sknetwork/embedding/tests/test_louvain_hierarchy.py +0 -19
- sknetwork/path/metrics.py +0 -148
- sknetwork/path/tests/test_metrics.py +0 -29
- sknetwork/ranking/harmonic.py +0 -82
- sknetwork/topology/dag.py +0 -74
- sknetwork/topology/dag_core.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/dag_core.cpp +0 -23350
- sknetwork/topology/dag_core.pyx +0 -38
- sknetwork/topology/kcliques.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/kcliques.pyx +0 -193
- sknetwork/topology/kcore.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/kcore.pyx +0 -120
- sknetwork/topology/tests/test_cores.py +0 -21
- sknetwork/topology/tests/test_dag.py +0 -26
- sknetwork/topology/tests/test_wl_coloring.py +0 -49
- sknetwork/topology/tests/test_wl_kernel.py +0 -31
- sknetwork/utils/base.py +0 -35
- sknetwork/utils/minheap.cp39-win_amd64.pyd +0 -0
- sknetwork/utils/simplex.py +0 -140
- sknetwork/utils/tests/test_base.py +0 -28
- sknetwork/utils/tests/test_bunch.py +0 -16
- sknetwork/utils/tests/test_projection_simplex.py +0 -33
- sknetwork/utils/tests/test_verbose.py +0 -15
- sknetwork/utils/verbose.py +0 -37
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.1.dist-info}/LICENSE +0 -0
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.1.dist-info}/top_level.txt +0 -0
- /sknetwork/{utils → data}/timeout.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: scikit-network
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.32.1
|
|
4
4
|
Summary: Graph algorithms
|
|
5
5
|
Home-page: https://github.com/sknetwork-team/scikit-network
|
|
6
6
|
Author: Scikit-network team
|
|
@@ -18,12 +18,13 @@ Classifier: Programming Language :: Cython
|
|
|
18
18
|
Classifier: Programming Language :: Python :: 3.8
|
|
19
19
|
Classifier: Programming Language :: Python :: 3.9
|
|
20
20
|
Classifier: Programming Language :: Python :: 3.10
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
21
22
|
Requires-Python: >=3.8
|
|
22
23
|
Description-Content-Type: text/x-rst
|
|
23
24
|
License-File: LICENSE
|
|
24
25
|
License-File: AUTHORS.rst
|
|
25
|
-
Requires-Dist: numpy
|
|
26
|
-
Requires-Dist: scipy
|
|
26
|
+
Requires-Dist: numpy >=1.22.4
|
|
27
|
+
Requires-Dist: scipy >=1.7.3
|
|
27
28
|
|
|
28
29
|
.. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
|
|
29
30
|
:align: right
|
|
@@ -117,6 +118,33 @@ the `Journal of Machine Learning Research <https://jmlr.org>`_:
|
|
|
117
118
|
History
|
|
118
119
|
=======
|
|
119
120
|
|
|
121
|
+
0.32.1 (2024-04-02)
|
|
122
|
+
-------------------
|
|
123
|
+
|
|
124
|
+
* Fix documentation
|
|
125
|
+
* Fix wheel upload
|
|
126
|
+
|
|
127
|
+
0.32.0 (2024-03-29)
|
|
128
|
+
-------------------
|
|
129
|
+
|
|
130
|
+
* Add Leiden clustering algorithm
|
|
131
|
+
* Add k-center clustering algorithm
|
|
132
|
+
* Add functions to detect and break cycles
|
|
133
|
+
* Add damping factor in diffusion
|
|
134
|
+
* Fix F1 scores
|
|
135
|
+
* Remove hierarchical Louvain embedding
|
|
136
|
+
* Get clustering coefficient for directed graphs
|
|
137
|
+
|
|
138
|
+
0.31.0 (2023-05-22)
|
|
139
|
+
-------------------
|
|
140
|
+
|
|
141
|
+
* Add Python 3.11
|
|
142
|
+
* Add set_param / get_param to algorithms, suggested by Franz Kiraly (#557)
|
|
143
|
+
* Compute shortest paths by matrix-vector multiplications
|
|
144
|
+
* Make tools on topology (cliques, code-decomposition, etc.) as functions
|
|
145
|
+
* Rename parameter membership -> probs for soft classification / clustering
|
|
146
|
+
* Add softmax to classification by diffusion
|
|
147
|
+
|
|
120
148
|
0.30.0 (2023-04-12)
|
|
121
149
|
-------------------
|
|
122
150
|
|
|
@@ -0,0 +1,228 @@
|
|
|
1
|
+
sknetwork/__init__.py,sha256=hbJ__5rv06WI2XnJW8lWLpJkXp3Ju9hyR0aGBzdG0IY,554
|
|
2
|
+
sknetwork/base.py,sha256=_63mkwqXFDke_0ve9DIZJiMHboMYqBONa7B08gao440,2018
|
|
3
|
+
sknetwork/log.py,sha256=qDR-dnlzJC0ETlotPAy_IbLiQPgu8Vn90mgkqfvT5W0,462
|
|
4
|
+
sknetwork/sknetwork.py,sha256=Qtq3EpSkdAFqQNQPDXTAouXS784LkR8Rh2D5s5w5_tc,47
|
|
5
|
+
sknetwork/test_base.py,sha256=hdbe2ldftbPp6Y0-bAWehKy9cyyd3Adj9UX6NgYq0QQ,947
|
|
6
|
+
sknetwork/test_log.py,sha256=ucX3w138eDyD0Wnpk9QEsPoQgAPTJNPy9twzMf5TjQ8,334
|
|
7
|
+
sknetwork/classification/__init__.py,sha256=QoS3fTnCZ0nFdlDkEphEYqj1NDEf23_aqsfP0G4zLMM,483
|
|
8
|
+
sknetwork/classification/base.py,sha256=a6JczKf23arkC4Xx6rUEI0gLFAPoyPXKTXCdhV6_bWI,4432
|
|
9
|
+
sknetwork/classification/base_rank.py,sha256=BChHu6sDkdq_M6coJsC3hac3HWPE2lholi3g97J6lWw,4655
|
|
10
|
+
sknetwork/classification/diffusion.py,sha256=uliGned1_GGJLACzXMNFtkYbTyvHgfaUNgS535ZzreQ,5670
|
|
11
|
+
sknetwork/classification/knn.py,sha256=p9ZHNdaMOnrd6dmVNyieGBYrhFMrjXnkD8MFCxVmJqw,5444
|
|
12
|
+
sknetwork/classification/metrics.py,sha256=f66RlKyauNJFr8iuud4s9tntnEa4_Lp28zVWuwhUE44,7007
|
|
13
|
+
sknetwork/classification/pagerank.py,sha256=Nvmj-Y1YFXQxCZpcUhXfKlc6S5BebnIkJZ8DRsyzDTs,2652
|
|
14
|
+
sknetwork/classification/propagation.py,sha256=WkB4yG3V13a0d5yYuuecuHblQ2Z0L5PKLpL3gUgy8zs,5905
|
|
15
|
+
sknetwork/classification/vote.cp39-win_amd64.pyd,sha256=G-DACcFfnfHy4FNZN-qibz6vHNxyEfU29vgHCRLOk6g,156672
|
|
16
|
+
sknetwork/classification/vote.cpp,sha256=8rjK9bLANsU_I6TwLzcY0eLdf6V8SBq88y2KW3KKhG8,1023080
|
|
17
|
+
sknetwork/classification/vote.pyx,sha256=-mNsL96aaA1UL-qfeUgZlbdvKZUK9R4MLmq0BNFWVKA,1640
|
|
18
|
+
sknetwork/classification/tests/__init__.py,sha256=Per0oy1Frnm5jB7dnpod1g_xbgYhqkNteWQV5cemcH0,32
|
|
19
|
+
sknetwork/classification/tests/test_API.py,sha256=WV5cY8yhTHBHYRbDE3InZ4v-agymxLPMKxa2NqjbWZo,1154
|
|
20
|
+
sknetwork/classification/tests/test_diffusion.py,sha256=GuWNuE4PGZ4hqCLtRe-DfwjD3uUBFeHa0ByMEtsAUMM,3260
|
|
21
|
+
sknetwork/classification/tests/test_knn.py,sha256=EWuWiJJSsfthfvb3x0ejUjdccRBZIFpmG6nv7F8VkOk,807
|
|
22
|
+
sknetwork/classification/tests/test_metrics.py,sha256=9eqBvRiMdVUHf7WhjfwzMcUJFALt4Ufmx5LhBzou8Ww,2356
|
|
23
|
+
sknetwork/classification/tests/test_pagerank.py,sha256=8ywBVzfJOtz_gTIn7XYr0nvHlVwvmZERLrG3LkQHeTU,640
|
|
24
|
+
sknetwork/classification/tests/test_propagation.py,sha256=GzhpCpg0ijLvXuWtABolq02k0-Yh3UHJ2rAKpdQlTxI,874
|
|
25
|
+
sknetwork/clustering/__init__.py,sha256=Ju06e1zwMUfOn_1soTOlxJJu1F5u9VNxFXWN8TTParo,443
|
|
26
|
+
sknetwork/clustering/base.py,sha256=LsH_wlP19lDnIZWVUXbKwSta05ii5dWMqS-J-AkY6HE,6104
|
|
27
|
+
sknetwork/clustering/kcenters.py,sha256=MKmsR7zWTITeEAqFyRDKpglU7yZZEjR8H0TLJXdDjtw,8942
|
|
28
|
+
sknetwork/clustering/leiden.py,sha256=x2M1tVMlupu3KK8D7RpfB0hzV5iwf0den1y9NwC1Jko,9921
|
|
29
|
+
sknetwork/clustering/leiden_core.cp39-win_amd64.pyd,sha256=3_rJe3iosaFlTR22Y8HewAqx7owSEK6FWyHEJz179N4,201216
|
|
30
|
+
sknetwork/clustering/leiden_core.cpp,sha256=d9_D3KllPS80xs0gy56HZ-5c-5LCtYtsUeCwlMdA2qA,1205016
|
|
31
|
+
sknetwork/clustering/leiden_core.pyx,sha256=kEppO0iSs0UqK3ybtSVIHRSojJ4KNfe6pUNo9sShh7E,4424
|
|
32
|
+
sknetwork/clustering/louvain.py,sha256=Em7A22oNamwBb0IAFySLa9HUmdu4LjAuo3XAtJqtHC0,11077
|
|
33
|
+
sknetwork/clustering/louvain_core.cp39-win_amd64.pyd,sha256=hphpeUa-2RMNL3BZN2w407o971h60qovXuC7MazV3Ho,197120
|
|
34
|
+
sknetwork/clustering/louvain_core.cpp,sha256=zeWTe4GxT7KgwwD64ApfLpLR6sZCNj75pNlPvs_7J74,1185580
|
|
35
|
+
sknetwork/clustering/louvain_core.pyx,sha256=2KPnBhBeSlIxmoScZW7jwsmVxJyAyHQs3pcH9AfBM2Y,4213
|
|
36
|
+
sknetwork/clustering/metrics.py,sha256=ptLLtUpFtdKLZ4lcx_MN-PpOrzv--PWhAcEFoFghccM,3151
|
|
37
|
+
sknetwork/clustering/postprocess.py,sha256=uynPXvjYXiFNShxGZyLkpIwRl5nIlIVEm-auMCNZA0o,2105
|
|
38
|
+
sknetwork/clustering/propagation_clustering.py,sha256=s-Y7EQEqGM2wdl1zAOQzfmy-8LGab1eB00u_AOkYzl0,3885
|
|
39
|
+
sknetwork/clustering/tests/__init__.py,sha256=tCA27jkL3pdstka9XWQEA1NbC6ZqL7Rf-1V1UcySCEE,28
|
|
40
|
+
sknetwork/clustering/tests/test_API.py,sha256=PKxuTh49IyKzwkLfgFAmJiuBhWJQBEYtNxzOEYgc5uE,1566
|
|
41
|
+
sknetwork/clustering/tests/test_kcenters.py,sha256=f2nBCcj4TRZ9FJVn7r60w1AI5gzDP1s70ve9aW1PbDs,3569
|
|
42
|
+
sknetwork/clustering/tests/test_leiden.py,sha256=oEN0Dz9popCEYE-qqEdmTEqqr3af9TB3WDmRNWYAidE,1189
|
|
43
|
+
sknetwork/clustering/tests/test_louvain.py,sha256=rYZLrb8Ld_F2KDCos5RP9-1szkVXHnXLWHd4SbOwvAY,4807
|
|
44
|
+
sknetwork/clustering/tests/test_metrics.py,sha256=ZTr4T-d-g6kQJinei9VH6Teb_rOScmj5XLG168EI5LQ,1868
|
|
45
|
+
sknetwork/clustering/tests/test_postprocess.py,sha256=41l4coS_1CHqGOCnnucqxU6UkXws89YVMjef162ZTEQ,1417
|
|
46
|
+
sknetwork/data/__init__.py,sha256=QScOMfOfm2j7rPaNLPGNc9TwHQGebWRZCBHHbmZarO8,265
|
|
47
|
+
sknetwork/data/base.py,sha256=O_EN3j1hoSbHc96qxx-dAe5SsLGdLE1cqiX9fl0xjAw,658
|
|
48
|
+
sknetwork/data/load.py,sha256=AkFI4qdzP2mPd43Rm321NQa4uSERb5D4Hs2lciuyn-Y,14769
|
|
49
|
+
sknetwork/data/models.py,sha256=luDuvYYcruOEw94iXNEnl5IbYJCVGtxB6jhDWVBmJH0,13615
|
|
50
|
+
sknetwork/data/parse.py,sha256=bmAM5LdMleZfYQ8hx1NEd3TIRjxwemoVOsNHEGv-0ss,27539
|
|
51
|
+
sknetwork/data/test_graphs.py,sha256=KRRok5ElYWh1NV3i_2enLLjdeKe8zBg_3xqFXgOOY6I,2568
|
|
52
|
+
sknetwork/data/timeout.py,sha256=mXSqgKFRc6AVZBlIobN2xPYJjAyQOClKH3KQJ5M_4Sw,1085
|
|
53
|
+
sknetwork/data/toy_graphs.py,sha256=xdgNQjzwswpkCVioUR0_EzoQiS6QbuOAD0mgTs3Fphg,25654
|
|
54
|
+
sknetwork/data/tests/__init__.py,sha256=LtUcKFe5CeBpspRwa6A2uX2cVEf_uPpOo2mGkH7W8cI,20
|
|
55
|
+
sknetwork/data/tests/test_API.py,sha256=aytP2cJV9px-d-SogJn4SYPnTFJ1Xt2coEW7-EiljjM,987
|
|
56
|
+
sknetwork/data/tests/test_base.py,sha256=h1-1fEyWuVpAOnZDFmkSuhngrQdv3N2vEMa_Wpt8dVU,322
|
|
57
|
+
sknetwork/data/tests/test_load.py,sha256=wuLVlJ-lquoIrsr0UBI-gakW7BjGBZaSyEPavxX0NVY,3645
|
|
58
|
+
sknetwork/data/tests/test_models.py,sha256=_2y5xZrWbE3XZltd4n-z84YwyJhPcpaBa2TxXMvhXF4,1967
|
|
59
|
+
sknetwork/data/tests/test_parse.py,sha256=K_HTO7L5axpnt2Fs3hmOMudufZZ2shps94COEABcMx4,12967
|
|
60
|
+
sknetwork/data/tests/test_test_graphs.py,sha256=3QWshIikkBtRl3C7ATc_zO5UkwOh1wZwD7gYm0CEj8o,878
|
|
61
|
+
sknetwork/data/tests/test_toy_graphs.py,sha256=wQ2X-CVv9oycBUAaB68aJqg-0o3yMlaVtZ9D4thZJrc,2205
|
|
62
|
+
sknetwork/embedding/__init__.py,sha256=hTtHHVXNdwdGSZuAmLvTm3yMmHWxYKrFwwo1MuOPTUI,418
|
|
63
|
+
sknetwork/embedding/base.py,sha256=YWKLjfChvWKWuD3FE5mlqtNVzczzvfojLQvvgV73ACM,2681
|
|
64
|
+
sknetwork/embedding/force_atlas.py,sha256=yjlL5Qfv19KJdwtziTDOklrW_HP5CkMJIoOL6t2cYsA,7650
|
|
65
|
+
sknetwork/embedding/louvain_embedding.py,sha256=3jSFxiWImFc1bUEY1ZXdbvslRxL9wl2CeERZFGF5qKM,7124
|
|
66
|
+
sknetwork/embedding/random_projection.py,sha256=b5zGehuWT-dpA1KSw5xv3UZXZGNcP8PalEjXYWfgPT8,5137
|
|
67
|
+
sknetwork/embedding/spectral.py,sha256=xN_5yxJV2KJ--DOpv7tyy5yU25BHVBWnXbywQ0L_6YE,5689
|
|
68
|
+
sknetwork/embedding/spring.py,sha256=Cl1airI_mSWmV1isKmcxqjY1uxw7NcH7xMwHc8ADmHA,7349
|
|
69
|
+
sknetwork/embedding/svd.py,sha256=isI2y9GfCGA5VJmogHrtq2MDVaxuWCZsEvh4YqgfB2k,15097
|
|
70
|
+
sknetwork/embedding/tests/__init__.py,sha256=PsZQYFNrSmRW_KIuNX3qVtxtZVn8yV18d0mk8Y6ieck,27
|
|
71
|
+
sknetwork/embedding/tests/test_API.py,sha256=0KKY3p_bF2f3QPsReW9IrAtC5KGw1Ok3J0kYUT1hrl8,1538
|
|
72
|
+
sknetwork/embedding/tests/test_force_atlas.py,sha256=dYiyWroqB7UKNW9MTYpGP6e7tF_qPWqVZNmZBndd_ks,1155
|
|
73
|
+
sknetwork/embedding/tests/test_louvain_embedding.py,sha256=yPKM_JG2v_kzYkp4lZ7laalZNq0qhjM6pWmyGWecCkk,853
|
|
74
|
+
sknetwork/embedding/tests/test_random_projection.py,sha256=zz6q0G-pG-G2gOefhr-yuPBQhNDNtXB8jz7_dld1ZpE,1221
|
|
75
|
+
sknetwork/embedding/tests/test_spectral.py,sha256=w-gokQ_UgeXSQv69BB_Dk6shkWiO6iJbJGl5ih0JNRI,3978
|
|
76
|
+
sknetwork/embedding/tests/test_spring.py,sha256=z3eT-mFcfNSoMWPKQF-Dz_ZjAsJplQrx1yspiaeFRBw,1693
|
|
77
|
+
sknetwork/embedding/tests/test_svd.py,sha256=OZTpXRemHEpGYSfYb2AosXhLgruaRpAhyQjNcqQhw0Y,1232
|
|
78
|
+
sknetwork/gnn/__init__.py,sha256=808PNZEYNHZrIBpKqPzAMKES8yhN6QXEVUWkZVJIJWI,529
|
|
79
|
+
sknetwork/gnn/activation.py,sha256=rhvEXgrIix4nZ9I3WYZ0e1MID_DESCCC_XlVcOa4Wpo,3677
|
|
80
|
+
sknetwork/gnn/base.py,sha256=qHnKsfsUW4LIdwm3vzfAahBjweCkIDRzk62i4piNBuc,5889
|
|
81
|
+
sknetwork/gnn/base_activation.py,sha256=Kxs_d4aPOpMRXZMBAW7WKkA_uWLXRM7XM-JqE4nFHhc,2395
|
|
82
|
+
sknetwork/gnn/base_layer.py,sha256=_zL_SyVYvhxch9N1i44Qkgar_M5xVRz7JcxqUjVwDjY,4057
|
|
83
|
+
sknetwork/gnn/gnn_classifier.py,sha256=EyanIIdGfeshOU_3IwH90PX6GG5nCav6msQN9zfJixo,12918
|
|
84
|
+
sknetwork/gnn/layer.py,sha256=JBNFABBgGtMeXdQaS8wGnsSd7Jqs18jbIguITTOCQRE,5679
|
|
85
|
+
sknetwork/gnn/loss.py,sha256=FwULPjbUe3OFIhIBKJoNfdYX41ALckX2ANKvC69yyoI,5342
|
|
86
|
+
sknetwork/gnn/neighbor_sampler.py,sha256=l5OkylbRQsDpmkfeHAaSA7gHi5l7OUKtL4YvH-YTMWM,1929
|
|
87
|
+
sknetwork/gnn/optimizer.py,sha256=Ijtt0VhhD_pUI2Qk8u3GLuO2mQvfVkBqW0cYF-Zqo2I,5946
|
|
88
|
+
sknetwork/gnn/utils.py,sha256=7sNUhWyO_juS3Of67qSwbMThGH-C-Y3NzHxLq2x7S68,4476
|
|
89
|
+
sknetwork/gnn/tests/__init__.py,sha256=_q1IzwMWdNgX90qzdbVkr0LV4NTjFzXg81z4-TM93cw,21
|
|
90
|
+
sknetwork/gnn/tests/test_activation.py,sha256=UznwTCvOeCX80n5urtoDhnM8lskDM67AsVFiY-ViqzU,2543
|
|
91
|
+
sknetwork/gnn/tests/test_base.py,sha256=EN3QjzsSwzpOgyIYHwA6mgCDRBigx7YQ5iSQXQbw_pM,3468
|
|
92
|
+
sknetwork/gnn/tests/test_base_layer.py,sha256=1TfVD7xaI6VUVWZuSmOwDR7Ct0iVFvpmcxUf8L6EaqY,1418
|
|
93
|
+
sknetwork/gnn/tests/test_gnn_classifier.py,sha256=MQYFGWQRF5bTzKB_td3wmtcUZvJl4uoc4pXmOHiutls,5873
|
|
94
|
+
sknetwork/gnn/tests/test_layers.py,sha256=6Rbz_jJm3m5e6XWZA3P8Bfzlss9nBoiE4rSz2Tc-QKo,3256
|
|
95
|
+
sknetwork/gnn/tests/test_loss.py,sha256=QvzXKW_xzirXUSkiDm9HgqJPHJdd55FOpuHWZzxyeKs,1078
|
|
96
|
+
sknetwork/gnn/tests/test_neigh_sampler.py,sha256=7yhKZSRg2sZd3kFNs-qdj1LKgM7X8xZBNoOYYkYRfek,721
|
|
97
|
+
sknetwork/gnn/tests/test_optimizer.py,sha256=OZnIeO__kNt8HXLHr-WHGzvDsTy4LvJ19p9jcFVzXME,1823
|
|
98
|
+
sknetwork/gnn/tests/test_utils.py,sha256=MJvOXEWouRiIVaPM76W0hizt3jFb-1_BXHLd1zkPzSg,1884
|
|
99
|
+
sknetwork/hierarchy/__init__.py,sha256=-2-y7iBVQRanXLSl9kY8VASJVqx37trYmVNcz74QsUc,418
|
|
100
|
+
sknetwork/hierarchy/base.py,sha256=DvVUNgJgfaFlWyl4QbdHmp-VldPMFLPx9irt74kpyrU,2789
|
|
101
|
+
sknetwork/hierarchy/louvain_hierarchy.py,sha256=MqIWRoqAl3ufgsV8r707T8qlwaqB_km_yczRcJWh_4w,9826
|
|
102
|
+
sknetwork/hierarchy/metrics.py,sha256=5WZLsSLYKifLIQ9aPrXyzvPtTFN5ROSlNivhV-n9VuY,8280
|
|
103
|
+
sknetwork/hierarchy/paris.cp39-win_amd64.pyd,sha256=JErucoU1WNe0SLtxaSsnhAkM2_Ns9C1V2gY1NNX4-zk,225792
|
|
104
|
+
sknetwork/hierarchy/paris.cpp,sha256=XlqV42nuD1iVNlK3VFUa5uePZm7pLvq3Wd1i-nLxhJk,1470932
|
|
105
|
+
sknetwork/hierarchy/paris.pyx,sha256=YfHQwrZx4ddzsKZ9K4yv1obIrZSVDzY0WjVhM5Qi8DI,11998
|
|
106
|
+
sknetwork/hierarchy/postprocess.py,sha256=81Hj7eCHvU_2mdq0FTeYuZAqk4FIudZfZbvU39_sqyM,12422
|
|
107
|
+
sknetwork/hierarchy/tests/__init__.py,sha256=jRlC4pbyKuxaiXvByYK-4ix7DwYWxpjwKNvSXZ7rQJE,27
|
|
108
|
+
sknetwork/hierarchy/tests/test_API.py,sha256=f0QtuCDA5dRwhPogtwbjsVlDRTpk84ewkXgc6rHCSWU,744
|
|
109
|
+
sknetwork/hierarchy/tests/test_algos.py,sha256=HbF1QCFcpbrybRLrz7C0-2yY7s97vciWNiktbbvubwg,1395
|
|
110
|
+
sknetwork/hierarchy/tests/test_metrics.py,sha256=rcdFVeWf50bYnem55gmUaDfE6AmJuW8RtYEQcigqZ60,3222
|
|
111
|
+
sknetwork/hierarchy/tests/test_postprocess.py,sha256=Bm1_XU6OgwZr_1B28IA5m_HZRqI7GMwlTLpzkXux__Y,2266
|
|
112
|
+
sknetwork/linalg/__init__.py,sha256=COkAHs_EsxWzd_tHl6qq8laEfSsjoMuWVx3VbNFEgzU,542
|
|
113
|
+
sknetwork/linalg/basics.py,sha256=WDlylrkBTCQpjXGtzs8kshJYfpo0h3uM8TMhHmnAnnM,1179
|
|
114
|
+
sknetwork/linalg/diteration.cp39-win_amd64.pyd,sha256=rTZry5OGB6jjzr9MvCpmEWFd3M8wnnZQ-3PSND0jJTc,146944
|
|
115
|
+
sknetwork/linalg/diteration.cpp,sha256=cNIUsJNU48q4HFZRkN9yJ0YJWch6zsfHymHZN9elUcA,1019890
|
|
116
|
+
sknetwork/linalg/diteration.pyx,sha256=1r7a1usqftiBNTPOAwHFQPK__nZ67J-87wQLM25GqEU,1431
|
|
117
|
+
sknetwork/linalg/eig_solver.py,sha256=lMqxTg66_T-LsgGqc9oo_ngxpTceekavnCFOANWEpPA,2793
|
|
118
|
+
sknetwork/linalg/laplacian.py,sha256=qifd-8iltcTKCQW-7fG5z3XfwVrrrCeaBqbViBQCLf0,416
|
|
119
|
+
sknetwork/linalg/normalizer.py,sha256=Z0-paMHwp51aY_ssCP2RfXNVQqTFA9gsIHfy-fhG5QI,2559
|
|
120
|
+
sknetwork/linalg/operators.py,sha256=nNTtdI_I0HEhnpHOxUYRHmEzUDcz9CbwjDc5eEKzlNQ,7657
|
|
121
|
+
sknetwork/linalg/polynome.py,sha256=qnIhfpRk26JMinuNCrZO1EDj5ci65ZLxkKJyhO7HxpE,2201
|
|
122
|
+
sknetwork/linalg/ppr_solver.py,sha256=D7LUMQgFAtnGhh8pxpKrISH1H9d5MknFpHib8bPA5x4,6703
|
|
123
|
+
sknetwork/linalg/push.cp39-win_amd64.pyd,sha256=dMCXnYgtHKv1n8L-DVLCoCJZxvFwOyRNm2FKlCm6YOs,165376
|
|
124
|
+
sknetwork/linalg/push.cpp,sha256=RtJhLOjOHYJzFlqd4XOiEP6WPoHoxIwjON_aeoXC2yE,1156787
|
|
125
|
+
sknetwork/linalg/push.pyx,sha256=79ycseJ1jOznzc1_KSexTGy_0dlX1jQVnf_WI8Ufvgc,2429
|
|
126
|
+
sknetwork/linalg/sparse_lowrank.py,sha256=-6-cNRs6tpiNqA8ah3mBKWap3Nh9GQHTFIarPjIiC7U,5170
|
|
127
|
+
sknetwork/linalg/svd_solver.py,sha256=XxP4AyKQInBQN3imcbtahXseZ4YyKj4ZI2UAJK1mDs4,2772
|
|
128
|
+
sknetwork/linalg/tests/__init__.py,sha256=i2cO6oXoryXdEJ-HdSFZsY7LZdNit7W3GC8J8LAUMU4,24
|
|
129
|
+
sknetwork/linalg/tests/test_eig.py,sha256=c_BpjP_S7xCwYgk2N7kaFfsjV1-nfUYCu3Rys07bPeo,1548
|
|
130
|
+
sknetwork/linalg/tests/test_laplacian.py,sha256=iGI4bFmYfhCbymlN4wcnE0tV9GmApC3g7bDL3Qx8dR0,452
|
|
131
|
+
sknetwork/linalg/tests/test_normalization.py,sha256=tYw6JKDekgsNJEZDvxdtCSHoltvWAu7XgZ6BtVy85e0,921
|
|
132
|
+
sknetwork/linalg/tests/test_operators.py,sha256=AaOekSv0_mnt7KKs61gve4drT_I7PdG5CxLQSgUXYXQ,2985
|
|
133
|
+
sknetwork/linalg/tests/test_polynome.py,sha256=-F0iMhYd1lVFau6ILxq7Mr5BtJxJPB-TX3ya3tQwzOM,1015
|
|
134
|
+
sknetwork/linalg/tests/test_ppr.py,sha256=6FlYnOlpWw2A98iH2Xp45DjbtqB5pPfymVVKhNFmCws,2143
|
|
135
|
+
sknetwork/linalg/tests/test_sparse_lowrank.py,sha256=Vqeey1W8jB85zT0L4c5TEGTL0hyQ9zX4FQ6EEI4tmHE,2337
|
|
136
|
+
sknetwork/linalg/tests/test_svd.py,sha256=9Uu89-1vTlaJ_H82MUwzGz-iiYf_wFiZMyfelVBRHMI,1323
|
|
137
|
+
sknetwork/linkpred/__init__.py,sha256=a7t20Q3xpm1M5IXnyErmucoQuHnGwPTNKAD42oYHEWQ,74
|
|
138
|
+
sknetwork/linkpred/base.py,sha256=hEImortSlZbfMav5uG8AR3ajKn9IXuookuIXhyBuvSw,1041
|
|
139
|
+
sknetwork/linkpred/nn.py,sha256=y0RB1rrKTr23PFklH2M2V7jcXfssl9SLdidtFozFxKg,4156
|
|
140
|
+
sknetwork/linkpred/tests/__init__.py,sha256=vghxhmK0F5SJOYIb9HZV0h3AVXsCVEPwkgfM7aPpV9M,33
|
|
141
|
+
sknetwork/linkpred/tests/test_nn.py,sha256=-1r8LyU34XXvhHnvJA53fGmOd6Ei2jGG6-LHtYvHYGc,1010
|
|
142
|
+
sknetwork/path/__init__.py,sha256=FU7sn-HrqXGbJQzCIlQgE95LGDwwMRzBe-qp4rTt-3A,227
|
|
143
|
+
sknetwork/path/dag.py,sha256=UAhn3uL2hlCybyOY0ZBnFh1aJnWwWpZ4pfhg-Ay2JKU,1722
|
|
144
|
+
sknetwork/path/distances.py,sha256=HsehKUOtoL8dCybTTm_mALTH9szOHkCRKkw3ref7-PA,3666
|
|
145
|
+
sknetwork/path/search.py,sha256=SD6iV6m_OdygudaJ3vaNyLQtlGZrHjfCvA0BIFPPAN0,807
|
|
146
|
+
sknetwork/path/shortest_path.py,sha256=gr7nB8woh3xBrS0gybylpQ31uDYCE2N4WEi2vTpke2Y,2511
|
|
147
|
+
sknetwork/path/tests/__init__.py,sha256=ntNGJ8p6RZkIrYnePF-TESyoidEXx8fw6A9OBNAlIqo,29
|
|
148
|
+
sknetwork/path/tests/test_dag.py,sha256=lualgStm0Boqx88j38tNuRKrW7Ala5ZfIHzlKdFbVRM,975
|
|
149
|
+
sknetwork/path/tests/test_distances.py,sha256=V9ZukcbwZ9HUDIg1-bKunkT4RHN94y2tkl0DRTKpefY,2757
|
|
150
|
+
sknetwork/path/tests/test_search.py,sha256=wJzwbbe86axJRmausJp-KcsNTB9n7kpo6YBd77SjV20,1239
|
|
151
|
+
sknetwork/path/tests/test_shortest_path.py,sha256=zeM-qgbTs3i29gvF568otKOKgv_pbryV_yGefThLEIY,1422
|
|
152
|
+
sknetwork/ranking/__init__.py,sha256=lbkUSZ3alkLK0xGiUx5ptPqhQKIjIKK80uPk0KymJPc,356
|
|
153
|
+
sknetwork/ranking/base.py,sha256=W3gw9j_ikhyETr3dpEYo9RINUUHlSn8Dez_eAnlIsDg,1573
|
|
154
|
+
sknetwork/ranking/betweenness.cp39-win_amd64.pyd,sha256=sPncSfYoA1TsSAAD7d1v-m_5CUSAR6q-b0iynwmaQBY,74752
|
|
155
|
+
sknetwork/ranking/betweenness.cpp,sha256=93mX2kAG-xRLJrgRq3c9XVt8uipzVX8wT__64KXEKKc,380616
|
|
156
|
+
sknetwork/ranking/betweenness.pyx,sha256=fe5_gwRQ0TaFi_0-vUGfy6XC5kW5un5xly7-xVDgxrU,3184
|
|
157
|
+
sknetwork/ranking/closeness.py,sha256=CvdAaqsM8HvAi6zGCuLcVF0BUu9n9UPBz_YxZhFF_sM,2932
|
|
158
|
+
sknetwork/ranking/hits.py,sha256=uhGJH2C0U9hLsVRutI6M1ulbEIM7L6dCeYqiAhtTD9A,2855
|
|
159
|
+
sknetwork/ranking/katz.py,sha256=WQpxJq_qqvjFm1ZG_P1ynfpzLlPu-dXCJ9luK-8sRjY,2618
|
|
160
|
+
sknetwork/ranking/pagerank.py,sha256=jzh5dFuM4k5E6UknDFx6WVU2HA30enYbe95RUYmssi0,4859
|
|
161
|
+
sknetwork/ranking/postprocess.py,sha256=F2yP6AsaK9ylTzukLCdtJET7_KnprrxkyWTSKQOnODk,956
|
|
162
|
+
sknetwork/ranking/tests/__init__.py,sha256=46AJCs9irV6PtFg8CVH8TqpqHA6ajs29-3rsL3zxZQ8,25
|
|
163
|
+
sknetwork/ranking/tests/test_API.py,sha256=wPRPjYGcyxEqRt7g4SH7FEZt1sFKBqo2LhCRq0g9pF4,1035
|
|
164
|
+
sknetwork/ranking/tests/test_betweenness.py,sha256=CEqRSOYOgnLUND54GBglDAUdzr6EGRxEPN3iMrYpE34,1173
|
|
165
|
+
sknetwork/ranking/tests/test_closeness.py,sha256=7LSiT-H5S1vuaOj4NHpotg0voIWjgJfVlgR96_V2ny8,853
|
|
166
|
+
sknetwork/ranking/tests/test_hits.py,sha256=aOPsAyU3GNyb_Mcujd7U_TLBtzWn91SuOPyZZRUF9MU,511
|
|
167
|
+
sknetwork/ranking/tests/test_pagerank.py,sha256=LlRJLoq-By1WVOuY71OAh46vCIvERQ0qiIgOgpvw6aM,2305
|
|
168
|
+
sknetwork/ranking/tests/test_postprocess.py,sha256=TpyU3_DKbnSwuf0HEuEYMiNbdI6Z5oP1JNO6kWigFkc,729
|
|
169
|
+
sknetwork/regression/__init__.py,sha256=FYnlc-DKS1Mz2lKVCtKldjSgtvzxMmkd5kwKq2HdNmE,145
|
|
170
|
+
sknetwork/regression/base.py,sha256=gTBqtaE-tMmtcnWh0pPsK9fg7eEUF1UaDdINE2nLNI8,1557
|
|
171
|
+
sknetwork/regression/diffusion.py,sha256=sUKbAf0VNmMHQmw_-Dba25omL4oEpWhyYU1qZJ_QA2E,8053
|
|
172
|
+
sknetwork/regression/tests/__init__.py,sha256=GvqvsSMbqMYwRmWw4VrZntwccz1jOPqrqufAZqw_NAc,28
|
|
173
|
+
sknetwork/regression/tests/test_API.py,sha256=7x_n8bG8hUcJVRYDbdC6GvPmwW5cE7HmASlu5SHnwFI,1056
|
|
174
|
+
sknetwork/regression/tests/test_diffusion.py,sha256=_ivBfsfmRQyiFChMS8N1J7HoJDhZtKdeydBIu7SuSvU,2117
|
|
175
|
+
sknetwork/topology/__init__.py,sha256=Ho06JPdSeiy5sq-Cv3e9y4AiFVMUQ_RUNUDDpKegWnM,542
|
|
176
|
+
sknetwork/topology/cliques.cp39-win_amd64.pyd,sha256=WGeviRTVXbSVbRJka82mLHnCVAIvoAgnGG7WuFQwnO8,185856
|
|
177
|
+
sknetwork/topology/cliques.cpp,sha256=du0XZmC70o0y2NAsudarRkenbLgX3phS2Gu6e-tCSVk,1223582
|
|
178
|
+
sknetwork/topology/cliques.pyx,sha256=y6Ee5oaX7IdVhXXjSOazqT5dYo4gSTQ8Mq0u1Abg0vw,4659
|
|
179
|
+
sknetwork/topology/core.cp39-win_amd64.pyd,sha256=C7O6RYoO-Xf7cHvxTqE4Ma6lwBNBJiXNVlFvltAV4_U,156160
|
|
180
|
+
sknetwork/topology/core.cpp,sha256=Il-4VwXW-hih1IIVZnDPBwoLKxN9snnqUjo9TaFMt2o,1132865
|
|
181
|
+
sknetwork/topology/core.pyx,sha256=0PO4HnOYivjrFY1NMlXHd7wscu0R5Fg-Toj3YVRwXDo,2555
|
|
182
|
+
sknetwork/topology/cycles.py,sha256=EgVtANHvY-MBcIe3yRVaBYzz1amsiV6GfuDEMIO3Kl0,9246
|
|
183
|
+
sknetwork/topology/minheap.cp39-win_amd64.pyd,sha256=rXKJymVOX-N2dbFvKTfWtNYqlnXrn0LqIYfYfbqv_qE,134656
|
|
184
|
+
sknetwork/topology/minheap.cpp,sha256=uqyaeMu9AM-G5DigPgIXabAqRtGApboXGENMWdBwU0U,1016262
|
|
185
|
+
sknetwork/topology/minheap.pxd,sha256=AHeBNN8wGzT429K6AyhbrFUoBkWVwbkyUIY6TkeJ80g,584
|
|
186
|
+
sknetwork/topology/minheap.pyx,sha256=KOmjjlljgkGUJNL8PQ6WaNzx-Ro84QoSve_8baDN1B0,3419
|
|
187
|
+
sknetwork/topology/structure.py,sha256=28mSnrukLU_GDil8e5ouLZ9PuoQyJ0UmQ4WgMu9Wzew,7479
|
|
188
|
+
sknetwork/topology/triangles.cp39-win_amd64.pyd,sha256=5BFF2rQRg1NNnePPGFtLGf4olPy8SP023eN6zoXpay0,59904
|
|
189
|
+
sknetwork/topology/triangles.cpp,sha256=t9PP8RWF4eFY7xKvtp7EtEK0jtcZz5VqzGyexpaJIAw,354316
|
|
190
|
+
sknetwork/topology/triangles.pyx,sha256=q_f23ZidyizvR9P4X4OIX8o8bAZZTtV7tnjXqmyYZuY,4500
|
|
191
|
+
sknetwork/topology/weisfeiler_lehman.py,sha256=U5b5RoTFtqBeFwkuBXs4g0Px2UWRFePyneu-tfgnY_I,4441
|
|
192
|
+
sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd,sha256=n4eaLTDuxrEf6hiDxr4cDYsBu6IVf6UKoImNsImUXgI,156672
|
|
193
|
+
sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=g4OHUQnLmxTeCQN06HTW3Bu3vujwcBB6hDm4dkhe3G8,1027132
|
|
194
|
+
sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=lpUV1BpxtedsGBfOl19b8OFXCIbyaAA4ZYlW6BzSxbw,3148
|
|
195
|
+
sknetwork/topology/tests/__init__.py,sha256=84T-xv8JCFeA9D7Rxw9gy3_dNAoE8CY1k1pYcuG8K3s,26
|
|
196
|
+
sknetwork/topology/tests/test_cliques.py,sha256=vdRMDmF8AKkIWE-LnU2yGzk1wzwzq9PdggpeS-8wfRw,866
|
|
197
|
+
sknetwork/topology/tests/test_core.py,sha256=7w9lrzsQ5Pn7QzxA0F_L58cXCABFir7rtLn2DZdPKsk,570
|
|
198
|
+
sknetwork/topology/tests/test_cycles.py,sha256=iKhfvZf-GjlcVCFwRzo9OkxPfnT_pM-eLKW72VIvRy0,3215
|
|
199
|
+
sknetwork/topology/tests/test_structure.py,sha256=BIJuO39ROQRA-xipUfk8PajHQ0Uk9EY6C-c3JYkmBSg,4033
|
|
200
|
+
sknetwork/topology/tests/test_triangles.py,sha256=5AYxNQ8DkKTvpShWEWV-v1r7WZx1DuylChcEmVF0yTk,1313
|
|
201
|
+
sknetwork/topology/tests/test_wl.py,sha256=vesYcnlJHPphk2RJLzKJH9N6aYpPeKLFJko1E8kBdtc,2290
|
|
202
|
+
sknetwork/utils/__init__.py,sha256=ceT5UU4JRxCqpDlPj84gPBaKMRsI6b_YfaBzkK67Qo4,336
|
|
203
|
+
sknetwork/utils/check.py,sha256=LWUkHwDzr9Z9IyT7AIsrQyDrRAMjO2bzWyFsv_P9Ask,13295
|
|
204
|
+
sknetwork/utils/format.py,sha256=g_cfUlETJp7AppCiVKG2VZPexH-H9rVNGF4hXh2rshM,8987
|
|
205
|
+
sknetwork/utils/membership.py,sha256=kan9WuytJCyBAZi0CfM0SJEf527XB4WAYMkIctD5D9w,2244
|
|
206
|
+
sknetwork/utils/neighbors.py,sha256=-EwBXigM3mn2qvVTi_aPmG0XifDMojZgsMQ9_A8cLkk,3466
|
|
207
|
+
sknetwork/utils/tfidf.py,sha256=vvISEaZJa7RZrNNgQEAHgMH2rJToARuNWcVjnA8u7po,993
|
|
208
|
+
sknetwork/utils/values.py,sha256=aUc2fuI56J78_6P-S2mT4NhHgiiIZp6D2feNKcsQmG4,2584
|
|
209
|
+
sknetwork/utils/tests/__init__.py,sha256=JQuARG8Ycb5apL6PUy_wuEHsLjmEZFOPQUKWRgTMdCY,23
|
|
210
|
+
sknetwork/utils/tests/test_check.py,sha256=LxYAubg6YZ0RHYFz_R3byNtw3EQ6hsHxPPI3QgP1DLg,6954
|
|
211
|
+
sknetwork/utils/tests/test_format.py,sha256=NJrRBI-kFF8dYFmTwuFF7VUnHS6Mz75DG-RB-iGk8ag,2308
|
|
212
|
+
sknetwork/utils/tests/test_membership.py,sha256=d_TobwpRl2K3qCcFBDQV1bGCSmF7Ls3r2s_XGvJC3Sg,772
|
|
213
|
+
sknetwork/utils/tests/test_neighbors.py,sha256=Q7-Y23CcF4vn5lcyEqjaojEAk7-pG03Mf59O1Rz3IUs,1467
|
|
214
|
+
sknetwork/utils/tests/test_tfidf.py,sha256=KYz_LSxi625kKL-v5-uA1-YQOliIfgXCmNXTAZtgpmw,463
|
|
215
|
+
sknetwork/utils/tests/test_values.py,sha256=K3ctTXpSy9fwiHnpFVlHX5KeTd2wNF4kbFiTXe_gQq8,2334
|
|
216
|
+
sknetwork/visualization/__init__.py,sha256=Ww8O1hby1xf_mtRgFftc9srMzvbFgWOzj_khKkqq9Mg,220
|
|
217
|
+
sknetwork/visualization/colors.py,sha256=NhyMQeetfH16khnJD2gD_uZJkBD3JQDV0K3Jzacamqw,2543
|
|
218
|
+
sknetwork/visualization/dendrograms.py,sha256=HtubynuGsJ5b7bD5I8dIKL5UqhqynmqOhw_wJt6VGUA,10178
|
|
219
|
+
sknetwork/visualization/graphs.py,sha256=SJDta3IUolBDI69kFdF7WGmjcLsfqkQNw5ixvJwoNuk,42214
|
|
220
|
+
sknetwork/visualization/tests/__init__.py,sha256=hrso2pNVzMWn4D2pRyWA_xAMib-xacKjm-rf91MyGGk,31
|
|
221
|
+
sknetwork/visualization/tests/test_dendrograms.py,sha256=e0u3qL9SlWlrQiVAeCVXxq7P6-mU0GaCz3FBu6cm_HA,2519
|
|
222
|
+
sknetwork/visualization/tests/test_graphs.py,sha256=FPZcgGj9asTjOvtkXpENYjeE8xtwh1ES4XYWcYe56Jo,9597
|
|
223
|
+
scikit_network-0.32.1.dist-info/AUTHORS.rst,sha256=t2CJQFYm_OvWod1zQx4Tw-BeKLVlpQjQ0APBIOnYRPE,968
|
|
224
|
+
scikit_network-0.32.1.dist-info/LICENSE,sha256=BJ1Hth1QjBmjIfHcp1sVxlkEqHYM58Vn5bcpYcggMZE,1656
|
|
225
|
+
scikit_network-0.32.1.dist-info/METADATA,sha256=cmHp6cheSqpUDU3TEOHmo-VKw-6fBXvAw2U5SewlIFQ,14907
|
|
226
|
+
scikit_network-0.32.1.dist-info/WHEEL,sha256=GZFS91_ufm4WrNPBaFVPB9MvOXR6bMZQhPcZRRTN5YM,100
|
|
227
|
+
scikit_network-0.32.1.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
|
|
228
|
+
scikit_network-0.32.1.dist-info/RECORD,,
|
sknetwork/__init__.py
CHANGED
sknetwork/base.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created in June 2019
|
|
5
|
+
@author: Quentin Lutz <qlutz@enst.fr>
|
|
6
|
+
"""
|
|
7
|
+
import inspect
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class Algorithm:
|
|
11
|
+
"""Base class for all algorithms.
|
|
12
|
+
"""
|
|
13
|
+
def get_params(self):
|
|
14
|
+
"""Get parameters as dictionary.
|
|
15
|
+
|
|
16
|
+
Returns
|
|
17
|
+
-------
|
|
18
|
+
params : dict
|
|
19
|
+
Parameters of the algorithm.
|
|
20
|
+
"""
|
|
21
|
+
signature = inspect.signature(self.__class__.__init__)
|
|
22
|
+
params_exclude = ['self', 'random_state', 'verbose']
|
|
23
|
+
params = dict()
|
|
24
|
+
for param in signature.parameters.values():
|
|
25
|
+
name = param.name
|
|
26
|
+
if name not in params_exclude:
|
|
27
|
+
try:
|
|
28
|
+
value = self.__dict__[name]
|
|
29
|
+
except KeyError:
|
|
30
|
+
continue
|
|
31
|
+
params[name] = value
|
|
32
|
+
return params
|
|
33
|
+
|
|
34
|
+
def set_params(self, params: dict) -> 'Algorithm':
|
|
35
|
+
"""Set parameters of the algorithm.
|
|
36
|
+
|
|
37
|
+
Parameters
|
|
38
|
+
----------
|
|
39
|
+
params : dict
|
|
40
|
+
Parameters of the algorithm.
|
|
41
|
+
|
|
42
|
+
Returns
|
|
43
|
+
-------
|
|
44
|
+
self : :class:`Algorithm`
|
|
45
|
+
"""
|
|
46
|
+
valid_params = self.get_params()
|
|
47
|
+
if type(params) is not dict:
|
|
48
|
+
raise ValueError('The parameters must be given as a dictionary.')
|
|
49
|
+
for name, value in params.items():
|
|
50
|
+
if name not in valid_params:
|
|
51
|
+
raise ValueError(f'Invalid parameter: {name}.')
|
|
52
|
+
setattr(self, name, value)
|
|
53
|
+
return self
|
|
54
|
+
|
|
55
|
+
def __repr__(self):
|
|
56
|
+
params_string = []
|
|
57
|
+
for name, value in self.get_params().items():
|
|
58
|
+
if type(value) == str:
|
|
59
|
+
value = "'" + value + "'"
|
|
60
|
+
else:
|
|
61
|
+
value = str(value)
|
|
62
|
+
params_string.append(name + '=' + value)
|
|
63
|
+
return self.__class__.__name__ + '(' + ', '.join(params_string) + ')'
|
|
64
|
+
|
|
65
|
+
def fit(self, *args, **kwargs):
|
|
66
|
+
"""Fit algorithm to data."""
|
|
67
|
+
raise NotImplementedError
|
sknetwork/classification/base.py
CHANGED
|
@@ -9,7 +9,7 @@ from abc import ABC
|
|
|
9
9
|
import numpy as np
|
|
10
10
|
from scipy import sparse
|
|
11
11
|
|
|
12
|
-
from sknetwork.
|
|
12
|
+
from sknetwork.base import Algorithm
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
class BaseClassifier(Algorithm, ABC):
|
|
@@ -20,25 +20,25 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
20
20
|
bipartite : bool
|
|
21
21
|
If ``True``, the fitted graph is bipartite.
|
|
22
22
|
labels_ : np.ndarray, shape (n_labels,)
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
23
|
+
Labels of nodes.
|
|
24
|
+
probs_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
25
|
+
Probability distribution over labels (soft classification).
|
|
26
26
|
labels_row_ , labels_col_ : np.ndarray
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
27
|
+
Labels of rows and columns (for bipartite graphs).
|
|
28
|
+
probs_row_, probs_col_ : sparse.csr_matrix, shapes (n_row, n_labels) and (n_col, n_labels)
|
|
29
|
+
Probability distributions over labels for rows and columns (for bipartite graphs).
|
|
30
30
|
"""
|
|
31
31
|
|
|
32
32
|
def __init__(self):
|
|
33
33
|
self.bipartite = None
|
|
34
34
|
self.labels_ = None
|
|
35
|
-
self.
|
|
35
|
+
self.probs_ = None
|
|
36
36
|
self.labels_row_ = None
|
|
37
37
|
self.labels_col_ = None
|
|
38
|
-
self.
|
|
39
|
-
self.
|
|
38
|
+
self.probs_row_ = None
|
|
39
|
+
self.probs_col_ = None
|
|
40
40
|
|
|
41
|
-
def predict(self, columns=False) -> np.ndarray:
|
|
41
|
+
def predict(self, columns: bool = False) -> np.ndarray:
|
|
42
42
|
"""Return the labels predicted by the algorithm.
|
|
43
43
|
|
|
44
44
|
Parameters
|
|
@@ -80,8 +80,8 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
80
80
|
Probability distribution over labels.
|
|
81
81
|
"""
|
|
82
82
|
if columns:
|
|
83
|
-
return self.
|
|
84
|
-
return self.
|
|
83
|
+
return self.probs_col_.toarray()
|
|
84
|
+
return self.probs_.toarray()
|
|
85
85
|
|
|
86
86
|
def fit_predict_proba(self, *args, **kwargs) -> np.ndarray:
|
|
87
87
|
"""Fit algorithm to the data and return the probability distribution over labels.
|
|
@@ -105,12 +105,12 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
105
105
|
|
|
106
106
|
Returns
|
|
107
107
|
-------
|
|
108
|
-
|
|
109
|
-
Probability distribution over labels
|
|
108
|
+
probs : sparse.csr_matrix
|
|
109
|
+
Probability distribution over labels.
|
|
110
110
|
"""
|
|
111
111
|
if columns:
|
|
112
|
-
return self.
|
|
113
|
-
return self.
|
|
112
|
+
return self.probs_col_
|
|
113
|
+
return self.probs_
|
|
114
114
|
|
|
115
115
|
def fit_transform(self, *args, **kwargs) -> sparse.csr_matrix:
|
|
116
116
|
"""Fit algorithm to the data and return the probability distribution over labels in sparse format.
|
|
@@ -118,8 +118,8 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
118
118
|
|
|
119
119
|
Returns
|
|
120
120
|
-------
|
|
121
|
-
|
|
122
|
-
Probability
|
|
121
|
+
probs : sparse.csr_matrix
|
|
122
|
+
Probability distribution over labels.
|
|
123
123
|
"""
|
|
124
124
|
self.fit(*args, **kwargs)
|
|
125
125
|
return self.transform()
|
|
@@ -131,12 +131,12 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
131
131
|
self.labels_row_ = self.labels_[:n_row]
|
|
132
132
|
self.labels_col_ = self.labels_[n_row:]
|
|
133
133
|
self.labels_ = self.labels_row_
|
|
134
|
-
self.
|
|
135
|
-
self.
|
|
136
|
-
self.
|
|
134
|
+
self.probs_row_ = self.probs_[:n_row]
|
|
135
|
+
self.probs_col_ = self.probs_[n_row:]
|
|
136
|
+
self.probs_ = self.probs_row_
|
|
137
137
|
else:
|
|
138
138
|
self.labels_row_ = self.labels_
|
|
139
139
|
self.labels_col_ = self.labels_
|
|
140
|
-
self.
|
|
141
|
-
self.
|
|
140
|
+
self.probs_row_ = self.probs_
|
|
141
|
+
self.probs_col_ = self.probs_
|
|
142
142
|
return self
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
#!/usr/bin/env python3
|
|
2
2
|
# -*- coding: utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Created
|
|
4
|
+
Created in March 2020
|
|
5
5
|
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
6
|
"""
|
|
7
7
|
from functools import partial
|
|
@@ -12,14 +12,13 @@ import numpy as np
|
|
|
12
12
|
from scipy import sparse
|
|
13
13
|
|
|
14
14
|
from sknetwork.classification.base import BaseClassifier
|
|
15
|
-
from sknetwork.linalg.
|
|
15
|
+
from sknetwork.linalg.normalizer import normalize
|
|
16
16
|
from sknetwork.ranking.base import BaseRanking
|
|
17
17
|
from sknetwork.utils.check import check_labels, check_n_jobs
|
|
18
18
|
from sknetwork.utils.format import get_adjacency_values
|
|
19
|
-
from sknetwork.utils.verbose import VerboseMixin
|
|
20
19
|
|
|
21
20
|
|
|
22
|
-
class RankClassifier(BaseClassifier
|
|
21
|
+
class RankClassifier(BaseClassifier):
|
|
23
22
|
"""Generic class for ranking based classifiers.
|
|
24
23
|
|
|
25
24
|
Parameters
|
|
@@ -29,27 +28,20 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
29
28
|
n_jobs :
|
|
30
29
|
If positive, number of parallel jobs allowed (-1 means maximum number).
|
|
31
30
|
If ``None``, no parallel computations are made.
|
|
32
|
-
verbose :
|
|
33
|
-
Verbose mode.
|
|
34
31
|
|
|
35
32
|
Attributes
|
|
36
33
|
----------
|
|
37
34
|
labels_ : np.ndarray, shape (n_labels,)
|
|
38
35
|
Label of each node.
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
labels_row_ : np.ndarray
|
|
42
|
-
Labels of rows, for bipartite graphs.
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
membership_row_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
46
|
-
Membership matrix of rows, for bipartite graphs.
|
|
47
|
-
membership_col_ : sparse.csr_matrix, shape (n_col, n_labels)
|
|
48
|
-
Membership matrix of columns, for bipartite graphs.
|
|
36
|
+
probs_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
37
|
+
Probability distribution over labels.
|
|
38
|
+
labels_row_, labels_col_ : np.ndarray
|
|
39
|
+
Labels of rows and columns, for bipartite graphs.
|
|
40
|
+
probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
41
|
+
Probability distributions over labels for rows and columns (for bipartite graphs).
|
|
49
42
|
"""
|
|
50
43
|
def __init__(self, algorithm: BaseRanking, n_jobs: Optional[int] = None, verbose: bool = False):
|
|
51
44
|
super(RankClassifier, self).__init__()
|
|
52
|
-
VerboseMixin.__init__(self, verbose)
|
|
53
45
|
|
|
54
46
|
self.algorithm = algorithm
|
|
55
47
|
self.n_jobs = check_n_jobs(n_jobs)
|
|
@@ -78,7 +70,7 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
78
70
|
|
|
79
71
|
@staticmethod
|
|
80
72
|
def _process_scores(scores: np.ndarray) -> np.ndarray:
|
|
81
|
-
"""Post-processing of the
|
|
73
|
+
"""Post-processing of the scores.
|
|
82
74
|
|
|
83
75
|
Parameters
|
|
84
76
|
----------
|
|
@@ -97,9 +89,9 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
97
89
|
self.labels_row_ = self.labels_[:n_row]
|
|
98
90
|
self.labels_col_ = self.labels_[n_row:]
|
|
99
91
|
self.labels_ = self.labels_row_
|
|
100
|
-
self.
|
|
101
|
-
self.
|
|
102
|
-
self.
|
|
92
|
+
self.probs_row_ = self.probs_[:n_row]
|
|
93
|
+
self.probs_col_ = self.probs_[n_row:]
|
|
94
|
+
self.probs_ = self.probs_row_
|
|
103
95
|
|
|
104
96
|
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, dict] = None,
|
|
105
97
|
labels_row: Union[np.ndarray, dict] = None, labels_col: Union[np.ndarray, dict] = None) -> 'RankClassifier':
|
|
@@ -122,7 +114,7 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
122
114
|
seeds_labels = seeds_labels.astype(int)
|
|
123
115
|
labels_unique, n_classes = check_labels(seeds_labels)
|
|
124
116
|
seeds_all = self._process_labels(seeds_labels)
|
|
125
|
-
local_function = partial(self.algorithm.
|
|
117
|
+
local_function = partial(self.algorithm.fit_predict, adjacency)
|
|
126
118
|
with Pool(self.n_jobs) as pool:
|
|
127
119
|
scores = np.array(pool.map(local_function, seeds_all))
|
|
128
120
|
scores = scores.T
|
|
@@ -130,12 +122,12 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
130
122
|
scores = self._process_scores(scores)
|
|
131
123
|
scores = normalize(scores)
|
|
132
124
|
|
|
133
|
-
|
|
134
|
-
|
|
125
|
+
probs = sparse.coo_matrix(scores)
|
|
126
|
+
probs.col = labels_unique[probs.col]
|
|
135
127
|
|
|
136
128
|
labels = np.argmax(scores, axis=1)
|
|
137
129
|
self.labels_ = labels_unique[labels]
|
|
138
|
-
self.
|
|
130
|
+
self.probs_ = sparse.csr_matrix(probs, shape=(adjacency.shape[0], np.max(seeds_labels) + 1))
|
|
139
131
|
self._split_vars(input_matrix.shape)
|
|
140
132
|
|
|
141
133
|
return self
|