scikit-network 0.30.0__cp310-cp310-macosx_11_0_arm64.whl → 0.32.0__cp310-cp310-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.0.dist-info}/AUTHORS.rst +3 -0
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.0.dist-info}/METADATA +25 -3
- scikit_network-0.32.0.dist-info/RECORD +216 -0
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.0.dist-info}/WHEEL +1 -1
- sknetwork/__init__.py +1 -1
- sknetwork/base.py +67 -0
- sknetwork/classification/base.py +24 -24
- sknetwork/classification/base_rank.py +17 -25
- sknetwork/classification/diffusion.py +35 -35
- sknetwork/classification/knn.py +24 -21
- sknetwork/classification/metrics.py +1 -1
- sknetwork/classification/pagerank.py +10 -10
- sknetwork/classification/propagation.py +23 -20
- sknetwork/classification/tests/test_diffusion.py +13 -3
- sknetwork/classification/vote.cpython-310-darwin.so +0 -0
- sknetwork/classification/vote.pyx +1 -3
- sknetwork/clustering/__init__.py +3 -1
- sknetwork/clustering/base.py +36 -40
- sknetwork/clustering/kcenters.py +253 -0
- sknetwork/clustering/leiden.py +241 -0
- sknetwork/clustering/leiden_core.cpython-310-darwin.so +0 -0
- sknetwork/clustering/leiden_core.pyx +124 -0
- sknetwork/clustering/louvain.py +133 -102
- sknetwork/clustering/louvain_core.cpython-310-darwin.so +0 -0
- sknetwork/clustering/louvain_core.pyx +86 -96
- sknetwork/clustering/postprocess.py +2 -2
- sknetwork/clustering/propagation_clustering.py +15 -19
- sknetwork/clustering/tests/test_API.py +8 -4
- sknetwork/clustering/tests/test_kcenters.py +92 -0
- sknetwork/clustering/tests/test_leiden.py +34 -0
- sknetwork/clustering/tests/test_louvain.py +3 -4
- sknetwork/data/__init__.py +2 -1
- sknetwork/data/base.py +28 -0
- sknetwork/data/load.py +38 -37
- sknetwork/data/models.py +18 -18
- sknetwork/data/parse.py +54 -33
- sknetwork/data/test_graphs.py +2 -2
- sknetwork/data/tests/test_API.py +1 -1
- sknetwork/data/tests/test_base.py +14 -0
- sknetwork/data/tests/test_load.py +1 -1
- sknetwork/data/tests/test_parse.py +9 -12
- sknetwork/data/tests/test_test_graphs.py +1 -2
- sknetwork/data/toy_graphs.py +18 -18
- sknetwork/embedding/__init__.py +0 -1
- sknetwork/embedding/base.py +21 -20
- sknetwork/embedding/force_atlas.py +3 -2
- sknetwork/embedding/louvain_embedding.py +2 -2
- sknetwork/embedding/random_projection.py +5 -3
- sknetwork/embedding/spectral.py +0 -73
- sknetwork/embedding/tests/test_API.py +4 -28
- sknetwork/embedding/tests/test_louvain_embedding.py +4 -9
- sknetwork/embedding/tests/test_random_projection.py +2 -2
- sknetwork/embedding/tests/test_spectral.py +5 -8
- sknetwork/embedding/tests/test_svd.py +1 -1
- sknetwork/gnn/base.py +4 -4
- sknetwork/gnn/base_layer.py +3 -3
- sknetwork/gnn/gnn_classifier.py +45 -89
- sknetwork/gnn/layer.py +1 -1
- sknetwork/gnn/loss.py +1 -1
- sknetwork/gnn/optimizer.py +4 -3
- sknetwork/gnn/tests/test_base_layer.py +4 -4
- sknetwork/gnn/tests/test_gnn_classifier.py +12 -35
- sknetwork/gnn/utils.py +8 -8
- sknetwork/hierarchy/base.py +29 -2
- sknetwork/hierarchy/louvain_hierarchy.py +45 -41
- sknetwork/hierarchy/paris.cpython-310-darwin.so +0 -0
- sknetwork/hierarchy/paris.pyx +7 -9
- sknetwork/hierarchy/postprocess.py +16 -16
- sknetwork/hierarchy/tests/test_API.py +1 -1
- sknetwork/hierarchy/tests/test_algos.py +5 -0
- sknetwork/hierarchy/tests/test_metrics.py +1 -1
- sknetwork/linalg/__init__.py +1 -1
- sknetwork/linalg/diteration.cpython-310-darwin.so +0 -0
- sknetwork/linalg/diteration.pyx +0 -2
- sknetwork/linalg/eig_solver.py +1 -1
- sknetwork/linalg/{normalization.py → normalizer.py} +18 -15
- sknetwork/linalg/operators.py +1 -1
- sknetwork/linalg/ppr_solver.py +1 -1
- sknetwork/linalg/push.cpython-310-darwin.so +0 -0
- sknetwork/linalg/push.pyx +0 -2
- sknetwork/linalg/svd_solver.py +1 -1
- sknetwork/linalg/tests/test_normalization.py +3 -7
- sknetwork/linalg/tests/test_operators.py +4 -8
- sknetwork/linalg/tests/test_ppr.py +1 -1
- sknetwork/linkpred/base.py +13 -2
- sknetwork/linkpred/nn.py +6 -6
- sknetwork/log.py +19 -0
- sknetwork/path/__init__.py +4 -3
- sknetwork/path/dag.py +54 -0
- sknetwork/path/distances.py +98 -0
- sknetwork/path/search.py +13 -47
- sknetwork/path/shortest_path.py +37 -162
- sknetwork/path/tests/test_dag.py +37 -0
- sknetwork/path/tests/test_distances.py +62 -0
- sknetwork/path/tests/test_search.py +26 -11
- sknetwork/path/tests/test_shortest_path.py +31 -36
- sknetwork/ranking/__init__.py +0 -1
- sknetwork/ranking/base.py +13 -8
- sknetwork/ranking/betweenness.cpython-310-darwin.so +0 -0
- sknetwork/ranking/betweenness.pyx +0 -2
- sknetwork/ranking/closeness.py +7 -10
- sknetwork/ranking/pagerank.py +14 -14
- sknetwork/ranking/postprocess.py +12 -3
- sknetwork/ranking/tests/test_API.py +2 -4
- sknetwork/ranking/tests/test_betweenness.py +3 -3
- sknetwork/ranking/tests/test_closeness.py +3 -7
- sknetwork/ranking/tests/test_pagerank.py +11 -5
- sknetwork/ranking/tests/test_postprocess.py +5 -0
- sknetwork/regression/base.py +19 -2
- sknetwork/regression/diffusion.py +24 -10
- sknetwork/regression/tests/test_diffusion.py +8 -0
- sknetwork/test_base.py +35 -0
- sknetwork/test_log.py +15 -0
- sknetwork/topology/__init__.py +7 -8
- sknetwork/topology/cliques.cpython-310-darwin.so +0 -0
- sknetwork/topology/cliques.pyx +149 -0
- sknetwork/topology/core.cpython-310-darwin.so +0 -0
- sknetwork/topology/core.pyx +90 -0
- sknetwork/topology/cycles.py +243 -0
- sknetwork/topology/minheap.cpython-310-darwin.so +0 -0
- sknetwork/{utils → topology}/minheap.pxd +1 -3
- sknetwork/{utils → topology}/minheap.pyx +1 -3
- sknetwork/topology/structure.py +3 -43
- sknetwork/topology/tests/test_cliques.py +11 -11
- sknetwork/topology/tests/test_core.py +19 -0
- sknetwork/topology/tests/test_cycles.py +65 -0
- sknetwork/topology/tests/test_structure.py +2 -16
- sknetwork/topology/tests/test_triangles.py +11 -15
- sknetwork/topology/tests/test_wl.py +72 -0
- sknetwork/topology/triangles.cpython-310-darwin.so +0 -0
- sknetwork/topology/triangles.pyx +74 -89
- sknetwork/topology/weisfeiler_lehman.py +56 -86
- sknetwork/topology/weisfeiler_lehman_core.cpython-310-darwin.so +0 -0
- sknetwork/topology/weisfeiler_lehman_core.pyx +0 -2
- sknetwork/utils/__init__.py +1 -31
- sknetwork/utils/check.py +2 -2
- sknetwork/utils/format.py +5 -3
- sknetwork/utils/membership.py +2 -2
- sknetwork/utils/tests/test_check.py +3 -3
- sknetwork/utils/tests/test_format.py +3 -1
- sknetwork/utils/values.py +1 -1
- sknetwork/visualization/__init__.py +2 -2
- sknetwork/visualization/dendrograms.py +55 -7
- sknetwork/visualization/graphs.py +292 -72
- sknetwork/visualization/tests/test_dendrograms.py +9 -9
- sknetwork/visualization/tests/test_graphs.py +71 -62
- scikit_network-0.30.0.dist-info/RECORD +0 -215
- sknetwork/embedding/louvain_hierarchy.py +0 -142
- sknetwork/embedding/tests/test_louvain_hierarchy.py +0 -19
- sknetwork/path/metrics.py +0 -148
- sknetwork/path/tests/test_metrics.py +0 -29
- sknetwork/ranking/harmonic.py +0 -82
- sknetwork/topology/dag.py +0 -74
- sknetwork/topology/dag_core.cpython-310-darwin.so +0 -0
- sknetwork/topology/dag_core.pyx +0 -38
- sknetwork/topology/kcliques.cpython-310-darwin.so +0 -0
- sknetwork/topology/kcliques.pyx +0 -193
- sknetwork/topology/kcore.cpython-310-darwin.so +0 -0
- sknetwork/topology/kcore.pyx +0 -120
- sknetwork/topology/tests/test_cores.py +0 -21
- sknetwork/topology/tests/test_dag.py +0 -26
- sknetwork/topology/tests/test_wl_coloring.py +0 -49
- sknetwork/topology/tests/test_wl_kernel.py +0 -31
- sknetwork/utils/base.py +0 -35
- sknetwork/utils/minheap.cpython-310-darwin.so +0 -0
- sknetwork/utils/simplex.py +0 -140
- sknetwork/utils/tests/test_base.py +0 -28
- sknetwork/utils/tests/test_bunch.py +0 -16
- sknetwork/utils/tests/test_projection_simplex.py +0 -33
- sknetwork/utils/tests/test_verbose.py +0 -15
- sknetwork/utils/verbose.py +0 -37
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.0.dist-info}/LICENSE +0 -0
- {scikit_network-0.30.0.dist-info → scikit_network-0.32.0.dist-info}/top_level.txt +0 -0
- /sknetwork/{utils → data}/timeout.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: scikit-network
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.32.0
|
|
4
4
|
Summary: Graph algorithms
|
|
5
5
|
Home-page: https://github.com/sknetwork-team/scikit-network
|
|
6
6
|
Author: Scikit-network team
|
|
@@ -18,12 +18,13 @@ Classifier: Programming Language :: Cython
|
|
|
18
18
|
Classifier: Programming Language :: Python :: 3.8
|
|
19
19
|
Classifier: Programming Language :: Python :: 3.9
|
|
20
20
|
Classifier: Programming Language :: Python :: 3.10
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
21
22
|
Requires-Python: >=3.8
|
|
22
23
|
Description-Content-Type: text/x-rst
|
|
23
24
|
License-File: LICENSE
|
|
24
25
|
License-File: AUTHORS.rst
|
|
25
|
-
Requires-Dist: numpy
|
|
26
|
-
Requires-Dist: scipy
|
|
26
|
+
Requires-Dist: numpy >=1.22.4
|
|
27
|
+
Requires-Dist: scipy >=1.7.3
|
|
27
28
|
|
|
28
29
|
.. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
|
|
29
30
|
:align: right
|
|
@@ -117,6 +118,27 @@ the `Journal of Machine Learning Research <https://jmlr.org>`_:
|
|
|
117
118
|
History
|
|
118
119
|
=======
|
|
119
120
|
|
|
121
|
+
0.32.0 (2024-03-28)
|
|
122
|
+
-------------------
|
|
123
|
+
|
|
124
|
+
* Add Leiden clustering algorithm
|
|
125
|
+
* Add k-center clustering algorithm
|
|
126
|
+
* Add functions to detect and break cycles
|
|
127
|
+
* Add damping factor in diffusion
|
|
128
|
+
* Fix F1 scores
|
|
129
|
+
* Remove hierarchical Louvain embedding
|
|
130
|
+
* Get clustering coefficient for directed graphs
|
|
131
|
+
|
|
132
|
+
0.31.0 (2023-05-22)
|
|
133
|
+
-------------------
|
|
134
|
+
|
|
135
|
+
* Add Python 3.11
|
|
136
|
+
* Add set_param / get_param to algorithms, suggested by Franz Kiraly (#557)
|
|
137
|
+
* Compute shortest paths by matrix-vector multiplications
|
|
138
|
+
* Make tools on topology (cliques, code-decomposition, etc.) as functions
|
|
139
|
+
* Rename parameter membership -> probs for soft classification / clustering
|
|
140
|
+
* Add softmax to classification by diffusion
|
|
141
|
+
|
|
120
142
|
0.30.0 (2023-04-12)
|
|
121
143
|
-------------------
|
|
122
144
|
|
|
@@ -0,0 +1,216 @@
|
|
|
1
|
+
scikit_network-0.32.0.dist-info/RECORD,,
|
|
2
|
+
scikit_network-0.32.0.dist-info/LICENSE,sha256=zKbJMpbSKgGEUaNr_fKgvJrvw_3W4gnJs5XdLCK5Sxo,1622
|
|
3
|
+
scikit_network-0.32.0.dist-info/WHEEL,sha256=YryPFYalc7zt-wi82wLNxE5k4S4dtsQOnz0S1sKWvLs,110
|
|
4
|
+
scikit_network-0.32.0.dist-info/AUTHORS.rst,sha256=OZUa1KqaPu_waik7LZVTdyXcvmQWkD3M3HBDVGEtkG0,924
|
|
5
|
+
scikit_network-0.32.0.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
|
|
6
|
+
scikit_network-0.32.0.dist-info/METADATA,sha256=9WVmakDcqXwL8kwVUdv81YsSWyghTQUtkrKPTcENiC8,14311
|
|
7
|
+
sknetwork/log.py,sha256=ORInAVh_cWIfxwaFWSblSRxwT-jG05XPRnYTTAHSKy4,443
|
|
8
|
+
sknetwork/__init__.py,sha256=4IL5uWYJW0OGiWzBN8VYJV77yZZkzHhAenwjX5pk26Q,533
|
|
9
|
+
sknetwork/test_log.py,sha256=V4t6Ggi_fh8px5Iq7CDLlJvbXfz24macQ43Ss0tPb5I,319
|
|
10
|
+
sknetwork/test_base.py,sha256=PB_kJ7cNvhBXmlL-KzyLu2hf6mG7b1OQY759aYplW4k,912
|
|
11
|
+
sknetwork/sknetwork.py,sha256=VYoI-gwqwBKPx84cA0KnYDRofrgIXs8xtASD2nu5fE0,44
|
|
12
|
+
sknetwork/base.py,sha256=XJJ6MicVcSiQBWQ9fYlmUJYkXq0PRldQzExhZKuaFBo,1951
|
|
13
|
+
sknetwork/classification/metrics.py,sha256=kn6rkcn6r9jOsF7_bhP4SX20hrgydiA2UfCTdM12dKA,6802
|
|
14
|
+
sknetwork/classification/vote.pyx,sha256=Bbf74XCPH8uYDP-SrXRaA7k6Ax2x-wDzpbHMeg9le7A,1584
|
|
15
|
+
sknetwork/classification/diffusion.py,sha256=zE3_TRi05GgQU9TqMSuMKieVR1srnZONnpGLCUrnHWQ,5537
|
|
16
|
+
sknetwork/classification/__init__.py,sha256=yVv7wSuUfNLxeNBF-AhWCJys3C-XatPtMzi1wyp9Bz4,475
|
|
17
|
+
sknetwork/classification/base_rank.py,sha256=RGElYD6PuP4nhnenNnzpOiBojs49Afg5ahjBFEi566I,4522
|
|
18
|
+
sknetwork/classification/propagation.py,sha256=TqTNqnuZjelX3A7Ghw3M6k8u9fOh-Ag_eBh6FN0f5gI,5754
|
|
19
|
+
sknetwork/classification/vote.cpython-310-darwin.so,sha256=1uSKtt1VjwnK7SR8K7WwOu21Tq8iRSYLBWAEHE5lbk0,221303
|
|
20
|
+
sknetwork/classification/pagerank.py,sha256=CBUeCqZisr6s5lh3VXYWA6rbiPdLyNzuSMbjazy80eA,2586
|
|
21
|
+
sknetwork/classification/base.py,sha256=WS-QHh4553Dr1VwJqjggSqO6hHFIAs50oPah_L23eFo,4290
|
|
22
|
+
sknetwork/classification/knn.py,sha256=7tiXPNOzRLPCAoELXWtqXdnPUIIDqtGdku3r1KGiE8Q,5306
|
|
23
|
+
sknetwork/classification/tests/test_metrics.py,sha256=eBs-5uAEz2s8gukMyfhQ07GSFoyvxtsslLuc6VgUxBU,2303
|
|
24
|
+
sknetwork/classification/tests/__init__.py,sha256=sy9uRiPhYG2i7uqM3P07-VUf4UcZEHeOoH9BvKCpU3s,31
|
|
25
|
+
sknetwork/classification/tests/test_pagerank.py,sha256=5IJpYqnz31cWT0iXjTdo1xE8Kfj3YTK0cSZnnTlyJBs,620
|
|
26
|
+
sknetwork/classification/tests/test_diffusion.py,sha256=tp9qNYBcaI9T1HCC6bqMpG_-eM-na-fGNeGDzMZTu2A,3183
|
|
27
|
+
sknetwork/classification/tests/test_knn.py,sha256=sl5kxsaca3GUTvfdx6B9BRJ1SAdoDvxFOg9VyoA20IU,784
|
|
28
|
+
sknetwork/classification/tests/test_API.py,sha256=FA1d0NQz3vaNVVeFbhEljPe0fD_ryRwVP4G1hdv-u_s,1124
|
|
29
|
+
sknetwork/classification/tests/test_propagation.py,sha256=m0Jyq59k3taoikyBxcZGILzG7dWQV3SGE45MPm0RPao,850
|
|
30
|
+
sknetwork/visualization/dendrograms.py,sha256=m4FbBfvJUW_gXccZWF8OWxAsbhsEcKa1fXNNCp_y4MA,9901
|
|
31
|
+
sknetwork/visualization/__init__.py,sha256=8rLiR13WHSWLsEVTTL6lzOZms0LZf-ZujBqOI5VnKxk,216
|
|
32
|
+
sknetwork/visualization/graphs.py,sha256=7iNHW3NJ7kxLw2y3SoEY_rmyCfmxLPmi0tCJ2dkS3q0,41175
|
|
33
|
+
sknetwork/visualization/colors.py,sha256=DjcXt9aMgLan7bRg7TZI8m_8SLWQOZ-g2HoguB1-3qA,2509
|
|
34
|
+
sknetwork/visualization/tests/test_graphs.py,sha256=g2YPJn9m8wD-UHZ_BL37xuJqE7ygOx3EztKLVVqphYk,9421
|
|
35
|
+
sknetwork/visualization/tests/__init__.py,sha256=yOVrqUD9UuI_HdYuqRP5PS7QhS-pO4RE_Ls5PLiIC_w,30
|
|
36
|
+
sknetwork/visualization/tests/test_dendrograms.py,sha256=UuS3VZ5XnV1u5BtW-QKbFv0wavllQpbgtsOIe5XvTlg,2466
|
|
37
|
+
sknetwork/topology/minheap.cpython-310-darwin.so,sha256=MRFuAzpJ0N3C9yyFr0TSqtlL_TCsusjqgsy_Ocurx_I,204122
|
|
38
|
+
sknetwork/topology/cliques.pyx,sha256=BuezL9-zJOicL1zffkpcf8uIEgqhik6dgK_agXX4gaU,4510
|
|
39
|
+
sknetwork/topology/minheap.pyx,sha256=iFWpXPYSAmWjYphYByAM6auUj1XHly6QovZvuy2Lpyc,3310
|
|
40
|
+
sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=fi0rRrXHVZuIQYzPDcPCamCRQLKquchjV3N9dNuQ1Pk,3034
|
|
41
|
+
sknetwork/topology/__init__.py,sha256=T2W2cWwcUdhfA86VuZAZqksbrgct4hiyp0HuizEnLg4,534
|
|
42
|
+
sknetwork/topology/cycles.py,sha256=EV2UMDktEGdJxEmAZyyjBMttJ6DqYvvfZ6mqwIQqFu0,9003
|
|
43
|
+
sknetwork/topology/weisfeiler_lehman.py,sha256=ACJDAmZbwDrZAvO-LsHnRaef-8KX7esM1LxVUglXtLw,4308
|
|
44
|
+
sknetwork/topology/triangles.cpython-310-darwin.so,sha256=1upwo-5TOvVo6x6HCB_MId60LdUmlXBqdlXYM3yK90g,108668
|
|
45
|
+
sknetwork/topology/minheap.pxd,sha256=Y_oRh8H-sNZYAWv0XM9T-ZLzYBhb5TrBM4VjlH-ZqPQ,564
|
|
46
|
+
sknetwork/topology/structure.py,sha256=CDfN7SL70wTHm2HPfqd7ncsZEaV1SQO3tJKYl1CdtNI,7285
|
|
47
|
+
sknetwork/topology/triangles.pyx,sha256=JOkA9k0CQTsT7zdPaEoW7-PdHYuoXHsB0XSuPKFLJSI,4349
|
|
48
|
+
sknetwork/topology/weisfeiler_lehman_core.cpython-310-darwin.so,sha256=3Wgjds-wljKnGvkEfgPcwTAtq33poPkLAhAMdvSi2Zw,222185
|
|
49
|
+
sknetwork/topology/core.pyx,sha256=HwGbC84p9F9fkEw8ouNNMQtlYrAoEWhQS5hU9Cf1h94,2465
|
|
50
|
+
sknetwork/topology/cliques.cpython-310-darwin.so,sha256=ApV7upBMEk60lgzyZES7SJbqCjb0iGxy0jRTSjAIbS0,259354
|
|
51
|
+
sknetwork/topology/core.cpython-310-darwin.so,sha256=C5oTuXg0C_-GmrdK8Gs2NLv9SU-Ymi-EYwxoDts46wI,218039
|
|
52
|
+
sknetwork/topology/tests/test_cycles.py,sha256=KZzMKS5ILfC_J0Fj5MFlEOL7Z9nOnlRfo4TnGdXEPWY,3150
|
|
53
|
+
sknetwork/topology/tests/test_structure.py,sha256=CzcZ1LxV-mI_buxz6LcTeCy3h5ofMLfOu2HUHwNSMi8,3948
|
|
54
|
+
sknetwork/topology/tests/test_wl.py,sha256=EJY_4xTi_-qzFsqZJkgnwLteoakdkpRAczzdMCGeXe0,2218
|
|
55
|
+
sknetwork/topology/tests/test_core.py,sha256=Zh9IYHGfqDqIlLycucLzqZbHvYmU-IB-J03-jlikPcI,551
|
|
56
|
+
sknetwork/topology/tests/__init__.py,sha256=9lKrPX4BnSJbK-VlDi9TsmAgDwqF3H423KhJ1u1Uaos,25
|
|
57
|
+
sknetwork/topology/tests/test_triangles.py,sha256=9g3nml3TNOiIFHLJDih5PTxWunDJemmpLQy2tmoQw4Y,1275
|
|
58
|
+
sknetwork/topology/tests/test_cliques.py,sha256=t97pKDMxT9RC-_YsgY-c8tQxrekyAE6i2_guvxAYHhQ,838
|
|
59
|
+
sknetwork/ranking/postprocess.py,sha256=-3wqBPvTM7jDdfTytINEXxM2eugJjbCZRLiLy9pkmac,919
|
|
60
|
+
sknetwork/ranking/__init__.py,sha256=UeYw8y0HFoBnPziqnVYXSt8jqFtkDgkCCMPhYTEIaF0,348
|
|
61
|
+
sknetwork/ranking/closeness.py,sha256=pETMD8uaXfADZhmzVaH4YIGX57S2vvhzVInONaAwBUM,2840
|
|
62
|
+
sknetwork/ranking/katz.py,sha256=uPyXkEL73_6MS4dP5XTSVSIrD5h5QJipVTVEa0L_y48,2535
|
|
63
|
+
sknetwork/ranking/hits.py,sha256=L39a9Ze3ITUbikmNhA_Lx-V5s_RQr0XnNkOsIgG8m98,2761
|
|
64
|
+
sknetwork/ranking/pagerank.py,sha256=Qt2SOUoLO76JVDnT4-x-b-hah9IlaHECsYNu45AnpY8,4749
|
|
65
|
+
sknetwork/ranking/betweenness.cpython-310-darwin.so,sha256=5-x9ZZu9L7S3nwZgRc-T6KbOc_gEVe117b2Mi6ijY3A,130158
|
|
66
|
+
sknetwork/ranking/base.py,sha256=Jo9LBK3TfXiYdxYqSmfeVC8O2D6fA5L-SRzQh3eqtnA,1512
|
|
67
|
+
sknetwork/ranking/betweenness.pyx,sha256=Pq9EqOHV0P8TDN_w9siP3h8HyechaAErysNwz0JT0ow,3087
|
|
68
|
+
sknetwork/ranking/tests/test_postprocess.py,sha256=jPLJKJYEltFpY2uct0JyJEkD1haOyNU8h_1KwiLMgZM,703
|
|
69
|
+
sknetwork/ranking/tests/test_closeness.py,sha256=ttBC8L_J1YDLCWhTIPhSFxu8jWuOWl_vupHFFaA_NP8,823
|
|
70
|
+
sknetwork/ranking/tests/__init__.py,sha256=ZVL3kCN-qV5ThJU58iaMvJKSIkZ7ke7liLtLwI4TCHY,24
|
|
71
|
+
sknetwork/ranking/tests/test_pagerank.py,sha256=5WHev0-d5nTOg6AEzIZyCmWSieTO3YNLNO2kB6RTYWE,2243
|
|
72
|
+
sknetwork/ranking/tests/test_API.py,sha256=PZ4Q5X1WT1HSAojZX72fUm4o9Y0PwocewJEoC1pfgMo,1003
|
|
73
|
+
sknetwork/ranking/tests/test_betweenness.py,sha256=8XA1ycLQQ7-Cm3CBfkcSDQOvD6xagAIP1--mPe9VFzo,1135
|
|
74
|
+
sknetwork/ranking/tests/test_hits.py,sha256=zStzrWZ-pv2Nsd-pB282FgW3KAn1TyKjz_l85tJaPJ0,491
|
|
75
|
+
sknetwork/linalg/diteration.pyx,sha256=gk9W6SwIxXgmjQujXWBUIoM_OwevjE3jTzFrIEkGnWI,1384
|
|
76
|
+
sknetwork/linalg/__init__.py,sha256=awBDY2wWiO40L5eED3H8K1BM8qtHz7aQRv1p3PcSK94,533
|
|
77
|
+
sknetwork/linalg/diteration.cpython-310-darwin.so,sha256=zjedkIb0tU8UFK43h8Ext_bXR7b0mOQ_1XbPfpjp3Jo,216973
|
|
78
|
+
sknetwork/linalg/laplacian.py,sha256=_gQr8YLqMUtK_IMNgvJoQX7-uODVlvCVmc-oTsgw7MA,401
|
|
79
|
+
sknetwork/linalg/eig_solver.py,sha256=yq_prP5p1jbALby69wkzzH0vYKc1btmRQoiVUtTh-eA,2700
|
|
80
|
+
sknetwork/linalg/push.pyx,sha256=caxCZa5h9zsHhxJgDBaaetqpB0wUbFLdOUwHwj0q_t0,2358
|
|
81
|
+
sknetwork/linalg/ppr_solver.py,sha256=mQkCnik-vvv_oFa9n1vtMzxgvi78qW-QQONdcmC9CXA,6533
|
|
82
|
+
sknetwork/linalg/sparse_lowrank.py,sha256=LUhbqa01p51SYhoIb2Dmx2b9fMc-iOu69CAVHscR2Xs,5028
|
|
83
|
+
sknetwork/linalg/basics.py,sha256=8AFph_1G5SZP_24jrIv6qIWooO0UMglL4jMgx3ZdYIQ,1142
|
|
84
|
+
sknetwork/linalg/normalizer.py,sha256=kOFDPPdiGqG-KcWNiRwbS_y_nmw5fTKYTvuj_x8yBd0,2473
|
|
85
|
+
sknetwork/linalg/operators.py,sha256=fxitao4UYW4Hq7B258T_cAq2H3R2FN1-mwdy138w8fE,7432
|
|
86
|
+
sknetwork/linalg/push.cpython-310-darwin.so,sha256=s7RW9RZoKsjgPxPEWR86WbL5yJQ7Nwj5kzjBcs1tuGU,237703
|
|
87
|
+
sknetwork/linalg/polynome.py,sha256=_dP9Nu_6XCV0-WEQJ7E5nG6pxZWMtbj-LREu0vtxeWk,2125
|
|
88
|
+
sknetwork/linalg/svd_solver.py,sha256=vhcXwCsOar0cYDPZo7IF_ulRDsGGvZzePIeSpSCVgLk,2681
|
|
89
|
+
sknetwork/linalg/tests/test_svd.py,sha256=eLRmSiHt8uWzknImZtRSZmJC8OX0YDgUt9-8PePc3OA,1285
|
|
90
|
+
sknetwork/linalg/tests/test_operators.py,sha256=l_pBF7JZhjUSNfTReDX-lN2nA7HU7mkz7dznJ8I6lrY,2919
|
|
91
|
+
sknetwork/linalg/tests/__init__.py,sha256=l6yw2Ls1ndhVVcSYc059kAjQ2-VoDGZXxnBaglFZ4zo,23
|
|
92
|
+
sknetwork/linalg/tests/test_sparse_lowrank.py,sha256=LEDo6DChembm3xQ-vjeqqZi0ugWx7piucR9_LdDecrI,2276
|
|
93
|
+
sknetwork/linalg/tests/test_polynome.py,sha256=VYru9RlUIIN6dKNOiitSElPQqIxWI7mqx3dR5zd9Nv0,977
|
|
94
|
+
sknetwork/linalg/tests/test_ppr.py,sha256=Bh1n7W3We2N8u1RIWPyE5QQGE7esnNoUOLLRCL8Zye4,2093
|
|
95
|
+
sknetwork/linalg/tests/test_laplacian.py,sha256=B6UhJOmYUdNlXwNoxLLtb--nv9mx96Orl-W1Vl6PLyM,434
|
|
96
|
+
sknetwork/linalg/tests/test_eig.py,sha256=lUAgo4UfWuuSG5DhSk5SIT7ToLDgPG-5JCgmOe_M7Vw,1504
|
|
97
|
+
sknetwork/linalg/tests/test_normalization.py,sha256=nASuMYxKcsWj3gk9DF5uPKYOw93oJ-UQUWi99Fw3kmE,887
|
|
98
|
+
sknetwork/hierarchy/metrics.py,sha256=_wYGKx_VDE_sfbg-uUEFMhOjSLFqzC8rFHjJo1hdVL8,8046
|
|
99
|
+
sknetwork/hierarchy/paris.pyx,sha256=10Fu048FPklcgYiLmMKWpRW87UY04ubU0NpjESTOsLA,11683
|
|
100
|
+
sknetwork/hierarchy/paris.cpython-310-darwin.so,sha256=MbwX9fcUR-tIs1R-auIbeL_4WjruT_2r8Q7mP3jJUfg,302728
|
|
101
|
+
sknetwork/hierarchy/postprocess.py,sha256=d1Fll3eqDIjiMf1c5nGuKF6I0fN93elnglkp59LARGU,12072
|
|
102
|
+
sknetwork/hierarchy/__init__.py,sha256=YgE2eqnwS8Q2NWP9pNY-M1bpdxRn5-C-CdykydNW7iM,412
|
|
103
|
+
sknetwork/hierarchy/louvain_hierarchy.py,sha256=YfwhhEe1eL7DBbs0t1-a-vdzFB2xA5LXh0VT9OL-jus,9558
|
|
104
|
+
sknetwork/hierarchy/base.py,sha256=MoxBiSsEJOq77YmXj_bpf4vUiPLSpQn8fnUX7YIqyd8,2693
|
|
105
|
+
sknetwork/hierarchy/tests/test_postprocess.py,sha256=OSrWE0gT0AcPI4LKmUL-Blfg5ErxnjS3d4rPNnA63_Y,2209
|
|
106
|
+
sknetwork/hierarchy/tests/test_metrics.py,sha256=UydXtXgGud9MgTKT4l_j7BplKToO2cQKuoGvkBPirAw,3160
|
|
107
|
+
sknetwork/hierarchy/tests/__init__.py,sha256=l2HHDiDLpoTQlwzh1mtCyp6bS8RxBdJK2DP1FGiQJMY,26
|
|
108
|
+
sknetwork/hierarchy/tests/test_algos.py,sha256=xMt2xzAYEm6MuK-8OKOqBwZS89aJspX2tr7T6QMHz6E,1361
|
|
109
|
+
sknetwork/hierarchy/tests/test_API.py,sha256=tLF-jLsfM2OFqbyVHK1o9jXVW_1PbTkMcxkAXuGjMO8,720
|
|
110
|
+
sknetwork/path/distances.py,sha256=8NJeL14UpGudTFCgQJaNDOXs2-aSHLCl5LHXexF_xuQ,3568
|
|
111
|
+
sknetwork/path/dag.py,sha256=Se5LSgQi-RwA-nXbJ1l_upjKw_MNIckeT_dh3TYWl6w,1668
|
|
112
|
+
sknetwork/path/shortest_path.py,sha256=_trQS__X71HQOOBXu0QTlzfOgb2ydoy-KooIKjIkpvs,2450
|
|
113
|
+
sknetwork/path/__init__.py,sha256=OQ7dWwlncIIsPo5kQu2akUhk_m73vQuF17LaH0siqo4,222
|
|
114
|
+
sknetwork/path/search.py,sha256=__63FqXFqhNTSyTGYj4yYx8ZDoew0_uCHHWhJlrIRoA,776
|
|
115
|
+
sknetwork/path/tests/test_dag.py,sha256=EYyghTXbHRr1Ia-8KoXoyumIFD_6q6bZx5DDcaa-ODQ,938
|
|
116
|
+
sknetwork/path/tests/test_search.py,sha256=mStK4ZiN1hVdZr8Q9R78AFBouuA9RIhnQ4nwGrfCjCY,1199
|
|
117
|
+
sknetwork/path/tests/test_shortest_path.py,sha256=Uwq4CzzjnMV6VsTlzgKnn_GwqUr2Cc0kZTgFtv_UisQ,1382
|
|
118
|
+
sknetwork/path/tests/__init__.py,sha256=_COAjci7RJ_XtBDGwy5aOgZ9dPSQH3j7d6qMlLHs55o,28
|
|
119
|
+
sknetwork/path/tests/test_distances.py,sha256=zItygI9cLMrQonLhOubvorElU5qaZumFfjMethx4rDw,2695
|
|
120
|
+
sknetwork/embedding/random_projection.py,sha256=NuJoPHYLjdb8dUdKOwGr7Q6lGZBSPbwmMuuY6CRzgoI,5002
|
|
121
|
+
sknetwork/embedding/__init__.py,sha256=ASeieiOc46EuKMUArW3kt_WJbsLxUzz0BVYycmag5Pw,410
|
|
122
|
+
sknetwork/embedding/svd.py,sha256=0q6a2EwnbXGxzsDpmQu0HUS_9e_VwA0lMKqes2e-77I,14734
|
|
123
|
+
sknetwork/embedding/force_atlas.py,sha256=amYr0E08F8TDoIxjPx3lx35JFwEP41jc4KKed1PQeZs,7452
|
|
124
|
+
sknetwork/embedding/spring.py,sha256=5fyHQzmIp8gY9DdI-DFvMc37mjMb64bs22ZZZ9YFDXM,7151
|
|
125
|
+
sknetwork/embedding/spectral.py,sha256=ds91hH6JFBsfLcTS8QEz-gP5tZUcrrGqjfnL-xMIdU0,5548
|
|
126
|
+
sknetwork/embedding/louvain_embedding.py,sha256=QYKxrTNLEm69PS7D0YR_k3diZQKBt6PT1T6N3xPGrMU,6950
|
|
127
|
+
sknetwork/embedding/base.py,sha256=D-UkpCOTw_PAjs1YFyq7jdrn3Akx4yjl5nxN2iMnd0Q,2590
|
|
128
|
+
sknetwork/embedding/tests/test_spring.py,sha256=tanArc4vstNZ36CLr7S8uEVdXX0iP2K9UWKQLTcsPsQ,1643
|
|
129
|
+
sknetwork/embedding/tests/test_svd.py,sha256=Yg9qgSdPPZR4n_DYN5bXZMJLIEz1tny1rirsPL8ejQc,1195
|
|
130
|
+
sknetwork/embedding/tests/test_louvain_embedding.py,sha256=GtHU8vt4X8nNLLVol08Ot4NgbMcDzQEvWcm7qWbN_BA,825
|
|
131
|
+
sknetwork/embedding/tests/__init__.py,sha256=QkDQtTJReK7Ldp0Y4f5-tbTdcp224r1AF7jU26alSgQ,26
|
|
132
|
+
sknetwork/embedding/tests/test_API.py,sha256=2c0O8S0u0hF23iys7QLHJJOz2W79rHMeEO2OMDQbglk,1489
|
|
133
|
+
sknetwork/embedding/tests/test_force_atlas.py,sha256=-YM4HSF5Nvpm8e4SoCHiA2o7yAkm0h_ys7GRaJ1wloI,1120
|
|
134
|
+
sknetwork/embedding/tests/test_random_projection.py,sha256=2bUOCw66tUKP775pGPd5STj0UmRuwvBtI5CgY8HeHKI,1193
|
|
135
|
+
sknetwork/embedding/tests/test_spectral.py,sha256=CH-F8fM3cYoxhjpob1m7wZV-tEr8XFD6Lxa_bFsLv3A,3897
|
|
136
|
+
sknetwork/clustering/leiden_core.pyx,sha256=7HGdeX6iMnSs52Px44-__kN9JhHueaQUvCmrkIGTalg,4300
|
|
137
|
+
sknetwork/clustering/metrics.py,sha256=VJPgmB1OvxA0SOaIQIGyJDUP1cgWFElnfdVaQ2krYrg,3060
|
|
138
|
+
sknetwork/clustering/leiden.py,sha256=w0oUbQLR7zCMy4wXgDa7eN2K488jjGuTdOcgWG6Eb9A,9680
|
|
139
|
+
sknetwork/clustering/leiden_core.cpython-310-darwin.so,sha256=wsLfJhFs2FCSSKxEJsTckQ5-AHD8rh_JoPZxxv4XKDA,261470
|
|
140
|
+
sknetwork/clustering/postprocess.py,sha256=4hx5VTQmqS2Ld2P2kvXoyvVanXVg3bMA619IHS2jWHM,2039
|
|
141
|
+
sknetwork/clustering/__init__.py,sha256=Ab-rmioxlaMoghrzd1RMr-L4zyrqIM8XznqrjBPGE28,435
|
|
142
|
+
sknetwork/clustering/kcenters.py,sha256=RFEx35vPUm9a4mzCbDwv-PmePCsdQwbuKAeaRizBMxY,8689
|
|
143
|
+
sknetwork/clustering/louvain.py,sha256=1mGcmy_Fd97V6bDmZb2Aa4JziCusru-gFHv5Vdxfm_0,10791
|
|
144
|
+
sknetwork/clustering/propagation_clustering.py,sha256=ABZZtyojkrXfzsMwEcxqphzHgFC5q8sECOyanvK9D3o,3781
|
|
145
|
+
sknetwork/clustering/louvain_core.pyx,sha256=pMqt7WukTkBOpjofmiXMYHqRX69mkquEMapDdoskiQM,4089
|
|
146
|
+
sknetwork/clustering/base.py,sha256=dCF4K3nbKY24kzFeDAy7Fp-b9jDBzEoG3jj1ozuu_W8,5932
|
|
147
|
+
sknetwork/clustering/louvain_core.cpython-310-darwin.so,sha256=_S0UZ-BKcaFJtGcrjW7K9anr1XTzJo5UlSRm5Pp7EJw,260415
|
|
148
|
+
sknetwork/clustering/tests/test_postprocess.py,sha256=WSmAlqB-6Nw3eoL3NaOyNlpPr7GVnNnllkPVdyE9rXI,1378
|
|
149
|
+
sknetwork/clustering/tests/test_kcenters.py,sha256=3euzkt79tPZul5rP_HuJZHXydUdqT-Xk5N01qWOuaks,3477
|
|
150
|
+
sknetwork/clustering/tests/test_metrics.py,sha256=fbVYg2s8DXQdiYHUNuVjFMtEJg4od1Vej25mgHhGDu0,1818
|
|
151
|
+
sknetwork/clustering/tests/__init__.py,sha256=Ta0XKY7pklRvHyUY3Jlow3A2V4REa5geZG74xPz80Tc,27
|
|
152
|
+
sknetwork/clustering/tests/test_leiden.py,sha256=3KSXvxUP9H4tCJQXUfWt-45-ltyD0FrVgYjXDvRN-yQ,1155
|
|
153
|
+
sknetwork/clustering/tests/test_louvain.py,sha256=6eQPoKodZLBafNgpX1_zBzPzGY5w7QKzWsLuoEVZEaE,4678
|
|
154
|
+
sknetwork/clustering/tests/test_API.py,sha256=Eez17EngcirVHVVoybClXS5314_Yz54JFzXldubEdgg,1528
|
|
155
|
+
sknetwork/linkpred/nn.py,sha256=tY-qYlp0j9WCvdoHkZ9EKzCD_GlDu7tQpKD7-aC20rE,4030
|
|
156
|
+
sknetwork/linkpred/__init__.py,sha256=pFtM52OhDK69ceeiRyH1MDse0EbD8fqyhOsWWih47gM,72
|
|
157
|
+
sknetwork/linkpred/base.py,sha256=aXgWqajDYjDE-YQcooI6j0qEByJxHQiQtSjmFiID3Qk,995
|
|
158
|
+
sknetwork/linkpred/tests/__init__.py,sha256=05sK8Ihh9Gi2_uobPC_ErMVE4KOt0761NzzV_vJh15U,32
|
|
159
|
+
sknetwork/linkpred/tests/test_nn.py,sha256=T79txY2DlPgnI4JqzC88EcwCobJiM9P9v_5_ZvBTDeU,983
|
|
160
|
+
sknetwork/utils/values.py,sha256=UK6wck_frtPz0Q6hRugpUMNg6AARcBQ0_MIlG5CyAkc,2510
|
|
161
|
+
sknetwork/utils/check.py,sha256=tNOelam8GGdVjMzmk-7otNTyFBgJNKwq1z-zWmHOb9Y,12940
|
|
162
|
+
sknetwork/utils/neighbors.py,sha256=XNqwPM_PPpf_x-YhjEMVZJDxmazrVw9Eky3hNv9IGz0,3351
|
|
163
|
+
sknetwork/utils/__init__.py,sha256=FX-906qqZsXt9Q2nZdd3JT4rM0Aj39bc2O0wDpp_q-0,329
|
|
164
|
+
sknetwork/utils/format.py,sha256=qAa5jmp_fkQBlVL4LW14N7rrMPNk3yMApNFLxREPuiU,8766
|
|
165
|
+
sknetwork/utils/membership.py,sha256=dG2xJTWEjRcxyKTs5A7DFyNhO50-7UKpBIaWFfmyH_M,2162
|
|
166
|
+
sknetwork/utils/tfidf.py,sha256=C1qZCwZSwypi-C_II9D7lkfyxsOFefiDopTO3pBEwkc,956
|
|
167
|
+
sknetwork/utils/tests/test_membership.py,sha256=y4BiaCHUw5c1dJPOSJA6vgkBQlPxQ2bepL7hDV1es5U,748
|
|
168
|
+
sknetwork/utils/tests/__init__.py,sha256=y7PVVv2Wiz1msA5jqKOuB5BbB4UzCmDZ-pml9hIQyjo,22
|
|
169
|
+
sknetwork/utils/tests/test_tfidf.py,sha256=X69sepETWH1po9YXFubppvZlLeGdflqxoNEBinihp3A,445
|
|
170
|
+
sknetwork/utils/tests/test_values.py,sha256=BswuHPma0xCxr4gVkrkfPdMaIW6gw6ylCd5MTseo7tw,2268
|
|
171
|
+
sknetwork/utils/tests/test_check.py,sha256=WOLQ7J4eM4YHsSxyBNU5yPquq-0dB5FyD_tttZ1RgsQ,6764
|
|
172
|
+
sknetwork/utils/tests/test_neighbors.py,sha256=vF697D0cTfx4Limcmbre5JkJcLi1rUX0tS_JviX11Zg,1426
|
|
173
|
+
sknetwork/utils/tests/test_format.py,sha256=xSvz_IbxNnei8IrEysIOi8YpX_a6edxVE41g_lSx1mk,2245
|
|
174
|
+
sknetwork/gnn/base_layer.py,sha256=o5CbTVXY7Y1_TyNEMkp7P2va2HLLIq_MgnOxZ7PGQmg,3948
|
|
175
|
+
sknetwork/gnn/base_activation.py,sha256=XogZDdhl3QDyADvWJhMTGSnVYsKPI3PDHPu89yPL1VI,2306
|
|
176
|
+
sknetwork/gnn/__init__.py,sha256=m2lkDJoJZocJ18scpArsUHuzePZ8Q-ue7D3yXQ5H_RM,519
|
|
177
|
+
sknetwork/gnn/loss.py,sha256=P0un3iqbnFLrBbYODznVAoU_J2qAZuqHAPLiae0LCtI,5162
|
|
178
|
+
sknetwork/gnn/activation.py,sha256=D7o4FdbDMrBa2PQrWrvplCf14QOSzZ67d9eWN9bHY-M,3560
|
|
179
|
+
sknetwork/gnn/neighbor_sampler.py,sha256=TXdMRFwiT8sOdl6-S-flQZ5Rjrx1hwTzFqqiR_8PHTQ,1864
|
|
180
|
+
sknetwork/gnn/utils.py,sha256=A0kuBe29Eg90cEzRAgw4YmnShnzoq6ai_-01IBAf63g,4349
|
|
181
|
+
sknetwork/gnn/gnn_classifier.py,sha256=wSZQXjRu9ou9cEqcOXPD4gY_vKOYeC8iWXj6j1-uFrM,12613
|
|
182
|
+
sknetwork/gnn/layer.py,sha256=i0XiAutNal9ImAGqMtSLVEq_QiqZoGAlAWwlSGrNY8Q,5526
|
|
183
|
+
sknetwork/gnn/optimizer.py,sha256=vsCgfPoJtYMWREnR4tBsfPb0Ed-rHR0poBr-75lE57s,5782
|
|
184
|
+
sknetwork/gnn/base.py,sha256=QZ_pNi2-edAUpu-2C93DWfooS_sHulO6HL6vK108lhc,5708
|
|
185
|
+
sknetwork/gnn/tests/test_optimizer.py,sha256=4NvHQf66cFKy500kA68IBVv_-_pf75Hqdbq2odhJMr4,1780
|
|
186
|
+
sknetwork/gnn/tests/test_utils.py,sha256=ExTZqAMT3joYU1RSQ-_d1YipysgnkLKePe7ZHuMoHeY,1843
|
|
187
|
+
sknetwork/gnn/tests/test_gnn_classifier.py,sha256=QRjXGJK2ghHtsGc9O-FwlKzG53IHocrWZuKTAVSFjFw,5743
|
|
188
|
+
sknetwork/gnn/tests/test_activation.py,sha256=HZdBaJ8P8LBJ-3_Typc8Qkvsho9gNSy1-CANEz8rQ-Q,2487
|
|
189
|
+
sknetwork/gnn/tests/test_layers.py,sha256=apPJGgMddw_-Qiw0OsTDL3cmMJ8GTMC08dLTmiYEWW8,3176
|
|
190
|
+
sknetwork/gnn/tests/__init__.py,sha256=SvFOB5nn_yN-JCaYFAtzesL0zU0OihQp0s0dOP1-MKE,20
|
|
191
|
+
sknetwork/gnn/tests/test_neigh_sampler.py,sha256=zc_6G3JhZvKrFLJAk2UJSOHZwN7sGojC8bXTCbmaUx4,698
|
|
192
|
+
sknetwork/gnn/tests/test_base_layer.py,sha256=1PXvS3338vu-fI77ZnGgHfY20zkPRv_GcZKxLQmyj7I,1381
|
|
193
|
+
sknetwork/gnn/tests/test_loss.py,sha256=W5DA6FRd-OppeRKFgj2gtLqNvjkXkCQPmV6lg3ENu-c,1045
|
|
194
|
+
sknetwork/gnn/tests/test_base.py,sha256=HVsz5zABud8ZlrIJIFuAKP6N7mu2ClrTaleZbPhGOR0,3393
|
|
195
|
+
sknetwork/regression/diffusion.py,sha256=dV-uPGEaBLpI_sY6pl52rkKeSDQV9MZsQfSo1frYKbc,7845
|
|
196
|
+
sknetwork/regression/__init__.py,sha256=nRlbcR8bA2Lz-OmLPMIPhBzgDCol8oSA19qL3IninXA,141
|
|
197
|
+
sknetwork/regression/base.py,sha256=KIsVpnbACRH4h5W3ifMJOTlZNuztGbQP1QbZKj5aj_0,1496
|
|
198
|
+
sknetwork/regression/tests/__init__.py,sha256=BT8kCCMN_pv7znhIR5GSQ_XxU5brmrCYDwm4QJNRCV0,27
|
|
199
|
+
sknetwork/regression/tests/test_diffusion.py,sha256=-QBRgES_BF-QIgFevozLt9YXmGxJ6vxgLeYVZe92Wn8,2061
|
|
200
|
+
sknetwork/regression/tests/test_API.py,sha256=7fQulvKzF9yEBlLie7fL5G1ZdyiG4DAFZQZ4Lix96qs,1024
|
|
201
|
+
sknetwork/data/models.py,sha256=QyC_5ft7lkYzp3smmv54fHnyMUs88TYUq2FBU_KStMs,13156
|
|
202
|
+
sknetwork/data/test_graphs.py,sha256=OM6-7CiBN4UEAQUtE_2k5e5I72zDBL3r5fj_C2JXzNw,2484
|
|
203
|
+
sknetwork/data/timeout.py,sha256=kwHOLZFnOTrRhiEjtcwATYhsXbf5e8zV1OCoEKuG8Zg,1047
|
|
204
|
+
sknetwork/data/__init__.py,sha256=ejVS9hqX1Jf912UAazfaqIsNlppXCahEVDBv2IFdRUM,259
|
|
205
|
+
sknetwork/data/toy_graphs.py,sha256=2Cy7EABhYKPtjtfrW71Drz51A3mSuGu7G0P24tYiwHY,25035
|
|
206
|
+
sknetwork/data/parse.py,sha256=bRawtsCpm0CNgxjZ9CqpR_8nRJnW0ac561GoIlMOq1Y,26897
|
|
207
|
+
sknetwork/data/load.py,sha256=gC61jqFdyhPXc4-vazK85UdB4hnFQFjH9f1xpQ7JScI,14360
|
|
208
|
+
sknetwork/data/base.py,sha256=jeCwL-1O21CNkX1F9_eX4gl_BVNbeYabq_DSZr6ukB8,630
|
|
209
|
+
sknetwork/data/tests/test_test_graphs.py,sha256=dVRds-3P8JVnwfAp32fGif3zhocfPK0p2rgcYwJWsUQ,849
|
|
210
|
+
sknetwork/data/tests/test_parse.py,sha256=JOTFNWr77ZxKUKjw8TSbN-2dk-6YwmqN2OcrNkh7JVc,12717
|
|
211
|
+
sknetwork/data/tests/__init__.py,sha256=FSfkSYRKjDqIuEiEZ39Otve50qSxi7QObNnNrHHPx5s,19
|
|
212
|
+
sknetwork/data/tests/test_toy_graphs.py,sha256=kxOb7QpXGi8O7Kb6RmWoRUbAoyllM_-SXCRcYoH8B00,2137
|
|
213
|
+
sknetwork/data/tests/test_models.py,sha256=oP-X_k0vbSB4CwlV4GQVVBAQ9uI_8frFicde5yhVYAc,1915
|
|
214
|
+
sknetwork/data/tests/test_API.py,sha256=wJ4F4wPI3uI5WF_Pj2pMNSxSkY24Q7CO3kU8Sd5E-ac,957
|
|
215
|
+
sknetwork/data/tests/test_base.py,sha256=I_0BXdj-BKvdm1LpPIRtlnPChVoYRTCC9ZvTuLT2_W8,308
|
|
216
|
+
sknetwork/data/tests/test_load.py,sha256=9EXkw2TbDAUmpwE-kUTgxZieB4XDLF5drLVvyugX96M,3550
|
sknetwork/__init__.py
CHANGED
sknetwork/base.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created in June 2019
|
|
5
|
+
@author: Quentin Lutz <qlutz@enst.fr>
|
|
6
|
+
"""
|
|
7
|
+
import inspect
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class Algorithm:
|
|
11
|
+
"""Base class for all algorithms.
|
|
12
|
+
"""
|
|
13
|
+
def get_params(self):
|
|
14
|
+
"""Get parameters as dictionary.
|
|
15
|
+
|
|
16
|
+
Returns
|
|
17
|
+
-------
|
|
18
|
+
params : dict
|
|
19
|
+
Parameters of the algorithm.
|
|
20
|
+
"""
|
|
21
|
+
signature = inspect.signature(self.__class__.__init__)
|
|
22
|
+
params_exclude = ['self', 'random_state', 'verbose']
|
|
23
|
+
params = dict()
|
|
24
|
+
for param in signature.parameters.values():
|
|
25
|
+
name = param.name
|
|
26
|
+
if name not in params_exclude:
|
|
27
|
+
try:
|
|
28
|
+
value = self.__dict__[name]
|
|
29
|
+
except KeyError:
|
|
30
|
+
continue
|
|
31
|
+
params[name] = value
|
|
32
|
+
return params
|
|
33
|
+
|
|
34
|
+
def set_params(self, params: dict) -> 'Algorithm':
|
|
35
|
+
"""Set parameters of the algorithm.
|
|
36
|
+
|
|
37
|
+
Parameters
|
|
38
|
+
----------
|
|
39
|
+
params : dict
|
|
40
|
+
Parameters of the algorithm.
|
|
41
|
+
|
|
42
|
+
Returns
|
|
43
|
+
-------
|
|
44
|
+
self : :class:`Algorithm`
|
|
45
|
+
"""
|
|
46
|
+
valid_params = self.get_params()
|
|
47
|
+
if type(params) is not dict:
|
|
48
|
+
raise ValueError('The parameters must be given as a dictionary.')
|
|
49
|
+
for name, value in params.items():
|
|
50
|
+
if name not in valid_params:
|
|
51
|
+
raise ValueError(f'Invalid parameter: {name}.')
|
|
52
|
+
setattr(self, name, value)
|
|
53
|
+
return self
|
|
54
|
+
|
|
55
|
+
def __repr__(self):
|
|
56
|
+
params_string = []
|
|
57
|
+
for name, value in self.get_params().items():
|
|
58
|
+
if type(value) == str:
|
|
59
|
+
value = "'" + value + "'"
|
|
60
|
+
else:
|
|
61
|
+
value = str(value)
|
|
62
|
+
params_string.append(name + '=' + value)
|
|
63
|
+
return self.__class__.__name__ + '(' + ', '.join(params_string) + ')'
|
|
64
|
+
|
|
65
|
+
def fit(self, *args, **kwargs):
|
|
66
|
+
"""Fit algorithm to data."""
|
|
67
|
+
raise NotImplementedError
|
sknetwork/classification/base.py
CHANGED
|
@@ -9,7 +9,7 @@ from abc import ABC
|
|
|
9
9
|
import numpy as np
|
|
10
10
|
from scipy import sparse
|
|
11
11
|
|
|
12
|
-
from sknetwork.
|
|
12
|
+
from sknetwork.base import Algorithm
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
class BaseClassifier(Algorithm, ABC):
|
|
@@ -20,25 +20,25 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
20
20
|
bipartite : bool
|
|
21
21
|
If ``True``, the fitted graph is bipartite.
|
|
22
22
|
labels_ : np.ndarray, shape (n_labels,)
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
23
|
+
Labels of nodes.
|
|
24
|
+
probs_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
25
|
+
Probability distribution over labels (soft classification).
|
|
26
26
|
labels_row_ , labels_col_ : np.ndarray
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
27
|
+
Labels of rows and columns (for bipartite graphs).
|
|
28
|
+
probs_row_, probs_col_ : sparse.csr_matrix, shapes (n_row, n_labels) and (n_col, n_labels)
|
|
29
|
+
Probability distributions over labels for rows and columns (for bipartite graphs).
|
|
30
30
|
"""
|
|
31
31
|
|
|
32
32
|
def __init__(self):
|
|
33
33
|
self.bipartite = None
|
|
34
34
|
self.labels_ = None
|
|
35
|
-
self.
|
|
35
|
+
self.probs_ = None
|
|
36
36
|
self.labels_row_ = None
|
|
37
37
|
self.labels_col_ = None
|
|
38
|
-
self.
|
|
39
|
-
self.
|
|
38
|
+
self.probs_row_ = None
|
|
39
|
+
self.probs_col_ = None
|
|
40
40
|
|
|
41
|
-
def predict(self, columns=False) -> np.ndarray:
|
|
41
|
+
def predict(self, columns: bool = False) -> np.ndarray:
|
|
42
42
|
"""Return the labels predicted by the algorithm.
|
|
43
43
|
|
|
44
44
|
Parameters
|
|
@@ -80,8 +80,8 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
80
80
|
Probability distribution over labels.
|
|
81
81
|
"""
|
|
82
82
|
if columns:
|
|
83
|
-
return self.
|
|
84
|
-
return self.
|
|
83
|
+
return self.probs_col_.toarray()
|
|
84
|
+
return self.probs_.toarray()
|
|
85
85
|
|
|
86
86
|
def fit_predict_proba(self, *args, **kwargs) -> np.ndarray:
|
|
87
87
|
"""Fit algorithm to the data and return the probability distribution over labels.
|
|
@@ -105,12 +105,12 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
105
105
|
|
|
106
106
|
Returns
|
|
107
107
|
-------
|
|
108
|
-
|
|
109
|
-
Probability distribution over labels
|
|
108
|
+
probs : sparse.csr_matrix
|
|
109
|
+
Probability distribution over labels.
|
|
110
110
|
"""
|
|
111
111
|
if columns:
|
|
112
|
-
return self.
|
|
113
|
-
return self.
|
|
112
|
+
return self.probs_col_
|
|
113
|
+
return self.probs_
|
|
114
114
|
|
|
115
115
|
def fit_transform(self, *args, **kwargs) -> sparse.csr_matrix:
|
|
116
116
|
"""Fit algorithm to the data and return the probability distribution over labels in sparse format.
|
|
@@ -118,8 +118,8 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
118
118
|
|
|
119
119
|
Returns
|
|
120
120
|
-------
|
|
121
|
-
|
|
122
|
-
Probability
|
|
121
|
+
probs : sparse.csr_matrix
|
|
122
|
+
Probability distribution over labels.
|
|
123
123
|
"""
|
|
124
124
|
self.fit(*args, **kwargs)
|
|
125
125
|
return self.transform()
|
|
@@ -131,12 +131,12 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
131
131
|
self.labels_row_ = self.labels_[:n_row]
|
|
132
132
|
self.labels_col_ = self.labels_[n_row:]
|
|
133
133
|
self.labels_ = self.labels_row_
|
|
134
|
-
self.
|
|
135
|
-
self.
|
|
136
|
-
self.
|
|
134
|
+
self.probs_row_ = self.probs_[:n_row]
|
|
135
|
+
self.probs_col_ = self.probs_[n_row:]
|
|
136
|
+
self.probs_ = self.probs_row_
|
|
137
137
|
else:
|
|
138
138
|
self.labels_row_ = self.labels_
|
|
139
139
|
self.labels_col_ = self.labels_
|
|
140
|
-
self.
|
|
141
|
-
self.
|
|
140
|
+
self.probs_row_ = self.probs_
|
|
141
|
+
self.probs_col_ = self.probs_
|
|
142
142
|
return self
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
#!/usr/bin/env python3
|
|
2
2
|
# -*- coding: utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Created
|
|
4
|
+
Created in March 2020
|
|
5
5
|
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
6
|
"""
|
|
7
7
|
from functools import partial
|
|
@@ -12,14 +12,13 @@ import numpy as np
|
|
|
12
12
|
from scipy import sparse
|
|
13
13
|
|
|
14
14
|
from sknetwork.classification.base import BaseClassifier
|
|
15
|
-
from sknetwork.linalg.
|
|
15
|
+
from sknetwork.linalg.normalizer import normalize
|
|
16
16
|
from sknetwork.ranking.base import BaseRanking
|
|
17
17
|
from sknetwork.utils.check import check_labels, check_n_jobs
|
|
18
18
|
from sknetwork.utils.format import get_adjacency_values
|
|
19
|
-
from sknetwork.utils.verbose import VerboseMixin
|
|
20
19
|
|
|
21
20
|
|
|
22
|
-
class RankClassifier(BaseClassifier
|
|
21
|
+
class RankClassifier(BaseClassifier):
|
|
23
22
|
"""Generic class for ranking based classifiers.
|
|
24
23
|
|
|
25
24
|
Parameters
|
|
@@ -29,27 +28,20 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
29
28
|
n_jobs :
|
|
30
29
|
If positive, number of parallel jobs allowed (-1 means maximum number).
|
|
31
30
|
If ``None``, no parallel computations are made.
|
|
32
|
-
verbose :
|
|
33
|
-
Verbose mode.
|
|
34
31
|
|
|
35
32
|
Attributes
|
|
36
33
|
----------
|
|
37
34
|
labels_ : np.ndarray, shape (n_labels,)
|
|
38
35
|
Label of each node.
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
labels_row_ : np.ndarray
|
|
42
|
-
Labels of rows, for bipartite graphs.
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
membership_row_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
46
|
-
Membership matrix of rows, for bipartite graphs.
|
|
47
|
-
membership_col_ : sparse.csr_matrix, shape (n_col, n_labels)
|
|
48
|
-
Membership matrix of columns, for bipartite graphs.
|
|
36
|
+
probs_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
37
|
+
Probability distribution over labels.
|
|
38
|
+
labels_row_, labels_col_ : np.ndarray
|
|
39
|
+
Labels of rows and columns, for bipartite graphs.
|
|
40
|
+
probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
41
|
+
Probability distributions over labels for rows and columns (for bipartite graphs).
|
|
49
42
|
"""
|
|
50
43
|
def __init__(self, algorithm: BaseRanking, n_jobs: Optional[int] = None, verbose: bool = False):
|
|
51
44
|
super(RankClassifier, self).__init__()
|
|
52
|
-
VerboseMixin.__init__(self, verbose)
|
|
53
45
|
|
|
54
46
|
self.algorithm = algorithm
|
|
55
47
|
self.n_jobs = check_n_jobs(n_jobs)
|
|
@@ -78,7 +70,7 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
78
70
|
|
|
79
71
|
@staticmethod
|
|
80
72
|
def _process_scores(scores: np.ndarray) -> np.ndarray:
|
|
81
|
-
"""Post-processing of the
|
|
73
|
+
"""Post-processing of the scores.
|
|
82
74
|
|
|
83
75
|
Parameters
|
|
84
76
|
----------
|
|
@@ -97,9 +89,9 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
97
89
|
self.labels_row_ = self.labels_[:n_row]
|
|
98
90
|
self.labels_col_ = self.labels_[n_row:]
|
|
99
91
|
self.labels_ = self.labels_row_
|
|
100
|
-
self.
|
|
101
|
-
self.
|
|
102
|
-
self.
|
|
92
|
+
self.probs_row_ = self.probs_[:n_row]
|
|
93
|
+
self.probs_col_ = self.probs_[n_row:]
|
|
94
|
+
self.probs_ = self.probs_row_
|
|
103
95
|
|
|
104
96
|
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: Union[np.ndarray, dict] = None,
|
|
105
97
|
labels_row: Union[np.ndarray, dict] = None, labels_col: Union[np.ndarray, dict] = None) -> 'RankClassifier':
|
|
@@ -122,7 +114,7 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
122
114
|
seeds_labels = seeds_labels.astype(int)
|
|
123
115
|
labels_unique, n_classes = check_labels(seeds_labels)
|
|
124
116
|
seeds_all = self._process_labels(seeds_labels)
|
|
125
|
-
local_function = partial(self.algorithm.
|
|
117
|
+
local_function = partial(self.algorithm.fit_predict, adjacency)
|
|
126
118
|
with Pool(self.n_jobs) as pool:
|
|
127
119
|
scores = np.array(pool.map(local_function, seeds_all))
|
|
128
120
|
scores = scores.T
|
|
@@ -130,12 +122,12 @@ class RankClassifier(BaseClassifier, VerboseMixin):
|
|
|
130
122
|
scores = self._process_scores(scores)
|
|
131
123
|
scores = normalize(scores)
|
|
132
124
|
|
|
133
|
-
|
|
134
|
-
|
|
125
|
+
probs = sparse.coo_matrix(scores)
|
|
126
|
+
probs.col = labels_unique[probs.col]
|
|
135
127
|
|
|
136
128
|
labels = np.argmax(scores, axis=1)
|
|
137
129
|
self.labels_ = labels_unique[labels]
|
|
138
|
-
self.
|
|
130
|
+
self.probs_ = sparse.csr_matrix(probs, shape=(adjacency.shape[0], np.max(seeds_labels) + 1))
|
|
139
131
|
self._split_vars(input_matrix.shape)
|
|
140
132
|
|
|
141
133
|
return self
|