scikit-learn-intelex 2025.2.0__py311-none-manylinux_2_28_x86_64.whl → 2025.4.0__py311-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so +0 -0
- daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
- {scikit_learn_intelex-2025.2.0.dist-info → scikit_learn_intelex-2025.4.0.dist-info}/METADATA +39 -80
- {scikit_learn_intelex-2025.2.0.dist-info → scikit_learn_intelex-2025.4.0.dist-info}/RECORD +24 -24
- sklearnex/_utils.py +39 -5
- sklearnex/cluster/dbscan.py +2 -2
- sklearnex/cluster/k_means.py +2 -2
- sklearnex/decomposition/pca.py +3 -1
- sklearnex/ensemble/_forest.py +2 -2
- sklearnex/linear_model/incremental_ridge.py +8 -8
- sklearnex/linear_model/linear.py +7 -2
- sklearnex/linear_model/logistic_regression.py +4 -2
- sklearnex/linear_model/ridge.py +2 -2
- sklearnex/manifold/t_sne.py +5 -0
- sklearnex/neighbors/common.py +2 -2
- sklearnex/preview/covariance/covariance.py +6 -2
- sklearnex/preview/decomposition/incremental_pca.py +2 -2
- sklearnex/svm/_common.py +2 -2
- {scikit_learn_intelex-2025.2.0.dist-info → scikit_learn_intelex-2025.4.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2025.2.0.dist-info → scikit_learn_intelex-2025.4.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2025.2.0.dist-info → scikit_learn_intelex-2025.4.0.dist-info}/top_level.txt +0 -0
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
{scikit_learn_intelex-2025.2.0.dist-info → scikit_learn_intelex-2025.4.0.dist-info}/METADATA
RENAMED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: scikit-learn-intelex
|
|
3
|
-
Version: 2025.
|
|
3
|
+
Version: 2025.4.0
|
|
4
4
|
Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
|
|
5
5
|
Home-page: https://github.com/intel/scikit-learn-intelex
|
|
6
6
|
Author: Intel Corporation
|
|
7
7
|
Author-email: onedal.maintainers@intel.com
|
|
8
8
|
Maintainer-email: onedal.maintainers@intel.com
|
|
9
9
|
License: Apache v2.0
|
|
10
|
-
Project-URL: Bug Tracker, https://github.com/
|
|
11
|
-
Project-URL: Documentation, https://
|
|
12
|
-
Project-URL: Source Code, https://github.com/
|
|
10
|
+
Project-URL: Bug Tracker, https://github.com/uxlfoundation/scikit-learn-intelex/issues
|
|
11
|
+
Project-URL: Documentation, https://uxlfoundation.github.io/scikit-learn-intelex/
|
|
12
|
+
Project-URL: Source Code, https://github.com/uxlfoundation/scikit-learn-intelex
|
|
13
13
|
Keywords: machine learning,scikit-learn,data science,data analytics
|
|
14
14
|
Platform: UNKNOWN
|
|
15
15
|
Classifier: Development Status :: 5 - Production/Stable
|
|
@@ -20,18 +20,18 @@ Classifier: Intended Audience :: Science/Research
|
|
|
20
20
|
Classifier: License :: OSI Approved :: Apache Software License
|
|
21
21
|
Classifier: Operating System :: Microsoft :: Windows
|
|
22
22
|
Classifier: Operating System :: POSIX :: Linux
|
|
23
|
-
Classifier: Programming Language :: Python :: 3.8
|
|
24
23
|
Classifier: Programming Language :: Python :: 3.9
|
|
25
24
|
Classifier: Programming Language :: Python :: 3.10
|
|
26
25
|
Classifier: Programming Language :: Python :: 3.11
|
|
27
26
|
Classifier: Programming Language :: Python :: 3.12
|
|
27
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
28
28
|
Classifier: Topic :: Scientific/Engineering
|
|
29
29
|
Classifier: Topic :: System
|
|
30
30
|
Classifier: Topic :: Software Development
|
|
31
31
|
Requires-Python: >=3.7
|
|
32
32
|
Description-Content-Type: text/markdown
|
|
33
33
|
License-File: LICENSE.txt
|
|
34
|
-
Requires-Dist: daal (==2025.
|
|
34
|
+
Requires-Dist: daal (==2025.4.0)
|
|
35
35
|
Requires-Dist: numpy (>=1.19)
|
|
36
36
|
Requires-Dist: scikit-learn (>=0.22)
|
|
37
37
|
|
|
@@ -40,15 +40,15 @@ Requires-Dist: scikit-learn (>=0.22)
|
|
|
40
40
|
|
|
41
41
|
[](https://dev.azure.com/daal/daal4py/_build/latest?definitionId=9&branchName=master)
|
|
42
42
|
[](https://scan.coverity.com/projects/daal4py)
|
|
43
|
-
[](https://github.com/
|
|
43
|
+
[](https://github.com/uxlfoundation/scikit-learn-intelex/discussions)
|
|
44
44
|
[](https://pypi.org/project/scikit-learn-intelex/)
|
|
45
45
|
[](https://anaconda.org/conda-forge/scikit-learn-intelex)
|
|
46
46
|
|
|
47
47
|
With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
|
|
48
48
|
|
|
49
|
-
The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/
|
|
49
|
+
The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/uxlfoundation/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
|
|
50
50
|
|
|
51
|
-
⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/
|
|
51
|
+
⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/uxlfoundation/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
|
|
52
52
|
You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
|
|
53
53
|
|
|
54
54
|
## 👀 Follow us on Medium
|
|
@@ -67,96 +67,73 @@ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-so
|
|
|
67
67
|
- [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
|
|
68
68
|
|
|
69
69
|
## 🔗 Important links
|
|
70
|
-
- [Notebook examples](https://github.com/
|
|
71
|
-
- [Documentation](https://
|
|
72
|
-
- [scikit-learn API and patching](https://
|
|
70
|
+
- [Notebook examples](https://github.com/uxlfoundation/scikit-learn-intelex/tree/master/examples/notebooks)
|
|
71
|
+
- [Documentation](https://uxlfoundation.github.io/scikit-learn-intelex/)
|
|
72
|
+
- [scikit-learn API and patching](https://uxlfoundation.github.io/scikit-learn-intelex/)
|
|
73
73
|
- [Benchmark code](https://github.com/IntelPython/scikit-learn_bench)
|
|
74
|
-
- [Building from Sources](https://github.com/
|
|
75
|
-
- [About Intel(R) oneAPI Data Analytics Library](https://github.com/
|
|
76
|
-
- [About Intel(R) daal4py](https://github.com/
|
|
74
|
+
- [Building from Sources](https://github.com/uxlfoundation/scikit-learn-intelex/blob/master/INSTALL.md)
|
|
75
|
+
- [About Intel(R) oneAPI Data Analytics Library](https://github.com/ouxlfoundation/oneDAL)
|
|
76
|
+
- [About Intel(R) daal4py](https://github.com/uxlfoundation/scikit-learn-intelex/tree/master/daal4py)
|
|
77
77
|
|
|
78
78
|
## 💬 Support
|
|
79
79
|
|
|
80
80
|
Report issues, ask questions, and provide suggestions using:
|
|
81
81
|
|
|
82
|
-
- [GitHub Issues](https://github.com/
|
|
83
|
-
- [GitHub Discussions](https://github.com/
|
|
82
|
+
- [GitHub Issues](https://github.com/uxlfoundation/scikit-learn-intelex/issues)
|
|
83
|
+
- [GitHub Discussions](https://github.com/uxlfoundation/scikit-learn-intelex/discussions)
|
|
84
84
|
- [Forum](https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python)
|
|
85
85
|
|
|
86
86
|
You may reach out to project maintainers privately at onedal.maintainers@intel.com
|
|
87
87
|
|
|
88
88
|
# 🛠 Installation
|
|
89
89
|
Intel(R) Extension for Scikit-learn is available at the [Python Package Index](https://pypi.org/project/scikit-learn-intelex/),
|
|
90
|
-
on Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://
|
|
91
|
-
Intel(R) Extension for Scikit-learn is also available as a part of [Intel® oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html)
|
|
90
|
+
on Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://software.repos.intel.com/python/conda/).
|
|
91
|
+
Intel(R) Extension for Scikit-learn is also available as a part of [Intel® oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html) (AI Kit).
|
|
92
92
|
|
|
93
93
|
- PyPi (recommended by default)
|
|
94
94
|
|
|
95
|
-
```
|
|
95
|
+
```shell
|
|
96
96
|
pip install scikit-learn-intelex
|
|
97
97
|
```
|
|
98
98
|
|
|
99
99
|
- Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
|
|
100
100
|
|
|
101
|
-
```
|
|
102
|
-
|
|
103
|
-
conda config --set channel_priority strict
|
|
104
|
-
conda install scikit-learn-intelex
|
|
101
|
+
```shell
|
|
102
|
+
conda install -c conda-forge scikit-learn-intelex
|
|
105
103
|
```
|
|
106
104
|
|
|
107
105
|
- Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
|
|
108
106
|
|
|
109
|
-
```
|
|
110
|
-
|
|
111
|
-
conda config --set channel_priority strict
|
|
112
|
-
conda install scikit-learn-intelex
|
|
107
|
+
```shell
|
|
108
|
+
conda install -c https://software.repos.intel.com/python/conda/ scikit-learn-intelex
|
|
113
109
|
```
|
|
114
110
|
|
|
115
111
|
<details><summary>[Click to expand] ℹ️ Supported configurations </summary>
|
|
116
112
|
|
|
117
113
|
#### 📦 PyPi channel
|
|
118
114
|
|
|
119
|
-
| OS / Python version | **Python 3.
|
|
120
|
-
| :-----------------------| :------------: |
|
|
121
|
-
| **Linux** |
|
|
122
|
-
| **Windows** |
|
|
115
|
+
| OS / Python version | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**| **Python 3.13**|
|
|
116
|
+
| :-----------------------| :-------------:| :------------: | :------------: | :------------: | :------------: |
|
|
117
|
+
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
118
|
+
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
123
119
|
|
|
124
120
|
#### 📦 Anaconda Cloud: Conda-Forge channel
|
|
125
121
|
|
|
126
|
-
| OS / Python version | **Python 3.
|
|
127
|
-
| :-----------------------|
|
|
128
|
-
| **Linux** |
|
|
129
|
-
| **Windows** |
|
|
122
|
+
| OS / Python version | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**| **Python 3.13**|
|
|
123
|
+
| :-----------------------| :-------------:| :------------: | :------------: | :------------: | :------------: |
|
|
124
|
+
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
125
|
+
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
130
126
|
|
|
131
127
|
#### 📦 Anaconda Cloud: Intel channel
|
|
132
128
|
|
|
133
|
-
| OS / Python version | **Python 3.
|
|
134
|
-
| :-----------------------| :------------: |
|
|
135
|
-
| **Linux** |
|
|
136
|
-
| **Windows** |
|
|
129
|
+
| OS / Python version | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**| **Python 3.13**|
|
|
130
|
+
| :-----------------------| :-------------:| :------------: | :------------: | :------------: | :------------: |
|
|
131
|
+
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
132
|
+
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
137
133
|
|
|
138
134
|
</details>
|
|
139
135
|
|
|
140
|
-
|
|
141
|
-
will not be downloaded. You need to manually install ***dpcpp_cpp_rt*** package.*
|
|
142
|
-
|
|
143
|
-
<details><summary>[Click to expand] ℹ️ How to install dpcpp_cpp_rt package </summary>
|
|
144
|
-
|
|
145
|
-
- PyPi
|
|
146
|
-
|
|
147
|
-
```bash
|
|
148
|
-
pip install --upgrade dpcpp_cpp_rt
|
|
149
|
-
```
|
|
150
|
-
|
|
151
|
-
- Anaconda Cloud
|
|
152
|
-
|
|
153
|
-
```bash
|
|
154
|
-
conda install dpcpp_cpp_rt -c intel
|
|
155
|
-
```
|
|
156
|
-
|
|
157
|
-
</details>
|
|
158
|
-
|
|
159
|
-
You can [build the package from sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md) as well.
|
|
136
|
+
You can [build the package from sources](https://github.com/uxlfoundation/scikit-learn-intelex/blob/master/INSTALL.md) as well.
|
|
160
137
|
|
|
161
138
|
# ⚡️ Get Started
|
|
162
139
|
|
|
@@ -176,7 +153,6 @@ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
|
|
|
176
153
|
Intel GPU optimizations patching
|
|
177
154
|
```py
|
|
178
155
|
import numpy as np
|
|
179
|
-
import dpctl
|
|
180
156
|
from sklearnex import patch_sklearn, config_context
|
|
181
157
|
patch_sklearn()
|
|
182
158
|
|
|
@@ -197,24 +173,7 @@ Configurations:
|
|
|
197
173
|
|
|
198
174
|
[Benchmarks code](https://github.com/IntelPython/scikit-learn_bench)
|
|
199
175
|
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
- With Intel® Extension for Scikit-learn enabled:
|
|
203
|
-
|
|
204
|
-
```bash
|
|
205
|
-
python runner.py --configs configs/blogs/skl_conda_config.json -–report
|
|
206
|
-
```
|
|
207
|
-
|
|
208
|
-
- With the original Scikit-learn:
|
|
209
|
-
|
|
210
|
-
```bash
|
|
211
|
-
python runner.py --configs configs/blogs/skl_conda_config.json -–report --no-intel-optimized
|
|
212
|
-
```
|
|
213
|
-
</details>
|
|
214
|
-
|
|
215
|
-
Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).
|
|
216
|
-
|
|
217
|
-
⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.
|
|
176
|
+
Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://uxlfoundation.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/uxlfoundation/scikit-learn-intelex/issues).
|
|
218
177
|
|
|
219
178
|
## 📜 Intel(R) Extension for Scikit-learn verbose
|
|
220
179
|
|
|
@@ -226,6 +185,6 @@ For example, for DBSCAN you get one of these print statements depending on which
|
|
|
226
185
|
- `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU`
|
|
227
186
|
- `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
|
|
228
187
|
|
|
229
|
-
[Read more in the documentation](https://
|
|
188
|
+
[Read more in the documentation](https://uxlfoundation.github.io/scikit-learn-intelex/).
|
|
230
189
|
|
|
231
190
|
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
daal4py/__init__.py,sha256=Z9m4-_WGRMvvv4BRTlQy9tDh6dDXyKMuvJbFdCkKm7U,2605
|
|
2
2
|
daal4py/__main__.py,sha256=XkcEBDY30krQy7F6b5GRIBs1Ef3mNjv8IZE3TdcUCAs,1956
|
|
3
|
-
daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so,sha256=
|
|
4
|
-
daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so,sha256=
|
|
3
|
+
daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so,sha256=vf5CwNXUpY82_QoHEHPdptDQGwpYtd_xBLQBPuURnVo,11002792
|
|
4
|
+
daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so,sha256=BC4cYMjkGqgpfM_VVFrOZ4onbp-wOKOwsHEygOlMSY8,22904
|
|
5
5
|
daal4py/doc/third-party-programs.txt,sha256=3tB2wzQ26wLa0aa574AxPit02Cse01Sqk0MJJboyQd0,21754
|
|
6
6
|
daal4py/mb/__init__.py,sha256=Gw3YCjY4oRlB-Y-io1hD9wnRs20WK-5M8ADaMh-orLE,853
|
|
7
7
|
daal4py/mb/model_builders.py,sha256=kyyv7V8XG2MWiCIPjGoyozz2W9iV2zg3sg1xwZ_GCmw,15453
|
|
@@ -59,9 +59,9 @@ daal4py/sklearn/utils/tests/test_utils.py,sha256=n3bO5WJCb5Q9Dlk_S8SxNhhvQJGT3dV
|
|
|
59
59
|
onedal/__init__.py,sha256=t9aTOZfzqSLNLlDITKiZD2Y-Q6uGD5Ust0DuzkhoUNI,2595
|
|
60
60
|
onedal/_config.py,sha256=Y6u69lFxA5FV-2fgzis1f5QxMbWfbT6rUN_dPV_OmCU,1828
|
|
61
61
|
onedal/_device_offload.py,sha256=9ZMS-LNcJru83EuLQk3GJ9hAEoZ0uPvOe7lWP76ALws,7380
|
|
62
|
-
onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so,sha256=
|
|
63
|
-
onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so,sha256=
|
|
64
|
-
onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so,sha256=
|
|
62
|
+
onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so,sha256=iNiZc5bJf1fhaGx2qoz2jq0OGkckV2viYkFYjEQBK_I,2793008
|
|
63
|
+
onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so,sha256=nmgUwpozUJPyT4PQJ7gh5lPZsXY5FWqSeFz9YhyG9ys,1592632
|
|
64
|
+
onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so,sha256=kntO9JtyyPCxzWLOVZAQI020JZr2QYqG1C9yER_upF0,1048112
|
|
65
65
|
onedal/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
66
66
|
onedal/basic_statistics/basic_statistics.py,sha256=IXbf9SWaXIIpCeZXIvOmmjtJxpJf3vBcOGEAYK130Js,3587
|
|
67
67
|
onedal/basic_statistics/incremental_basic_statistics.py,sha256=C--4qkoY5w4ZXrQAn6lX13SbCabFu2b9rNQNiizaieA,5887
|
|
@@ -156,7 +156,7 @@ sklearnex/__init__.py,sha256=JmyKzBQs3ug2RxHN8RQ1bspzfBrYkGAFRW4DYrY4cww,1798
|
|
|
156
156
|
sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
|
|
157
157
|
sklearnex/_config.py,sha256=gNLOR945IboVS-aBdfgQM4s7th0B0FYdbmxUf4WAgRo,4276
|
|
158
158
|
sklearnex/_device_offload.py,sha256=lPvcy8kBagniN0updIygzWad7cOxjfZgUtUdPQzAecQ,5487
|
|
159
|
-
sklearnex/_utils.py,sha256=
|
|
159
|
+
sklearnex/_utils.py,sha256=yxdeCbnFZ8jJQr2N4tS29a-Rn-caVfmzBkt0yiy9H0M,6794
|
|
160
160
|
sklearnex/conftest.py,sha256=Y_-4MPhPv2eNYWD7cPA94CymFG6tsXfTTYfjPLjDq_0,2619
|
|
161
161
|
sklearnex/dispatcher.py,sha256=QFe4yppmsPJ2tgEq-T3AIVaW4VGqIEA6BK1qYOXOZq8,18638
|
|
162
162
|
sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
@@ -165,36 +165,36 @@ sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=P4oDSCL2H1tkX8
|
|
|
165
165
|
sklearnex/basic_statistics/tests/test_basic_statistics.py,sha256=2juzqbS8MfivPEiCCWEaZyZU8BrXj9_dJ9YmZ96ms7M,14395
|
|
166
166
|
sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=rvsPiJPLfPn5h61TtX9I8BmRZ3qzbY_bm-TKGpb36OM,18192
|
|
167
167
|
sklearnex/cluster/__init__.py,sha256=r0CKwy-PSca0jbZc4jU2CkU__qC643751-GuX1aaY40,853
|
|
168
|
-
sklearnex/cluster/dbscan.py,sha256=
|
|
169
|
-
sklearnex/cluster/k_means.py,sha256=
|
|
168
|
+
sklearnex/cluster/dbscan.py,sha256=s_yJ2Jy0fd95XaWUyOCzLaGuGzCDGsniOdJBU0lnh4U,7021
|
|
169
|
+
sklearnex/cluster/k_means.py,sha256=sK8c6l2XEGAMXP7sHMTUfDdZa91tIjfvDDiHJl9MnOk,14226
|
|
170
170
|
sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
|
|
171
171
|
sklearnex/cluster/tests/test_kmeans.py,sha256=IoAKkq2g4DWxLm8LrD9Ck0q6Q7RT-u1gL9r70pp6ugA,6114
|
|
172
172
|
sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
|
|
173
173
|
sklearnex/covariance/incremental_covariance.py,sha256=dyl1ZczR5JdLJHb8HSJKit2goUJG090jHw69a0pYQcU,14399
|
|
174
174
|
sklearnex/covariance/tests/test_incremental_covariance.py,sha256=9xXkVPgKL8qTCzSbbQuObxuvqEB0EOPPO2DHCCv1Yag,10943
|
|
175
175
|
sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
|
|
176
|
-
sklearnex/decomposition/pca.py,sha256=
|
|
176
|
+
sklearnex/decomposition/pca.py,sha256=HzHi6o3CyuM5aEkaawEKW7PNk176W6TdtxxFzQksQOw,16995
|
|
177
177
|
sklearnex/decomposition/tests/test_pca.py,sha256=EoCgpSojE2S2e7hOUwW0Bh3vVGTUywawAhU7ThVAlW0,2319
|
|
178
178
|
sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
|
|
179
179
|
sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
|
|
180
|
-
sklearnex/ensemble/_forest.py,sha256=
|
|
180
|
+
sklearnex/ensemble/_forest.py,sha256=1mauUIVNM4oCoiLhaoHp-rvrjcqjZWOETyILtxh-ylM,72855
|
|
181
181
|
sklearnex/ensemble/tests/test_forest.py,sha256=lBZb9MlTtHezmYn8ZWHb7A1p3_2FNTas4xJ3MHZZyn4,5791
|
|
182
182
|
sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
|
|
183
183
|
sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
|
|
184
184
|
sklearnex/linear_model/__init__.py,sha256=5ZHAppxcqKlq5MOZTfigFU9MuN1L5Use_F_cZqo_-p4,1218
|
|
185
185
|
sklearnex/linear_model/coordinate_descent.py,sha256=SKNVTYYX8ysZ8M9h32qIaof3Fc2OKcBRXaCOySUBOiE,1554
|
|
186
186
|
sklearnex/linear_model/incremental_linear.py,sha256=Sbc-xQVU6cg8shJiN9Ska2twI4tUUWp00N6McvbF99I,16970
|
|
187
|
-
sklearnex/linear_model/incremental_ridge.py,sha256=
|
|
188
|
-
sklearnex/linear_model/linear.py,sha256=
|
|
189
|
-
sklearnex/linear_model/logistic_regression.py,sha256=
|
|
190
|
-
sklearnex/linear_model/ridge.py,sha256=
|
|
187
|
+
sklearnex/linear_model/incremental_ridge.py,sha256=PauZPUkzYP6SjzB3rgw3JMzbHvQzhAeY4ItbtvRgACc,14978
|
|
188
|
+
sklearnex/linear_model/linear.py,sha256=BsZ7VezKu8wNOMq4l5F27sheH3P7p8wn2hU7MYpOAkM,12443
|
|
189
|
+
sklearnex/linear_model/logistic_regression.py,sha256=z8zq_UxZNfzsMOkibjy0KCNKQCF1D9L19ZXX4IBopqc,15179
|
|
190
|
+
sklearnex/linear_model/ridge.py,sha256=2PSj4zRq2naV1rspQ_SsugxxGPzZPJG-6I-Z5gvjj1k,15143
|
|
191
191
|
sklearnex/linear_model/tests/test_incremental_linear.py,sha256=vo1l9HhXa16dT7Q0Mf5NzUqnB454AlPbOwibK_ZNux4,10125
|
|
192
192
|
sklearnex/linear_model/tests/test_incremental_ridge.py,sha256=lerzk8T1IOe0e58qucTPWj7ssrJa9gFpaqFrz6XGkU0,9096
|
|
193
193
|
sklearnex/linear_model/tests/test_linear.py,sha256=OZUTBqlXpMwgXYOe2YgrDPUibr5EGewJ3avMwKx0QZ0,5701
|
|
194
194
|
sklearnex/linear_model/tests/test_logreg.py,sha256=8kTIMl1Hcuu0NSPcEle0oAdRerqMtUAWrRlLjS-n4EI,4924
|
|
195
195
|
sklearnex/linear_model/tests/test_ridge.py,sha256=YbfyVrRi-FOoV7BtzX0-ChPavBSFAmr35BJcm2kx7nI,9596
|
|
196
196
|
sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
|
|
197
|
-
sklearnex/manifold/t_sne.py,sha256=
|
|
197
|
+
sklearnex/manifold/t_sne.py,sha256=pK9QfX0rfh4grDK4AVd1Uswgvjm7xBKLtIyI3eag65M,1211
|
|
198
198
|
sklearnex/manifold/tests/test_tsne.py,sha256=gEMfvH63zMsrmrmsmDzvFfepJJrJUt2B7nNQAm9nMM8,8928
|
|
199
199
|
sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
|
|
200
200
|
sklearnex/metrics/pairwise.py,sha256=HeBOE8sRBZMiF9pup8HBypDGfizQ-UCrQdX2C6YGvbg,982
|
|
@@ -205,17 +205,17 @@ sklearnex/model_selection/split.py,sha256=yvYnmNaKJs-Tr8tGBB-2R9CuhjESYih-CN6Wb3
|
|
|
205
205
|
sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
|
|
206
206
|
sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
|
|
207
207
|
sklearnex/neighbors/_lof.py,sha256=aiarmfDU5ndpp_JN06NUW2Ny0APjJr3zY9Kuq5nYFWM,9312
|
|
208
|
-
sklearnex/neighbors/common.py,sha256=
|
|
208
|
+
sklearnex/neighbors/common.py,sha256=61D8NOkzphq1QQoDrHOO0zlCQMo-RONXZ68Ma27UDcY,12582
|
|
209
209
|
sklearnex/neighbors/knn_classification.py,sha256=wxsyPFMlAim60LtK39salu7Cpgwiq0hkduv7IuItwEg,8015
|
|
210
210
|
sklearnex/neighbors/knn_regression.py,sha256=TIh6kf1bX07uFw02IuDsG9DKCiiKG1Fsp7jiMXk81jo,6870
|
|
211
211
|
sklearnex/neighbors/knn_unsupervised.py,sha256=L8oBoVnp-H52ns2k2MNr-KMgAK5zu6crYgwMZt4roQM,6316
|
|
212
212
|
sklearnex/neighbors/tests/test_neighbors.py,sha256=gUmnRiY-xH3oGclv6VPxSIHWchgbygGt6p-vcflvYZ0,3540
|
|
213
213
|
sklearnex/preview/__init__.py,sha256=6qlqN3HFx8-MpnRALaD0vmfMBJapfz_enkaB37SqPtg,786
|
|
214
214
|
sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
|
|
215
|
-
sklearnex/preview/covariance/covariance.py,sha256=
|
|
215
|
+
sklearnex/preview/covariance/covariance.py,sha256=szfEuFD7LCQ4piqgDf5uzj1zqaj9XywhVSmRajVhIBg,5358
|
|
216
216
|
sklearnex/preview/covariance/tests/test_covariance.py,sha256=gFgP1or32zELL9n2qKTgPBq95hm2ivqaNgFuLNB8W90,2500
|
|
217
217
|
sklearnex/preview/decomposition/__init__.py,sha256=9VcJPWKgSrWDFEXUY6ZCpAT2XGbOVA4a1j_XgfJBnTM,839
|
|
218
|
-
sklearnex/preview/decomposition/incremental_pca.py,sha256=
|
|
218
|
+
sklearnex/preview/decomposition/incremental_pca.py,sha256=qV8G87BkakoI-S_6bFD4cqegDx7BFZasFirUAOvsE4o,8432
|
|
219
219
|
sklearnex/preview/decomposition/tests/test_incremental_pca.py,sha256=sV4H8E1Dm5d8sBhprexRzzkhUC5e5nhwXBa27sGkiJk,13789
|
|
220
220
|
sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
|
|
221
221
|
sklearnex/spmd/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
@@ -252,7 +252,7 @@ sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6G
|
|
|
252
252
|
sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
|
|
253
253
|
sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py,sha256=RLddVdNbKHIND4khAzSSpM_yi9j2VMuHmI9TZUtdS3Y,10487
|
|
254
254
|
sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
|
|
255
|
-
sklearnex/svm/_common.py,sha256=
|
|
255
|
+
sklearnex/svm/_common.py,sha256=4tvR09qz01g27thlJZIfYrj821Q0JeRUQ3m8x-Ghw30,13046
|
|
256
256
|
sklearnex/svm/nusvc.py,sha256=yBOYo8BSJcMjvmCsuR9xMaJmZcs9Olvabw8VmUjZLBc,12143
|
|
257
257
|
sklearnex/svm/nusvr.py,sha256=IUOt0576uvNy1rAt-uslpo4CrYDClNIS8FZb8PJ-HnY,5245
|
|
258
258
|
sklearnex/svm/svc.py,sha256=bYO9a9DFx8AhyUgW_Zg_kTbT2Vsj8eQKI6yfrwPheh8,13452
|
|
@@ -275,8 +275,8 @@ sklearnex/utils/_array_api.py,sha256=c5AFRaxYn3pjInTXeFzcXZB8SrRxQ-4UQARQv1HchFI
|
|
|
275
275
|
sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
|
|
276
276
|
sklearnex/utils/validation.py,sha256=-kluLYjGq7I43VgNWHI7Xm0TcandkRASWFzdFrEBhoo,7729
|
|
277
277
|
sklearnex/utils/tests/test_validation.py,sha256=2eSq6Tqb2YmUDaL8OnvclKc0qbpuIkv-9WOvY6K_Cz0,8667
|
|
278
|
-
scikit_learn_intelex-2025.
|
|
279
|
-
scikit_learn_intelex-2025.
|
|
280
|
-
scikit_learn_intelex-2025.
|
|
281
|
-
scikit_learn_intelex-2025.
|
|
282
|
-
scikit_learn_intelex-2025.
|
|
278
|
+
scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
|
|
279
|
+
scikit_learn_intelex-2025.4.0.dist-info/METADATA,sha256=yZynNZQSXHne8X-xCXvaczzwGRpr4BmNcGoNO9el35k,11544
|
|
280
|
+
scikit_learn_intelex-2025.4.0.dist-info/WHEEL,sha256=asPFnFc681r30F8chnebpAIhTgMuKMVXvRr_pQ9CO8o,112
|
|
281
|
+
scikit_learn_intelex-2025.4.0.dist-info/top_level.txt,sha256=Qa0CGteT1uguKJdxiwylb90eW-a1R8FcENgN6P7IKfs,25
|
|
282
|
+
scikit_learn_intelex-2025.4.0.dist-info/RECORD,,
|
sklearnex/_utils.py
CHANGED
|
@@ -16,13 +16,27 @@
|
|
|
16
16
|
|
|
17
17
|
import logging
|
|
18
18
|
import os
|
|
19
|
+
import re
|
|
19
20
|
import warnings
|
|
20
21
|
from abc import ABC
|
|
21
22
|
|
|
23
|
+
import sklearn
|
|
24
|
+
|
|
22
25
|
from daal4py.sklearn._utils import (
|
|
23
26
|
PatchingConditionsChain as daal4py_PatchingConditionsChain,
|
|
24
27
|
)
|
|
25
|
-
from daal4py.sklearn._utils import daal_check_version
|
|
28
|
+
from daal4py.sklearn._utils import daal_check_version, sklearn_check_version
|
|
29
|
+
|
|
30
|
+
# Note: if inheriting from '_HTMLDocumentationLinkMixin' here, it then doesn't matter
|
|
31
|
+
# the order of inheritance of classes for estimators when this is later subclassed,
|
|
32
|
+
# whereas if inheriting from something else, the subclass that inherits from this needs
|
|
33
|
+
# to be the first inherited class in estimators in order for it to take effect.
|
|
34
|
+
if sklearn_check_version("1.4"):
|
|
35
|
+
from sklearn.utils._estimator_html_repr import _HTMLDocumentationLinkMixin
|
|
36
|
+
|
|
37
|
+
BaseForHTMLDocLink = _HTMLDocumentationLinkMixin
|
|
38
|
+
else:
|
|
39
|
+
BaseForHTMLDocLink = ABC
|
|
26
40
|
|
|
27
41
|
|
|
28
42
|
class PatchingConditionsChain(daal4py_PatchingConditionsChain):
|
|
@@ -128,10 +142,8 @@ def register_hyperparameters(hyperparameters_map):
|
|
|
128
142
|
|
|
129
143
|
|
|
130
144
|
# This abstract class is meant to generate a clickable doc link for classses
|
|
131
|
-
# in sklearnex that are not part of base scikit-learn.
|
|
132
|
-
|
|
133
|
-
# by the estimator's original.
|
|
134
|
-
class IntelEstimator(ABC):
|
|
145
|
+
# in sklearnex that are not part of base scikit-learn.
|
|
146
|
+
class IntelEstimator(BaseForHTMLDocLink):
|
|
135
147
|
@property
|
|
136
148
|
def _doc_link_module(self) -> str:
|
|
137
149
|
return "sklearnex"
|
|
@@ -141,3 +153,25 @@ class IntelEstimator(ABC):
|
|
|
141
153
|
module_path, _ = self.__class__.__module__.rsplit(".", 1)
|
|
142
154
|
class_name = self.__class__.__name__
|
|
143
155
|
return f"https://uxlfoundation.github.io/scikit-learn-intelex/latest/non-scikit-algorithms.html#{module_path}.{class_name}"
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
# This abstract class is meant to generate a clickable doc link for classses
|
|
159
|
+
# in sklearnex that have counterparts in scikit-learn.
|
|
160
|
+
class PatchableEstimator(BaseForHTMLDocLink):
|
|
161
|
+
@property
|
|
162
|
+
def _doc_link_module(self) -> str:
|
|
163
|
+
return "sklearnex"
|
|
164
|
+
|
|
165
|
+
@property
|
|
166
|
+
def _doc_link_template(self) -> str:
|
|
167
|
+
if re.search(r"^\d\.\d\.\d$", sklearn.__version__):
|
|
168
|
+
sklearn_version_parts = sklearn.__version__.split(".")
|
|
169
|
+
doc_version_url = sklearn_version_parts[0] + "." + sklearn_version_parts[1]
|
|
170
|
+
else:
|
|
171
|
+
doc_version_url = "stable"
|
|
172
|
+
module_path, _ = self.__class__.__module__.rsplit(".", 1)
|
|
173
|
+
module_path = re.sub("sklearnex", "sklearn", module_path)
|
|
174
|
+
class_name = self.__class__.__name__
|
|
175
|
+
# for TSNE, which re-uses daal4py
|
|
176
|
+
module_path = re.sub(r"daal4py\.", "", module_path)
|
|
177
|
+
return f"https://scikit-learn.org/{doc_version_url}/modules/generated/{module_path}.{class_name}.html"
|
sklearnex/cluster/dbscan.py
CHANGED
|
@@ -26,7 +26,7 @@ from daal4py.sklearn._utils import sklearn_check_version
|
|
|
26
26
|
from onedal.cluster import DBSCAN as onedal_DBSCAN
|
|
27
27
|
|
|
28
28
|
from .._device_offload import dispatch
|
|
29
|
-
from .._utils import PatchingConditionsChain
|
|
29
|
+
from .._utils import PatchableEstimator, PatchingConditionsChain
|
|
30
30
|
|
|
31
31
|
if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
|
|
32
32
|
from sklearn.utils import check_scalar
|
|
@@ -51,7 +51,7 @@ class BaseDBSCAN(ABC):
|
|
|
51
51
|
|
|
52
52
|
|
|
53
53
|
@control_n_jobs(decorated_methods=["fit"])
|
|
54
|
-
class DBSCAN(_sklearn_DBSCAN, BaseDBSCAN):
|
|
54
|
+
class DBSCAN(PatchableEstimator, _sklearn_DBSCAN, BaseDBSCAN):
|
|
55
55
|
__doc__ = _sklearn_DBSCAN.__doc__
|
|
56
56
|
|
|
57
57
|
if sklearn_check_version("1.2"):
|
sklearnex/cluster/k_means.py
CHANGED
|
@@ -39,7 +39,7 @@ if daal_check_version((2023, "P", 200)):
|
|
|
39
39
|
from onedal.utils import _is_csr
|
|
40
40
|
|
|
41
41
|
from .._device_offload import dispatch, wrap_output_data
|
|
42
|
-
from .._utils import PatchingConditionsChain
|
|
42
|
+
from .._utils import PatchableEstimator, PatchingConditionsChain
|
|
43
43
|
|
|
44
44
|
if sklearn_check_version("1.6"):
|
|
45
45
|
from sklearn.utils.validation import validate_data
|
|
@@ -47,7 +47,7 @@ if daal_check_version((2023, "P", 200)):
|
|
|
47
47
|
validate_data = _sklearn_KMeans._validate_data
|
|
48
48
|
|
|
49
49
|
@control_n_jobs(decorated_methods=["fit", "fit_transform", "predict", "score"])
|
|
50
|
-
class KMeans(_sklearn_KMeans):
|
|
50
|
+
class KMeans(PatchableEstimator, _sklearn_KMeans):
|
|
51
51
|
__doc__ = _sklearn_KMeans.__doc__
|
|
52
52
|
|
|
53
53
|
if sklearn_check_version("1.2"):
|
sklearnex/decomposition/pca.py
CHANGED
|
@@ -18,6 +18,8 @@ import logging
|
|
|
18
18
|
|
|
19
19
|
from daal4py.sklearn._utils import daal_check_version
|
|
20
20
|
|
|
21
|
+
from .._utils import PatchableEstimator
|
|
22
|
+
|
|
21
23
|
if daal_check_version((2024, "P", 100)):
|
|
22
24
|
import numbers
|
|
23
25
|
from math import sqrt
|
|
@@ -50,7 +52,7 @@ if daal_check_version((2024, "P", 100)):
|
|
|
50
52
|
validate_data = _sklearn_PCA._validate_data
|
|
51
53
|
|
|
52
54
|
@control_n_jobs(decorated_methods=["fit", "transform", "fit_transform"])
|
|
53
|
-
class PCA(_sklearn_PCA):
|
|
55
|
+
class PCA(PatchableEstimator, _sklearn_PCA):
|
|
54
56
|
__doc__ = _sklearn_PCA.__doc__
|
|
55
57
|
|
|
56
58
|
if sklearn_check_version("1.2"):
|
sklearnex/ensemble/_forest.py
CHANGED
|
@@ -61,7 +61,7 @@ from sklearnex import get_hyperparameters
|
|
|
61
61
|
from sklearnex._utils import register_hyperparameters
|
|
62
62
|
|
|
63
63
|
from .._device_offload import dispatch, wrap_output_data
|
|
64
|
-
from .._utils import PatchingConditionsChain
|
|
64
|
+
from .._utils import PatchableEstimator, PatchingConditionsChain
|
|
65
65
|
from ..utils._array_api import get_namespace
|
|
66
66
|
|
|
67
67
|
if sklearn_check_version("1.2"):
|
|
@@ -75,7 +75,7 @@ else:
|
|
|
75
75
|
validate_data = BaseEstimator._validate_data
|
|
76
76
|
|
|
77
77
|
|
|
78
|
-
class BaseForest(ABC):
|
|
78
|
+
class BaseForest(PatchableEstimator, ABC):
|
|
79
79
|
_onedal_factory = None
|
|
80
80
|
|
|
81
81
|
def _onedal_fit(self, X, y, sample_weight=None, queue=None):
|
|
@@ -32,7 +32,7 @@ if sklearn_check_version("1.2"):
|
|
|
32
32
|
from onedal.linear_model import IncrementalRidge as onedal_IncrementalRidge
|
|
33
33
|
|
|
34
34
|
from .._device_offload import dispatch, wrap_output_data
|
|
35
|
-
from .._utils import PatchingConditionsChain
|
|
35
|
+
from .._utils import IntelEstimator, PatchingConditionsChain
|
|
36
36
|
|
|
37
37
|
if sklearn_check_version("1.6"):
|
|
38
38
|
from sklearn.utils.validation import validate_data
|
|
@@ -43,7 +43,7 @@ else:
|
|
|
43
43
|
@control_n_jobs(
|
|
44
44
|
decorated_methods=["fit", "partial_fit", "predict", "score", "_onedal_finalize_fit"]
|
|
45
45
|
)
|
|
46
|
-
class IncrementalRidge(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
46
|
+
class IncrementalRidge(IntelEstimator, MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
47
47
|
"""
|
|
48
48
|
Incremental estimator for Ridge Regression.
|
|
49
49
|
Allows to train Ridge Regression if data is splitted into batches.
|
|
@@ -51,14 +51,14 @@ class IncrementalRidge(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
|
51
51
|
Parameters
|
|
52
52
|
----------
|
|
53
53
|
fit_intercept : bool, default=True
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
54
|
+
Whether to calculate the intercept for this model. If set
|
|
55
|
+
to False, no intercept will be used in calculations
|
|
56
|
+
(i.e. data is expected to be centered).
|
|
57
57
|
|
|
58
58
|
alpha : float, default=1.0
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
59
|
+
Regularization strength; must be a positive float. Regularization
|
|
60
|
+
improves the conditioning of the problem and reduces the variance of
|
|
61
|
+
the estimates. Larger values specify stronger regularization.
|
|
62
62
|
|
|
63
63
|
copy_X : bool, default=True
|
|
64
64
|
If True, X will be copied; else, it may be overwritten.
|
sklearnex/linear_model/linear.py
CHANGED
|
@@ -27,7 +27,12 @@ from daal4py.sklearn._utils import daal_check_version, sklearn_check_version
|
|
|
27
27
|
|
|
28
28
|
from .._config import get_config
|
|
29
29
|
from .._device_offload import dispatch, wrap_output_data
|
|
30
|
-
from .._utils import
|
|
30
|
+
from .._utils import (
|
|
31
|
+
PatchableEstimator,
|
|
32
|
+
PatchingConditionsChain,
|
|
33
|
+
get_patch_message,
|
|
34
|
+
register_hyperparameters,
|
|
35
|
+
)
|
|
31
36
|
|
|
32
37
|
if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
|
|
33
38
|
from sklearn.linear_model._base import _deprecate_normalize
|
|
@@ -47,7 +52,7 @@ else:
|
|
|
47
52
|
|
|
48
53
|
@register_hyperparameters({"fit": get_hyperparameters("linear_regression", "train")})
|
|
49
54
|
@control_n_jobs(decorated_methods=["fit", "predict", "score"])
|
|
50
|
-
class LinearRegression(_sklearn_LinearRegression):
|
|
55
|
+
class LinearRegression(PatchableEstimator, _sklearn_LinearRegression):
|
|
51
56
|
__doc__ = _sklearn_LinearRegression.__doc__
|
|
52
57
|
|
|
53
58
|
if sklearn_check_version("1.2"):
|
|
@@ -38,7 +38,7 @@ if daal_check_version((2024, "P", 1)):
|
|
|
38
38
|
|
|
39
39
|
from .._config import get_config
|
|
40
40
|
from .._device_offload import dispatch, wrap_output_data
|
|
41
|
-
from .._utils import PatchingConditionsChain, get_patch_message
|
|
41
|
+
from .._utils import PatchableEstimator, PatchingConditionsChain, get_patch_message
|
|
42
42
|
|
|
43
43
|
if sklearn_check_version("1.6"):
|
|
44
44
|
from sklearn.utils.validation import validate_data
|
|
@@ -65,7 +65,9 @@ if daal_check_version((2024, "P", 1)):
|
|
|
65
65
|
"score",
|
|
66
66
|
]
|
|
67
67
|
)
|
|
68
|
-
class LogisticRegression(
|
|
68
|
+
class LogisticRegression(
|
|
69
|
+
PatchableEstimator, _sklearn_LogisticRegression, BaseLogisticRegression
|
|
70
|
+
):
|
|
69
71
|
__doc__ = _sklearn_LogisticRegression.__doc__
|
|
70
72
|
|
|
71
73
|
if sklearn_check_version("1.2"):
|
sklearnex/linear_model/ridge.py
CHANGED
|
@@ -38,7 +38,7 @@ if daal_check_version((2024, "P", 600)):
|
|
|
38
38
|
from onedal.utils import _num_features, _num_samples
|
|
39
39
|
|
|
40
40
|
from .._device_offload import dispatch, wrap_output_data
|
|
41
|
-
from .._utils import PatchingConditionsChain
|
|
41
|
+
from .._utils import PatchableEstimator, PatchingConditionsChain
|
|
42
42
|
|
|
43
43
|
if sklearn_check_version("1.6"):
|
|
44
44
|
from sklearn.utils.validation import validate_data
|
|
@@ -46,7 +46,7 @@ if daal_check_version((2024, "P", 600)):
|
|
|
46
46
|
validate_data = _sklearn_Ridge._validate_data
|
|
47
47
|
|
|
48
48
|
@control_n_jobs(decorated_methods=["fit", "predict", "score"])
|
|
49
|
-
class Ridge(_sklearn_Ridge):
|
|
49
|
+
class Ridge(PatchableEstimator, _sklearn_Ridge):
|
|
50
50
|
__doc__ = _sklearn_Ridge.__doc__
|
|
51
51
|
|
|
52
52
|
if sklearn_check_version("1.2"):
|
sklearnex/manifold/t_sne.py
CHANGED
|
@@ -14,8 +14,13 @@
|
|
|
14
14
|
# limitations under the License.
|
|
15
15
|
# ===============================================================================
|
|
16
16
|
|
|
17
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
17
18
|
from daal4py.sklearn.manifold import TSNE
|
|
18
19
|
from onedal._device_offload import support_input_format
|
|
19
20
|
|
|
21
|
+
from .._utils import PatchableEstimator
|
|
22
|
+
|
|
20
23
|
TSNE.fit = support_input_format(queue_param=False)(TSNE.fit)
|
|
21
24
|
TSNE.fit_transform = support_input_format(queue_param=False)(TSNE.fit_transform)
|
|
25
|
+
TSNE._doc_link_module = "daal4py"
|
|
26
|
+
TSNE._doc_link_template = PatchableEstimator._doc_link_template
|
sklearnex/neighbors/common.py
CHANGED
|
@@ -27,11 +27,11 @@ from sklearn.utils.validation import check_is_fitted
|
|
|
27
27
|
from daal4py.sklearn._utils import sklearn_check_version
|
|
28
28
|
from onedal.utils import _check_array, _num_features, _num_samples
|
|
29
29
|
|
|
30
|
-
from .._utils import PatchingConditionsChain
|
|
30
|
+
from .._utils import PatchableEstimator, PatchingConditionsChain
|
|
31
31
|
from ..utils._array_api import get_namespace
|
|
32
32
|
|
|
33
33
|
|
|
34
|
-
class KNeighborsDispatchingBase:
|
|
34
|
+
class KNeighborsDispatchingBase(PatchableEstimator):
|
|
35
35
|
def _fit_validation(self, X, y=None):
|
|
36
36
|
if sklearn_check_version("1.2"):
|
|
37
37
|
self._validate_params()
|
|
@@ -29,7 +29,11 @@ from sklearnex import config_context
|
|
|
29
29
|
from sklearnex.metrics import pairwise_distances
|
|
30
30
|
|
|
31
31
|
from ..._device_offload import dispatch, wrap_output_data
|
|
32
|
-
from ..._utils import
|
|
32
|
+
from ..._utils import (
|
|
33
|
+
PatchableEstimator,
|
|
34
|
+
PatchingConditionsChain,
|
|
35
|
+
register_hyperparameters,
|
|
36
|
+
)
|
|
33
37
|
|
|
34
38
|
if sklearn_check_version("1.6"):
|
|
35
39
|
from sklearn.utils.validation import validate_data
|
|
@@ -39,7 +43,7 @@ else:
|
|
|
39
43
|
|
|
40
44
|
@register_hyperparameters({"fit": get_hyperparameters("covariance", "compute")})
|
|
41
45
|
@control_n_jobs(decorated_methods=["fit", "mahalanobis"])
|
|
42
|
-
class EmpiricalCovariance(_sklearn_EmpiricalCovariance):
|
|
46
|
+
class EmpiricalCovariance(PatchableEstimator, _sklearn_EmpiricalCovariance):
|
|
43
47
|
__doc__ = _sklearn_EmpiricalCovariance.__doc__
|
|
44
48
|
|
|
45
49
|
if sklearn_check_version("1.2"):
|
|
@@ -23,7 +23,7 @@ from daal4py.sklearn._utils import sklearn_check_version
|
|
|
23
23
|
from onedal.decomposition import IncrementalPCA as onedal_IncrementalPCA
|
|
24
24
|
|
|
25
25
|
from ..._device_offload import dispatch, wrap_output_data
|
|
26
|
-
from ..._utils import PatchingConditionsChain
|
|
26
|
+
from ..._utils import IntelEstimator, PatchingConditionsChain
|
|
27
27
|
|
|
28
28
|
if sklearn_check_version("1.6"):
|
|
29
29
|
from sklearn.utils.validation import validate_data
|
|
@@ -34,7 +34,7 @@ else:
|
|
|
34
34
|
@control_n_jobs(
|
|
35
35
|
decorated_methods=["fit", "partial_fit", "transform", "_onedal_finalize_fit"]
|
|
36
36
|
)
|
|
37
|
-
class IncrementalPCA(_sklearn_IncrementalPCA):
|
|
37
|
+
class IncrementalPCA(IntelEstimator, _sklearn_IncrementalPCA):
|
|
38
38
|
|
|
39
39
|
def __init__(self, n_components=None, *, whiten=False, copy=True, batch_size=None):
|
|
40
40
|
super().__init__(
|
sklearnex/svm/_common.py
CHANGED
|
@@ -29,7 +29,7 @@ from daal4py.sklearn._utils import sklearn_check_version
|
|
|
29
29
|
from onedal.utils import _check_array, _check_X_y, _column_or_1d
|
|
30
30
|
|
|
31
31
|
from .._config import config_context, get_config
|
|
32
|
-
from .._utils import PatchingConditionsChain
|
|
32
|
+
from .._utils import PatchableEstimator, PatchingConditionsChain
|
|
33
33
|
|
|
34
34
|
if sklearn_check_version("1.6"):
|
|
35
35
|
from sklearn.utils.validation import validate_data
|
|
@@ -37,7 +37,7 @@ else:
|
|
|
37
37
|
validate_data = BaseEstimator._validate_data
|
|
38
38
|
|
|
39
39
|
|
|
40
|
-
class BaseSVM(BaseEstimator, ABC):
|
|
40
|
+
class BaseSVM(PatchableEstimator, BaseEstimator, ABC):
|
|
41
41
|
|
|
42
42
|
@property
|
|
43
43
|
def _dual_coef_(self):
|
{scikit_learn_intelex-2025.2.0.dist-info → scikit_learn_intelex-2025.4.0.dist-info}/LICENSE.txt
RENAMED
|
File without changes
|
|
File without changes
|
{scikit_learn_intelex-2025.2.0.dist-info → scikit_learn_intelex-2025.4.0.dist-info}/top_level.txt
RENAMED
|
File without changes
|