scikit-learn-intelex 2025.0.0__py310-none-manylinux_2_28_x86_64.whl → 2025.0.1__py310-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-learn-intelex
3
- Version: 2025.0.0
3
+ Version: 2025.0.1
4
4
  Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
5
  Home-page: https://github.com/intel/scikit-learn-intelex
6
6
  Author: Intel Corporation
@@ -31,7 +31,7 @@ Classifier: Topic :: Software Development
31
31
  Requires-Python: >=3.7
32
32
  Description-Content-Type: text/markdown
33
33
  License-File: LICENSE.txt
34
- Requires-Dist: daal (==2025.0.0)
34
+ Requires-Dist: daal (==2025.0.1)
35
35
  Requires-Dist: numpy (>=1.19)
36
36
  Requires-Dist: scikit-learn (>=0.22)
37
37
 
@@ -1,7 +1,7 @@
1
1
  daal4py/__init__.py,sha256=Z9m4-_WGRMvvv4BRTlQy9tDh6dDXyKMuvJbFdCkKm7U,2605
2
2
  daal4py/__main__.py,sha256=XkcEBDY30krQy7F6b5GRIBs1Ef3mNjv8IZE3TdcUCAs,1956
3
- daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so,sha256=B1kL_SvPH7nNdGjOnXPmFTMDlQpDJ6Qj4YhzWeJM7f0,10340712
4
- daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so,sha256=llVxZhm2bN4wHRk9H_P0OKSECJOHPActMijxPXaAsfY,22904
3
+ daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so,sha256=uXuE1YDyvPkqeK8q0HVYfypNVFdGx4T7tZY8zGXi6Ds,10340712
4
+ daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so,sha256=ivOucqN9lo1JteuleS6uTmWhE5s9cNhFpeWWfv_fuFM,22904
5
5
  daal4py/doc/third-party-programs.txt,sha256=3tB2wzQ26wLa0aa574AxPit02Cse01Sqk0MJJboyQd0,21754
6
6
  daal4py/mb/__init__.py,sha256=Gw3YCjY4oRlB-Y-io1hD9wnRs20WK-5M8ADaMh-orLE,853
7
7
  daal4py/mb/model_builders.py,sha256=kyyv7V8XG2MWiCIPjGoyozz2W9iV2zg3sg1xwZ_GCmw,15453
@@ -155,8 +155,8 @@ sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
155
155
  sklearnex/conftest.py,sha256=ODuhlscC0HNGXiA8olEfHTDULzjevqG9_sn0yMGRkHg,2376
156
156
  sklearnex/dispatcher.py,sha256=AWsrUNRZukLscR-sBzjMLdin-9rziPuSaBfWgj2Kx9Y,18993
157
157
  sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
158
- sklearnex/basic_statistics/basic_statistics.py,sha256=EQONHwPL4xdTWL49ZyLFN3wRp5oKCdDU1Y6R6Z-su0Q,5358
159
- sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=lQaJwT865YnW7vZ4z8BXx32LWxithcn39OVmsnbOLpU,10102
158
+ sklearnex/basic_statistics/basic_statistics.py,sha256=KKvLBm7DABj7h8K9NQC2P9WK0mLrXZugX82CsQzkAHI,6192
159
+ sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=E19WueDyWn4ZA8WT_SGcePegmbsRdQMK1VcTrxcyn8M,11047
160
160
  sklearnex/basic_statistics/tests/test_basic_statistics.py,sha256=dsJCHOPdjwZt5Kod1VdD8sdQrpoabPPUJNGN5S8cVvU,9533
161
161
  sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=0a5zE0iMzAQMiRyKTpcvQjGHBM86aNhnQZ0l_Ry1fNY,14914
162
162
  sklearnex/cluster/__init__.py,sha256=r0CKwy-PSca0jbZc4jU2CkU__qC643751-GuX1aaY40,853
@@ -165,7 +165,7 @@ sklearnex/cluster/k_means.py,sha256=LGdCJdGRqkV00kL2zJ_BVyYIkInNd-L-NZcJ4rwju2c,
165
165
  sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
166
166
  sklearnex/cluster/tests/test_kmeans.py,sha256=e3RAVsxo6qOZeEFSbrsI_nvjPSPosTn3QGvKHvSIInE,6049
167
167
  sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
168
- sklearnex/covariance/incremental_covariance.py,sha256=pYaRgI4xHnS_ZiuH9VwQptk4ZtuEhgg1PTliIb2ufAw,13096
168
+ sklearnex/covariance/incremental_covariance.py,sha256=K_t9Do0GcTaxTKVtfAVrbxzLAPAo1XSwiErqAsmBYYU,13729
169
169
  sklearnex/covariance/tests/test_incremental_covariance.py,sha256=9iJZyj43YKAgx11i7y_fhHc_S7dvKrMuEW2lYIe_AdU,8592
170
170
  sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
171
171
  sklearnex/decomposition/pca.py,sha256=XNW8Bo_S0iC-NmVUnyFzkUTNJJ10SjEeJEYuaUjkO1M,16597
@@ -178,7 +178,7 @@ sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,25
178
178
  sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
179
179
  sklearnex/linear_model/__init__.py,sha256=5ZHAppxcqKlq5MOZTfigFU9MuN1L5Use_F_cZqo_-p4,1218
180
180
  sklearnex/linear_model/coordinate_descent.py,sha256=SKNVTYYX8ysZ8M9h32qIaof3Fc2OKcBRXaCOySUBOiE,1554
181
- sklearnex/linear_model/incremental_linear.py,sha256=UmpbntBFcx1AIHMEZBvCQfzR2BNB8X8Sa_Lwb65RUwM,16146
181
+ sklearnex/linear_model/incremental_linear.py,sha256=jnov2niAehvxSsl-j5MQYJQqSPFYFMyy1FQWxh559d0,16783
182
182
  sklearnex/linear_model/incremental_ridge.py,sha256=bOP9WFKQqFeLzlanPLG3XAtafQ6ZVscXSSfUaImTY74,14388
183
183
  sklearnex/linear_model/linear.py,sha256=BDexE22Nl6egzHoMiruBp6L_biUfy0eWaZWbHMG9rJc,10740
184
184
  sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
@@ -271,8 +271,8 @@ sklearnex/utils/_array_api.py,sha256=c5AFRaxYn3pjInTXeFzcXZB8SrRxQ-4UQARQv1HchFI
271
271
  sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
272
272
  sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
273
273
  sklearnex/utils/tests/test_finite.py,sha256=AzJRY71X0VvDUicUI8Ey9Le6_yKp5O-3ZikhDVJNWms,2943
274
- scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
275
- scikit_learn_intelex-2025.0.0.dist-info/METADATA,sha256=lDZFW4nuu2-BVZppQrIWcxISuzP4XzWQuaP-IG8WsJg,12476
276
- scikit_learn_intelex-2025.0.0.dist-info/WHEEL,sha256=AbDXtI07YbmAOyulr4lTLqgtukIt8PjPDO5guTSVq0s,112
277
- scikit_learn_intelex-2025.0.0.dist-info/top_level.txt,sha256=Qa0CGteT1uguKJdxiwylb90eW-a1R8FcENgN6P7IKfs,25
278
- scikit_learn_intelex-2025.0.0.dist-info/RECORD,,
274
+ scikit_learn_intelex-2025.0.1.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
275
+ scikit_learn_intelex-2025.0.1.dist-info/METADATA,sha256=IbsY1MTgZ5DkuhoKjZupR95U22d1M-DYXfQX_8Ixm1A,12476
276
+ scikit_learn_intelex-2025.0.1.dist-info/WHEEL,sha256=AbDXtI07YbmAOyulr4lTLqgtukIt8PjPDO5guTSVq0s,112
277
+ scikit_learn_intelex-2025.0.1.dist-info/top_level.txt,sha256=Qa0CGteT1uguKJdxiwylb90eW-a1R8FcENgN6P7IKfs,25
278
+ scikit_learn_intelex-2025.0.1.dist-info/RECORD,,
@@ -32,12 +32,16 @@ class BasicStatistics(BaseEstimator):
32
32
  """
33
33
  Estimator for basic statistics.
34
34
  Allows to compute basic statistics for provided data.
35
+
35
36
  Parameters
36
37
  ----------
37
38
  result_options: string or list, default='all'
38
- List of statistics to compute
39
+ Used to set statistics to calculate. Possible values are ``'min'``, ``'max'``, ``'sum'``, ``'mean'``, ``'variance'``,
40
+ ``'variation'``, ``sum_squares'``, ``sum_squares_centered'``, ``'standard_deviation'``, ``'second_order_raw_moment'``
41
+ or a list containing any of these values. If set to ``'all'`` then all possible statistics will be
42
+ calculated.
39
43
 
40
- Attributes (are existing only if corresponding result option exists)
44
+ Attributes
41
45
  ----------
42
46
  min : ndarray of shape (n_features,)
43
47
  Minimum of each feature over all samples.
@@ -59,6 +63,27 @@ class BasicStatistics(BaseEstimator):
59
63
  Centered sum of squares for each feature over all samples.
60
64
  second_order_raw_moment : ndarray of shape (n_features,)
61
65
  Second order moment of each feature over all samples.
66
+
67
+ Note
68
+ ----
69
+ Attribute exists only if corresponding result option has been provided.
70
+
71
+ Note
72
+ ----
73
+ Some results can exhibit small variations due to
74
+ floating point error accumulation and multithreading.
75
+
76
+ Examples
77
+ --------
78
+ >>> import numpy as np
79
+ >>> from sklearnex.basic_statistics import BasicStatistics
80
+ >>> bs = BasicStatistics(result_options=['sum', 'min', 'max'])
81
+ >>> X = np.array([[1, 2], [3, 4]])
82
+ >>> bs.fit(X)
83
+ >>> bs.sum_
84
+ np.array([4., 6.])
85
+ >>> bs.min_
86
+ np.array([1., 2.])
62
87
  """
63
88
 
64
89
  def __init__(self, result_options="all"):
@@ -113,14 +138,14 @@ class BasicStatistics(BaseEstimator):
113
138
  Parameters
114
139
  ----------
115
140
  X : array-like of shape (n_samples, n_features)
116
- Data for compute, where `n_samples` is the number of samples and
117
- `n_features` is the number of features.
141
+ Data for compute, where ``n_samples`` is the number of samples and
142
+ ``n_features`` is the number of features.
118
143
 
119
144
  y : Ignored
120
145
  Not used, present for API consistency by convention.
121
146
 
122
147
  sample_weight : array-like of shape (n_samples,), default=None
123
- Weights for compute weighted statistics, where `n_samples` is the number of samples.
148
+ Weights for compute weighted statistics, where ``n_samples`` is the number of samples.
124
149
 
125
150
  Returns
126
151
  -------
@@ -37,8 +37,10 @@ import numbers
37
37
  @control_n_jobs(decorated_methods=["partial_fit", "_onedal_finalize_fit"])
38
38
  class IncrementalBasicStatistics(BaseEstimator):
39
39
  """
40
- Incremental estimator for basic statistics.
41
- Allows to compute basic statistics if data are splitted into batches.
40
+ Calculates basic statistics on the given data, allows for computation when the data are split into
41
+ batches. The user can use ``partial_fit`` method to provide a single batch of data or use the ``fit`` method to provide
42
+ the entire dataset.
43
+
42
44
  Parameters
43
45
  ----------
44
46
  result_options: string or list, default='all'
@@ -47,10 +49,9 @@ class IncrementalBasicStatistics(BaseEstimator):
47
49
  batch_size : int, default=None
48
50
  The number of samples to use for each batch. Only used when calling
49
51
  ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
50
- is inferred from the data and set to ``5 * n_features``, to provide a
51
- balance between approximation accuracy and memory consumption.
52
+ is inferred from the data and set to ``5 * n_features``.
52
53
 
53
- Attributes (are existing only if corresponding result option exists)
54
+ Attributes
54
55
  ----------
55
56
  min : ndarray of shape (n_features,)
56
57
  Minimum of each feature over all samples.
@@ -81,6 +82,38 @@ class IncrementalBasicStatistics(BaseEstimator):
81
82
 
82
83
  second_order_raw_moment : ndarray of shape (n_features,)
83
84
  Second order moment of each feature over all samples.
85
+
86
+ n_samples_seen_ : int
87
+ The number of samples processed by the estimator. Will be reset on
88
+ new calls to ``fit``, but increments across ``partial_fit`` calls.
89
+
90
+ batch_size_ : int
91
+ Inferred batch size from ``batch_size``.
92
+
93
+ n_features_in_ : int
94
+ Number of features seen during ``fit`` or ``partial_fit``.
95
+
96
+ Note
97
+ ----
98
+ Attribute exists only if corresponding result option has been provided.
99
+
100
+ Examples
101
+ --------
102
+ >>> import numpy as np
103
+ >>> from sklearnex.basic_statistics import IncrementalBasicStatistics
104
+ >>> incbs = IncrementalBasicStatistics(batch_size=1)
105
+ >>> X = np.array([[1, 2], [3, 4]])
106
+ >>> incbs.partial_fit(X[:1])
107
+ >>> incbs.partial_fit(X[1:])
108
+ >>> incbs.sum_
109
+ np.array([4., 6.])
110
+ >>> incbs.min_
111
+ np.array([1., 2.])
112
+ >>> incbs.fit(X)
113
+ >>> incbs.sum_
114
+ np.array([4., 6.])
115
+ >>> incbs.max_
116
+ np.array([3., 4.])
84
117
  """
85
118
 
86
119
  _onedal_incremental_basic_statistics = staticmethod(onedal_IncrementalBasicStatistics)
@@ -229,14 +262,14 @@ class IncrementalBasicStatistics(BaseEstimator):
229
262
  Parameters
230
263
  ----------
231
264
  X : array-like of shape (n_samples, n_features)
232
- Data for compute, where `n_samples` is the number of samples and
233
- `n_features` is the number of features.
265
+ Data for compute, where ``n_samples`` is the number of samples and
266
+ ``n_features`` is the number of features.
234
267
 
235
268
  y : Ignored
236
269
  Not used, present for API consistency by convention.
237
270
 
238
271
  sample_weight : array-like of shape (n_samples,), default=None
239
- Weights for compute weighted statistics, where `n_samples` is the number of samples.
272
+ Weights for compute weighted statistics, where ``n_samples`` is the number of samples.
240
273
 
241
274
  Returns
242
275
  -------
@@ -261,14 +294,14 @@ class IncrementalBasicStatistics(BaseEstimator):
261
294
  Parameters
262
295
  ----------
263
296
  X : array-like of shape (n_samples, n_features)
264
- Data for compute, where `n_samples` is the number of samples and
265
- `n_features` is the number of features.
297
+ Data for compute, where ``n_samples`` is the number of samples and
298
+ ``n_features`` is the number of features.
266
299
 
267
300
  y : Ignored
268
301
  Not used, present for API consistency by convention.
269
302
 
270
303
  sample_weight : array-like of shape (n_samples,), default=None
271
- Weights for compute weighted statistics, where `n_samples` is the number of samples.
304
+ Weights for compute weighted statistics, where ``n_samples`` is the number of samples.
272
305
 
273
306
  Returns
274
307
  -------
@@ -44,9 +44,9 @@ if sklearn_check_version("1.2"):
44
44
  @control_n_jobs(decorated_methods=["partial_fit", "fit", "_onedal_finalize_fit"])
45
45
  class IncrementalEmpiricalCovariance(BaseEstimator):
46
46
  """
47
- Incremental estimator for covariance.
48
- Allows to compute empirical covariance estimated by maximum
49
- likelihood method if data are splitted into batches.
47
+ Maximum likelihood covariance estimator that allows for the estimation when the data are split into
48
+ batches. The user can use the ``partial_fit`` method to provide a single batch of data or use the ``fit`` method to provide
49
+ the entire dataset.
50
50
 
51
51
  Parameters
52
52
  ----------
@@ -79,13 +79,31 @@ class IncrementalEmpiricalCovariance(BaseEstimator):
79
79
 
80
80
  n_samples_seen_ : int
81
81
  The number of samples processed by the estimator. Will be reset on
82
- new calls to fit, but increments across ``partial_fit`` calls.
82
+ new calls to ``fit``, but increments across ``partial_fit`` calls.
83
83
 
84
84
  batch_size_ : int
85
85
  Inferred batch size from ``batch_size``.
86
86
 
87
87
  n_features_in_ : int
88
- Number of features seen during :term:`fit` `partial_fit`.
88
+ Number of features seen during ``fit`` or ``partial_fit``.
89
+
90
+ Examples
91
+ --------
92
+ >>> import numpy as np
93
+ >>> from sklearnex.covariance import IncrementalEmpiricalCovariance
94
+ >>> inccov = IncrementalEmpiricalCovariance(batch_size=1)
95
+ >>> X = np.array([[1, 2], [3, 4]])
96
+ >>> inccov.partial_fit(X[:1])
97
+ >>> inccov.partial_fit(X[1:])
98
+ >>> inccov.covariance_
99
+ np.array([[1., 1.],[1., 1.]])
100
+ >>> inccov.location_
101
+ np.array([2., 3.])
102
+ >>> inccov.fit(X)
103
+ >>> inccov.covariance_
104
+ np.array([[1., 1.],[1., 1.]])
105
+ >>> inccov.location_
106
+ np.array([2., 3.])
89
107
  """
90
108
 
91
109
  _onedal_incremental_covariance = staticmethod(onedal_IncrementalEmpiricalCovariance)
@@ -49,8 +49,9 @@ from .._utils import PatchingConditionsChain, register_hyperparameters
49
49
  )
50
50
  class IncrementalLinearRegression(MultiOutputMixin, RegressorMixin, BaseEstimator):
51
51
  """
52
- Incremental estimator for linear regression.
53
- Allows to train linear regression if data are splitted into batches.
52
+ Trains a linear regression model, allows for computation if the data are split into
53
+ batches. The user can use the ``partial_fit`` method to provide a single batch of data or use the ``fit`` method to provide
54
+ the entire dataset.
54
55
 
55
56
  Parameters
56
57
  ----------
@@ -68,8 +69,7 @@ class IncrementalLinearRegression(MultiOutputMixin, RegressorMixin, BaseEstimato
68
69
  batch_size : int, default=None
69
70
  The number of samples to use for each batch. Only used when calling
70
71
  ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
71
- is inferred from the data and set to ``5 * n_features``, to provide a
72
- balance between approximation accuracy and memory consumption.
72
+ is inferred from the data and set to ``5 * n_features``.
73
73
 
74
74
  Attributes
75
75
  ----------
@@ -83,12 +83,9 @@ class IncrementalLinearRegression(MultiOutputMixin, RegressorMixin, BaseEstimato
83
83
  Independent term in the linear model. Set to 0.0 if
84
84
  `fit_intercept = False`.
85
85
 
86
- n_features_in_ : int
87
- Number of features seen during :term:`fit`.
88
-
89
86
  n_samples_seen_ : int
90
87
  The number of samples processed by the estimator. Will be reset on
91
- new calls to fit, but increments across ``partial_fit`` calls.
88
+ new calls to ``fit``, but increments across ``partial_fit`` calls.
92
89
  It should be not less than `n_features_in_` if `fit_intercept`
93
90
  is False and not less than `n_features_in_` + 1 if `fit_intercept`
94
91
  is True to obtain regression coefficients.
@@ -97,8 +94,26 @@ class IncrementalLinearRegression(MultiOutputMixin, RegressorMixin, BaseEstimato
97
94
  Inferred batch size from ``batch_size``.
98
95
 
99
96
  n_features_in_ : int
100
- Number of features seen during :term:`fit` `partial_fit`.
101
-
97
+ Number of features seen during ``fit`` or ``partial_fit``.
98
+
99
+ Examples
100
+ --------
101
+ >>> import numpy as np
102
+ >>> from sklearnex.linear_model import IncrementalLinearRegression
103
+ >>> inclr = IncrementalLinearRegression(batch_size=2)
104
+ >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 10]])
105
+ >>> y = np.array([1.5, 3.5, 5.5, 8.5])
106
+ >>> inclr.partial_fit(X[:2], y[:2])
107
+ >>> inclr.partial_fit(X[2:], y[2:])
108
+ >>> inclr.coef_
109
+ np.array([0.5., 0.5.])
110
+ >>> inclr.intercept_
111
+ np.array(0.)
112
+ >>> inclr.fit(X)
113
+ >>> inclr.coef_
114
+ np.array([0.5., 0.5.])
115
+ >>> inclr.intercept_
116
+ np.array(0.)
102
117
  """
103
118
 
104
119
  _onedal_incremental_linear = staticmethod(onedal_IncrementalLinearRegression)
@@ -311,12 +326,12 @@ class IncrementalLinearRegression(MultiOutputMixin, RegressorMixin, BaseEstimato
311
326
  Parameters
312
327
  ----------
313
328
  X : array-like of shape (n_samples, n_features)
314
- Training data, where `n_samples` is the number of samples and
329
+ Training data, where ``n_samples`` is the number of samples and
315
330
  `n_features` is the number of features.
316
331
 
317
332
  y : array-like of shape (n_samples,) or (n_samples, n_targets)
318
- Target values, where `n_samples` is the number of samples and
319
- `n_targets` is the number of targets.
333
+ Target values, where ``n_samples`` is the number of samples and
334
+ ``n_targets`` is the number of targets.
320
335
 
321
336
  Returns
322
337
  -------
@@ -339,20 +354,20 @@ class IncrementalLinearRegression(MultiOutputMixin, RegressorMixin, BaseEstimato
339
354
 
340
355
  def fit(self, X, y):
341
356
  """
342
- Fit the model with X and y, using minibatches of size batch_size.
357
+ Fit the model with X and y, using minibatches of size ``batch_size``.
343
358
 
344
359
  Parameters
345
360
  ----------
346
361
  X : array-like of shape (n_samples, n_features)
347
- Training data, where `n_samples` is the number of samples and
348
- `n_features` is the number of features. It is necessary for
349
- `n_samples` to be not less than `n_features` if `fit_intercept`
350
- is False and not less than `n_features` + 1 if `fit_intercept`
362
+ Training data, where ``n_samples`` is the number of samples and
363
+ ``n_features`` is the number of features. It is necessary for
364
+ ``n_samples`` to be not less than ``n_features`` if ``fit_intercept``
365
+ is False and not less than ``n_features + 1`` if ``fit_intercept``
351
366
  is True
352
367
 
353
368
  y : array-like of shape (n_samples,) or (n_samples, n_targets)
354
- Target values, where `n_samples` is the number of samples and
355
- `n_targets` is the number of targets.
369
+ Target values, where ``n_samples`` is the number of samples and
370
+ ``n_targets`` is the number of targets.
356
371
 
357
372
  Returns
358
373
  -------
@@ -376,10 +391,15 @@ class IncrementalLinearRegression(MultiOutputMixin, RegressorMixin, BaseEstimato
376
391
  def predict(self, X, y=None):
377
392
  """
378
393
  Predict using the linear model.
394
+
379
395
  Parameters
380
396
  ----------
381
397
  X : array-like or sparse matrix, shape (n_samples, n_features)
382
398
  Samples.
399
+
400
+ y : Ignored
401
+ Not used, present for API consistency by convention.
402
+
383
403
  Returns
384
404
  -------
385
405
  C : array, shape (n_samples, n_targets)