scikit-learn-intelex 2025.6.0__py312-none-manylinux_2_28_x86_64.whl → 2025.6.1__py312-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

@@ -679,8 +679,8 @@ class RandomForestClassifier(RandomForestClassifier_original, RandomForestBase):
679
679
  dfc_predictionResult = dfc_algorithm.compute(X, self.daal_model_)
680
680
 
681
681
  pred = dfc_predictionResult.probabilities
682
-
683
- return pred
682
+ # TODO: fix probabilities out of [0, 1] interval on oneDAL side
683
+ return pred.clip(0.0, 1.0)
684
684
 
685
685
  def _daal_fit_classifier(self, X, y, sample_weight=None):
686
686
  y = check_array(y, ensure_2d=False, dtype=None)
@@ -66,7 +66,13 @@ class TSNE(BaseTSNE):
66
66
  [n_samples],
67
67
  [P.nnz],
68
68
  [self.n_iter_without_progress],
69
- [self._max_iter if sklearn_check_version("1.5") else self.n_iter],
69
+ [
70
+ (
71
+ self.max_iter
72
+ if sklearn_check_version("1.7")
73
+ else (self._max_iter if sklearn_check_version("1.5") else self.n_iter)
74
+ )
75
+ ],
70
76
  ]
71
77
 
72
78
  # Pass params to daal4py backend
@@ -18,6 +18,7 @@ import warnings
18
18
  from functools import partial
19
19
 
20
20
  import numpy as np
21
+ from joblib import effective_n_jobs
21
22
  from sklearn.exceptions import DataConversionWarning
22
23
  from sklearn.metrics import pairwise_distances as pairwise_distances_original
23
24
  from sklearn.metrics.pairwise import (
@@ -28,7 +29,6 @@ from sklearn.metrics.pairwise import (
28
29
  _parallel_pairwise,
29
30
  check_pairwise_arrays,
30
31
  )
31
- from sklearn.utils._joblib import effective_n_jobs
32
32
  from sklearn.utils.validation import check_non_negative
33
33
 
34
34
  try:
onedal/ensemble/forest.py CHANGED
@@ -424,7 +424,9 @@ class BaseForest(BaseEnsemble, metaclass=ABCMeta):
424
424
  else:
425
425
  result = self.infer(params, model, X)
426
426
 
427
- return from_table(result.probabilities)
427
+ # TODO: fix probabilities out of [0, 1] interval on oneDAL side
428
+ pred = from_table(result.probabilities)
429
+ return pred.clip(0.0, 1.0)
428
430
 
429
431
 
430
432
  class RandomForestClassifier(ClassifierMixin, BaseForest, metaclass=ABCMeta):
@@ -68,7 +68,12 @@ def _asarray(data, xp, *args, **kwargs):
68
68
 
69
69
  def _is_numpy_namespace(xp):
70
70
  """Return True if xp is backed by NumPy."""
71
- return xp.__name__ in {"numpy", "array_api_compat.numpy", "numpy.array_api"}
71
+ return xp.__name__ in {
72
+ "numpy",
73
+ "array_api_compat.numpy",
74
+ "numpy.array_api",
75
+ "sklearn.externals.array_api_compat.numpy",
76
+ }
72
77
 
73
78
 
74
79
  def _get_sycl_namespace(*arrays):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-learn-intelex
3
- Version: 2025.6.0
3
+ Version: 2025.6.1
4
4
  Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
5
  Home-page: https://github.com/intel/scikit-learn-intelex
6
6
  Author: Intel Corporation
@@ -30,7 +30,7 @@ Classifier: Topic :: Software Development
30
30
  Requires-Python: >=3.7
31
31
  Description-Content-Type: text/markdown
32
32
  License-File: LICENSE.txt
33
- Requires-Dist: daal (==2025.6.0)
33
+ Requires-Dist: daal (==2025.6.1)
34
34
  Requires-Dist: numpy (>=1.19)
35
35
  Requires-Dist: scikit-learn (>=0.22)
36
36
 
@@ -1,7 +1,7 @@
1
1
  daal4py/__init__.py,sha256=Z9m4-_WGRMvvv4BRTlQy9tDh6dDXyKMuvJbFdCkKm7U,2605
2
2
  daal4py/__main__.py,sha256=S9YwnQQ8LQHULAjJDGTT_5aK25BCUig4KrL_5ejM_d4,1947
3
- daal4py/_daal4py.cpython-312-x86_64-linux-gnu.so,sha256=NYATCuBj-FQEJyEUx6NlqM-Mk4JQehtHknAS1YtUFwc,10104520
4
- daal4py/mpi_transceiver.cpython-312-x86_64-linux-gnu.so,sha256=0NWZzRziFq1fQwq1SM1_El7mIn1Oo5XzOoTWlSsZdSk,22904
3
+ daal4py/_daal4py.cpython-312-x86_64-linux-gnu.so,sha256=dySCJUm8bZ_CK8C_IKbc0N2Wm7WmKOGkvpufKRGA1qw,10104520
4
+ daal4py/mpi_transceiver.cpython-312-x86_64-linux-gnu.so,sha256=bbA4dxTFAUh3LQ7kguJHsVxLmpjpKzkhKcAGBTXMZjQ,22904
5
5
  daal4py/mb/__init__.py,sha256=N5ijZGr07LfFT_nFXDmp57Z05zSyxvxZy2f9UpXFmCg,3620
6
6
  daal4py/mb/gbt_convertors.py,sha256=7AUeU68JSHJVZn2g2A5LBBIe1SOgmWcozOQ4j4XOhvU,36667
7
7
  daal4py/mb/logistic_regression_builders.py,sha256=fhGY2IeKfG71phAekx9pUOxraF7hRzYTPoo4OYsEAyc,7830
@@ -18,7 +18,7 @@ daal4py/sklearn/decomposition/_pca.py,sha256=FpxsxAqJbyah-xCR1U1K60uhnIKbftuE36O
18
18
  daal4py/sklearn/ensemble/AdaBoostClassifier.py,sha256=IFZ2DAqNRR8vG6G84PsM2KBbck2rf6bNEH55GCj9EHA,6665
19
19
  daal4py/sklearn/ensemble/GBTDAAL.py,sha256=tThgkO6vy69LBgc8o1euA0oKgYyXuCvLXv_Amacx4jY,11385
20
20
  daal4py/sklearn/ensemble/__init__.py,sha256=NE1py-RLgY6ubN6LIi4QlbXqMkLaygTK5uwQyjC3-d4,1068
21
- daal4py/sklearn/ensemble/_forest.py,sha256=EEsDJJlOzztWT-KEow04G0wuLHSf4vSGmO_xyo6JMGQ,49168
21
+ daal4py/sklearn/ensemble/_forest.py,sha256=wQBLn1HlBS5YISFuQXR0FHdthszfrpQ_5TTesZNRL_M,49254
22
22
  daal4py/sklearn/ensemble/tests/test_decision_forest.py,sha256=r0u7UkQrAntATP99EyCIpvvt3a1BgHMQEiqwqDeLGsk,6956
23
23
  daal4py/sklearn/linear_model/__init__.py,sha256=qBjmXJW0bKX7FZZC9j559ZREUw7Ddb0vobKjDKkrXaw,1069
24
24
  daal4py/sklearn/linear_model/_coordinate_descent.py,sha256=fSVYGz0QrEhtfAh_wjzQjR-ArdSaVILIqbV3Vv07IJg,28017
@@ -32,9 +32,9 @@ daal4py/sklearn/linear_model/ridge.py,sha256=87SL9602MtRaahCWkwqwzUOUW1tk-nOQah9
32
32
  daal4py/sklearn/linear_model/tests/test_linear.py,sha256=_k-O0BlaeeVDdS4HmpLGg4XirPV-2eJrkTj9AnEGWwE,6763
33
33
  daal4py/sklearn/linear_model/tests/test_ridge.py,sha256=UNxSclFuq4V5pqzcYTaFQBGRWxKlgNwfnYSqUkio8mQ,2451
34
34
  daal4py/sklearn/manifold/__init__.py,sha256=wwA6Xjd62lNdPIFu2gowmpZfcm_B2WUk8BYUM_Y3vAo,789
35
- daal4py/sklearn/manifold/_t_sne.py,sha256=JgT8xmQr-QgqcShEVrpIcZjYGJoliyE6j68AVVCtM2c,16057
35
+ daal4py/sklearn/manifold/_t_sne.py,sha256=pWhR_tOYro2pc2Iv0ZBeClLG3EOL-bXlw9zCybVtqEo,16220
36
36
  daal4py/sklearn/metrics/__init__.py,sha256=tvEWaSO3dAPaCuUClXFhVpO7XfNEnYDoq1ZFf66KD3M,873
37
- daal4py/sklearn/metrics/_pairwise.py,sha256=VB7n31YJjoQLyawhXcWPqR8xJ1U9hsNaHCbab41YCU4,8976
37
+ daal4py/sklearn/metrics/_pairwise.py,sha256=3rlRpZp2CUFCCPxE5ZNnP_H8PidrpiTrRKEVPiYLv4Y,8961
38
38
  daal4py/sklearn/metrics/_ranking.py,sha256=YBJznAOjgQ-GPaIu-aNP6AMV39_SEwjr99Z_9Ub13XI,7238
39
39
  daal4py/sklearn/model_selection/__init__.py,sha256=AkKzl_Q4hN9myaeXmTMRQSwXcKh9UTzKH85ySH29AHo,834
40
40
  daal4py/sklearn/model_selection/_split.py,sha256=fvPJQEz3mceWeLeknrKuchqKxT1eyLoCehg7OBCCbvw,11389
@@ -60,9 +60,9 @@ daal4py/sklearn/utils/tests/test_utils.py,sha256=n3bO5WJCb5Q9Dlk_S8SxNhhvQJGT3dV
60
60
  onedal/__init__.py,sha256=jK-hiNSuCRw0_P6YsnkbqPJcgBoixOVIptzL0QOELyA,3953
61
61
  onedal/_config.py,sha256=9AsIpHIbCIrh7_BgD4DOrvWftm5Vnja5KdBke2fGgoA,2886
62
62
  onedal/_device_offload.py,sha256=pBRsLpB06_xAcm9wKg4tFkcUqJ5htahsI0XQ6iX_eag,8013
63
- onedal/_onedal_py_dpc.cpython-312-x86_64-linux-gnu.so,sha256=0-F2gtUhjKLnvk-hR1ocKpD2bLaOdninW-CD4XwYEac,2969136
64
- onedal/_onedal_py_host.cpython-312-x86_64-linux-gnu.so,sha256=2r2bj8usr3oDYV5e7AFGdfe2-qcNGWrXaCqaPnd-DDo,1674552
65
- onedal/_onedal_py_spmd_dpc.cpython-312-x86_64-linux-gnu.so,sha256=ynTN-n4GkzkfiHrzaXoEa_NWEWi-nCjQdwtVRrqTd-I,1084976
63
+ onedal/_onedal_py_dpc.cpython-312-x86_64-linux-gnu.so,sha256=S0HBRpItKAISQln-qg4fKqN9ZzsoIjdnifpAjtH477k,2969136
64
+ onedal/_onedal_py_host.cpython-312-x86_64-linux-gnu.so,sha256=Sq3Ao1SWQamITL5tEio5xcCJywMFtjmuqNESa9Jp0Yg,1674552
65
+ onedal/_onedal_py_spmd_dpc.cpython-312-x86_64-linux-gnu.so,sha256=vKsvT7m1QEkpHJ2UCd5bPmh1zOxAUjrC-sTIwqFxpi4,1084976
66
66
  onedal/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
67
67
  onedal/basic_statistics/basic_statistics.py,sha256=5alsI38vMrMt2Ne3XgAYULDcnzjcSI89-zRg1nNV1ao,3758
68
68
  onedal/basic_statistics/incremental_basic_statistics.py,sha256=Pm4HMSRP9P2UxuIOcaRexNv3Mt0o0kKis0AA-byXUlo,6290
@@ -95,7 +95,7 @@ onedal/decomposition/incremental_pca.py,sha256=iLSPrbKeW5XPp7t50ZOE0sfsf5sq0gV_a
95
95
  onedal/decomposition/pca.py,sha256=yqYfPTjN7En0rcoeLFD-poasBCLJ2iCbQPdX9oznuAg,7609
96
96
  onedal/decomposition/tests/test_incremental_pca.py,sha256=KeA-esVASUxDsCPufF54i-8J5C4xmoK-wpEbuaI8YHA,11539
97
97
  onedal/ensemble/__init__.py,sha256=zPG_906z717pMYeSxVJR8aZhUqHin45K5gOuvh3ZEsQ,1003
98
- onedal/ensemble/forest.py,sha256=MgLZvLDxPJ_-lpGKt2mwEowGV0m1rgzfezsdIch0IwI,27961
98
+ onedal/ensemble/forest.py,sha256=5mYKMcKANw_xhNH2_As6KzzPY-p_R0Fg5HXxqQlq34A,28068
99
99
  onedal/ensemble/tests/test_random_forest.py,sha256=S0mNfDUSZ8tazitB3bb-ZiNdcbslpHO8wKyJJT7Cgio,3910
100
100
  onedal/linear_model/__init__.py,sha256=VgNBLO71sBhXqvQUwN9h9pEadCg5trDzuN7Z6UDp4ck,1096
101
101
  onedal/linear_model/incremental_linear_model.py,sha256=Goh_2h6oy_btypCy-8JblwU2scTMiFDLFR8x69cMy7I,10781
@@ -144,7 +144,7 @@ onedal/svm/tests/test_svr.py,sha256=owzrZ0g2H7661RHrJ-x3mi1FQ3z3cAzJBTp8oEliw8w,
144
144
  onedal/tests/test_common.py,sha256=iX6fA1bIgChvMBIyekXEiPfA1_tYL40IwgF9Gq5cVHU,1990
145
145
  onedal/tests/utils/_dataframes_support.py,sha256=hqbWymmv40wUnuJagEdmBkx9eU9boOgSZ3oXAtienZM,5449
146
146
  onedal/tests/utils/_device_selection.py,sha256=NINGmsSCvY-oqVMmYRrZ3fxE9ZAM9bPvofa8xxi6194,2822
147
- onedal/utils/_array_api.py,sha256=tafhDjQY7peFTPE_tvkthbh0Wk872hdr4A7woMlwq2Y,3276
147
+ onedal/utils/_array_api.py,sha256=fyJuL72KhTOoRrAW21hPnX-JLn80w7hvINDuQuFghTU,3359
148
148
  onedal/utils/_dpep_helpers.py,sha256=b2ftEZW12MHpN55JzWHsasFPMrNjFMXW5p0H7hVt_pE,2225
149
149
  onedal/utils/_sycl_queue_manager.py,sha256=IC81UV69sIF3rnjCSfTJabk-DYKBMpqTtx4ACCiHeuM,5585
150
150
  onedal/utils/validation.py,sha256=F-slyK7zkbbuWlQ4KkARLi521BTA4y2aGohezFevfwk,16216
@@ -272,8 +272,8 @@ sklearnex/utils/_array_api.py,sha256=c5AFRaxYn3pjInTXeFzcXZB8SrRxQ-4UQARQv1HchFI
272
272
  sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
273
273
  sklearnex/utils/validation.py,sha256=_QlA73XYGvXu1Q633BlY9I1a5lM9HL6IzOfFhSzBJoA,7060
274
274
  sklearnex/utils/tests/test_validation.py,sha256=2eSq6Tqb2YmUDaL8OnvclKc0qbpuIkv-9WOvY6K_Cz0,8667
275
- scikit_learn_intelex-2025.6.0.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
276
- scikit_learn_intelex-2025.6.0.dist-info/METADATA,sha256=9KpZ4c6HKnUEylaOLCDuNQ2wSJ1TSO2TB0LH5NO0Om4,11481
277
- scikit_learn_intelex-2025.6.0.dist-info/WHEEL,sha256=zNnzeoXyvA9K0L6NziBWjMIE_aXtFjVJmMurAofU0zo,112
278
- scikit_learn_intelex-2025.6.0.dist-info/top_level.txt,sha256=Qa0CGteT1uguKJdxiwylb90eW-a1R8FcENgN6P7IKfs,25
279
- scikit_learn_intelex-2025.6.0.dist-info/RECORD,,
275
+ scikit_learn_intelex-2025.6.1.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
276
+ scikit_learn_intelex-2025.6.1.dist-info/METADATA,sha256=gEFHUDZCypEtuwRsRyLLEPi5g13TbFnHgne7Kjgq5NE,11481
277
+ scikit_learn_intelex-2025.6.1.dist-info/WHEEL,sha256=zNnzeoXyvA9K0L6NziBWjMIE_aXtFjVJmMurAofU0zo,112
278
+ scikit_learn_intelex-2025.6.1.dist-info/top_level.txt,sha256=Qa0CGteT1uguKJdxiwylb90eW-a1R8FcENgN6P7IKfs,25
279
+ scikit_learn_intelex-2025.6.1.dist-info/RECORD,,