scikit-learn-intelex 2024.6.0__py312-none-win_amd64.whl → 2025.0.0__py312-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/_daal4py.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/doc/third-party-programs.txt +424 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +19 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/mb/model_builders.py +377 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +242 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +241 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +597 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- {scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn}/decomposition/__init__.py +2 -2
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +524 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1397 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/__init__.py +29 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +272 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +325 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +2 -2
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- {scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/manifold}/__init__.py +3 -3
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +405 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +155 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +4 -2
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +503 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +139 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +74 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +734 -0
- {scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/covariance → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/utils}/__init__.py +5 -3
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +75 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +693 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/__init__.py +83 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/_config.py +53 -0
- {scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal}/_device_offload.py +104 -132
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +107 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +110 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +560 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +115 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/common/_base.py +38 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/common/_policy.py +59 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/common/_spmd_policy.py +30 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +116 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/common/tests/test_policy.py +75 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +125 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +146 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +122 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +19 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +95 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +235 -0
- {scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/decomposition}/__init__.py +3 -2
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +204 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +186 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +198 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +720 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +258 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +329 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +249 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +149 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +778 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +25 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +153 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/svm/svm.py +556 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +351 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +168 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/tests/test_common.py +41 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +168 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +107 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/utils/__init__.py +49 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +91 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal/utils/validation.py +432 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/_config.py +3 -15
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +121 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +140 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +5 -5
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +1 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +1 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -1
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +383 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +153 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +68 -17
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +46 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +25 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +113 -9
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +9 -36
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +9 -12
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +2 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +13 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +5 -6
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +418 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +2 -34
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +79 -59
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +24 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +13 -10
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +28 -3
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +46 -3
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +21 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +5 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +5 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +11 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +45 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +1 -20
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +1 -20
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +31 -7
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +8 -8
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +2 -2
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +19 -17
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py +419 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +2 -1
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +19 -21
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +1 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +1 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +12 -20
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +143 -20
- scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/tests/_utils_spmd.py +198 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +4 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +2 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +12 -4
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +16 -14
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +33 -20
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +1 -2
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +5 -20
- {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2025.0.0.dist-info}/METADATA +3 -2
- scikit_learn_intelex-2025.0.0.dist-info/RECORD +255 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -17
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -30
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -84
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -303
- scikit_learn_intelex-2024.6.0.dist-info/RECORD +0 -108
- {scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/onedal}/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/tests/test_common.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2025.0.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2025.0.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2025.0.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2025.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,383 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import logging
|
|
18
|
+
|
|
19
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
20
|
+
|
|
21
|
+
if daal_check_version((2023, "P", 200)):
|
|
22
|
+
|
|
23
|
+
import numbers
|
|
24
|
+
import warnings
|
|
25
|
+
|
|
26
|
+
import numpy as np
|
|
27
|
+
from scipy.sparse import issparse
|
|
28
|
+
from sklearn.cluster import KMeans as sklearn_KMeans
|
|
29
|
+
from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
|
|
30
|
+
from sklearn.utils.validation import (
|
|
31
|
+
_check_sample_weight,
|
|
32
|
+
_num_samples,
|
|
33
|
+
check_is_fitted,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
37
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
38
|
+
from onedal.cluster import KMeans as onedal_KMeans
|
|
39
|
+
from onedal.utils import _is_csr
|
|
40
|
+
|
|
41
|
+
from .._device_offload import dispatch, wrap_output_data
|
|
42
|
+
from .._utils import PatchingConditionsChain
|
|
43
|
+
|
|
44
|
+
@control_n_jobs(decorated_methods=["fit", "predict", "transform", "fit_transform"])
|
|
45
|
+
class KMeans(sklearn_KMeans):
|
|
46
|
+
__doc__ = sklearn_KMeans.__doc__
|
|
47
|
+
|
|
48
|
+
if sklearn_check_version("1.2"):
|
|
49
|
+
_parameter_constraints: dict = {**sklearn_KMeans._parameter_constraints}
|
|
50
|
+
|
|
51
|
+
def __init__(
|
|
52
|
+
self,
|
|
53
|
+
n_clusters=8,
|
|
54
|
+
*,
|
|
55
|
+
init="k-means++",
|
|
56
|
+
n_init=(
|
|
57
|
+
"auto"
|
|
58
|
+
if sklearn_check_version("1.4")
|
|
59
|
+
else "warn" if sklearn_check_version("1.2") else 10
|
|
60
|
+
),
|
|
61
|
+
max_iter=300,
|
|
62
|
+
tol=1e-4,
|
|
63
|
+
verbose=0,
|
|
64
|
+
random_state=None,
|
|
65
|
+
copy_x=True,
|
|
66
|
+
algorithm="lloyd" if sklearn_check_version("1.1") else "auto",
|
|
67
|
+
):
|
|
68
|
+
super().__init__(
|
|
69
|
+
n_clusters=n_clusters,
|
|
70
|
+
init=init,
|
|
71
|
+
max_iter=max_iter,
|
|
72
|
+
tol=tol,
|
|
73
|
+
n_init=n_init,
|
|
74
|
+
verbose=verbose,
|
|
75
|
+
random_state=random_state,
|
|
76
|
+
copy_x=copy_x,
|
|
77
|
+
algorithm=algorithm,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
def _initialize_onedal_estimator(self):
|
|
81
|
+
onedal_params = {
|
|
82
|
+
"n_clusters": self.n_clusters,
|
|
83
|
+
"init": self.init,
|
|
84
|
+
"max_iter": self.max_iter,
|
|
85
|
+
"tol": self.tol,
|
|
86
|
+
"n_init": self.n_init,
|
|
87
|
+
"verbose": self.verbose,
|
|
88
|
+
"random_state": self.random_state,
|
|
89
|
+
}
|
|
90
|
+
|
|
91
|
+
self._onedal_estimator = onedal_KMeans(**onedal_params)
|
|
92
|
+
|
|
93
|
+
def _onedal_fit_supported(self, method_name, X, y=None, sample_weight=None):
|
|
94
|
+
assert method_name == "fit"
|
|
95
|
+
|
|
96
|
+
class_name = self.__class__.__name__
|
|
97
|
+
patching_status = PatchingConditionsChain(f"sklearn.cluster.{class_name}.fit")
|
|
98
|
+
|
|
99
|
+
sample_count = _num_samples(X)
|
|
100
|
+
self._algorithm = self.algorithm
|
|
101
|
+
supported_algs = ["auto", "full", "lloyd", "elkan"]
|
|
102
|
+
if self.algorithm == "elkan":
|
|
103
|
+
logging.getLogger("sklearnex").info(
|
|
104
|
+
"oneDAL does not support 'elkan', using 'lloyd' algorithm instead."
|
|
105
|
+
)
|
|
106
|
+
correct_count = self.n_clusters < sample_count
|
|
107
|
+
|
|
108
|
+
is_data_supported = (
|
|
109
|
+
_is_csr(X) and daal_check_version((2024, "P", 700))
|
|
110
|
+
) or not issparse(X)
|
|
111
|
+
|
|
112
|
+
_acceptable_sample_weights = self._validate_sample_weight(sample_weight, X)
|
|
113
|
+
|
|
114
|
+
patching_status.and_conditions(
|
|
115
|
+
[
|
|
116
|
+
(
|
|
117
|
+
self.algorithm in supported_algs,
|
|
118
|
+
"Only 'lloyd' algorithm is supported, 'elkan' is computed using lloyd",
|
|
119
|
+
),
|
|
120
|
+
(correct_count, "n_clusters is smaller than number of samples"),
|
|
121
|
+
(
|
|
122
|
+
_acceptable_sample_weights,
|
|
123
|
+
"oneDAL doesn't support sample_weight. Accepted options are None, constant, or equal weights.",
|
|
124
|
+
),
|
|
125
|
+
(
|
|
126
|
+
is_data_supported,
|
|
127
|
+
"Supported data formats: Dense, CSR (oneDAL version >= 2024.7.0).",
|
|
128
|
+
),
|
|
129
|
+
]
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
return patching_status
|
|
133
|
+
|
|
134
|
+
def fit(self, X, y=None, sample_weight=None):
|
|
135
|
+
if sklearn_check_version("1.2"):
|
|
136
|
+
self._validate_params()
|
|
137
|
+
|
|
138
|
+
dispatch(
|
|
139
|
+
self,
|
|
140
|
+
"fit",
|
|
141
|
+
{
|
|
142
|
+
"onedal": self.__class__._onedal_fit,
|
|
143
|
+
"sklearn": sklearn_KMeans.fit,
|
|
144
|
+
},
|
|
145
|
+
X,
|
|
146
|
+
y,
|
|
147
|
+
sample_weight,
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
return self
|
|
151
|
+
|
|
152
|
+
def _onedal_fit(self, X, _, sample_weight, queue=None):
|
|
153
|
+
X = self._validate_data(
|
|
154
|
+
X,
|
|
155
|
+
accept_sparse="csr",
|
|
156
|
+
dtype=[np.float64, np.float32],
|
|
157
|
+
order="C",
|
|
158
|
+
copy=self.copy_x,
|
|
159
|
+
accept_large_sparse=False,
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
if sklearn_check_version("1.2"):
|
|
163
|
+
self._check_params_vs_input(X)
|
|
164
|
+
else:
|
|
165
|
+
self._check_params(X)
|
|
166
|
+
|
|
167
|
+
self._n_features_out = self.n_clusters
|
|
168
|
+
|
|
169
|
+
self._initialize_onedal_estimator()
|
|
170
|
+
self._n_threads = _openmp_effective_n_threads()
|
|
171
|
+
self._onedal_estimator.fit(X, queue=queue)
|
|
172
|
+
|
|
173
|
+
self._save_attributes()
|
|
174
|
+
|
|
175
|
+
def _validate_sample_weight(self, sample_weight, X):
|
|
176
|
+
if sample_weight is None:
|
|
177
|
+
return True
|
|
178
|
+
elif isinstance(sample_weight, numbers.Number):
|
|
179
|
+
return True
|
|
180
|
+
else:
|
|
181
|
+
sample_weight = _check_sample_weight(
|
|
182
|
+
sample_weight,
|
|
183
|
+
X,
|
|
184
|
+
dtype=X.dtype if hasattr(X, "dtype") else None,
|
|
185
|
+
)
|
|
186
|
+
if np.all(sample_weight == sample_weight[0]):
|
|
187
|
+
return True
|
|
188
|
+
else:
|
|
189
|
+
return False
|
|
190
|
+
|
|
191
|
+
def _onedal_predict_supported(self, method_name, X, sample_weight=None):
|
|
192
|
+
class_name = self.__class__.__name__
|
|
193
|
+
is_data_supported = (
|
|
194
|
+
_is_csr(X) and daal_check_version((2024, "P", 700))
|
|
195
|
+
) or not issparse(X)
|
|
196
|
+
patching_status = PatchingConditionsChain(
|
|
197
|
+
f"sklearn.cluster.{class_name}.predict"
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
# algorithm "auto" has been deprecated since 1.1,
|
|
201
|
+
# algorithm "full" has been replaced by "lloyd"
|
|
202
|
+
supported_algs = ["auto", "full", "lloyd", "elkan"]
|
|
203
|
+
if self.algorithm == "elkan":
|
|
204
|
+
logging.getLogger("sklearnex").info(
|
|
205
|
+
"oneDAL does not support 'elkan', using 'lloyd' algorithm instead."
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
_acceptable_sample_weights = True
|
|
209
|
+
if not sklearn_check_version("1.5"):
|
|
210
|
+
_acceptable_sample_weights = self._validate_sample_weight(
|
|
211
|
+
sample_weight, X
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
patching_status.and_conditions(
|
|
215
|
+
[
|
|
216
|
+
(
|
|
217
|
+
self.algorithm in supported_algs,
|
|
218
|
+
"Only 'lloyd' algorithm is supported, 'elkan' is computed using lloyd.",
|
|
219
|
+
),
|
|
220
|
+
(
|
|
221
|
+
is_data_supported,
|
|
222
|
+
"Supported data formats: Dense, CSR (oneDAL version >= 2024.7.0).",
|
|
223
|
+
),
|
|
224
|
+
(
|
|
225
|
+
_acceptable_sample_weights,
|
|
226
|
+
"oneDAL doesn't support sample_weight. Acceptable options are None, constant, or equal weights.",
|
|
227
|
+
),
|
|
228
|
+
]
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
return patching_status
|
|
232
|
+
|
|
233
|
+
if sklearn_check_version("1.5"):
|
|
234
|
+
|
|
235
|
+
@wrap_output_data
|
|
236
|
+
def predict(self, X):
|
|
237
|
+
self._validate_params()
|
|
238
|
+
|
|
239
|
+
return dispatch(
|
|
240
|
+
self,
|
|
241
|
+
"predict",
|
|
242
|
+
{
|
|
243
|
+
"onedal": self.__class__._onedal_predict,
|
|
244
|
+
"sklearn": sklearn_KMeans.predict,
|
|
245
|
+
},
|
|
246
|
+
X,
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
else:
|
|
250
|
+
|
|
251
|
+
@wrap_output_data
|
|
252
|
+
def predict(
|
|
253
|
+
self,
|
|
254
|
+
X,
|
|
255
|
+
sample_weight="deprecated" if sklearn_check_version("1.3") else None,
|
|
256
|
+
):
|
|
257
|
+
if sklearn_check_version("1.2"):
|
|
258
|
+
self._validate_params()
|
|
259
|
+
|
|
260
|
+
return dispatch(
|
|
261
|
+
self,
|
|
262
|
+
"predict",
|
|
263
|
+
{
|
|
264
|
+
"onedal": self.__class__._onedal_predict,
|
|
265
|
+
"sklearn": sklearn_KMeans.predict,
|
|
266
|
+
},
|
|
267
|
+
X,
|
|
268
|
+
sample_weight=sample_weight,
|
|
269
|
+
)
|
|
270
|
+
|
|
271
|
+
def _onedal_predict(self, X, sample_weight=None, queue=None):
|
|
272
|
+
check_is_fitted(self)
|
|
273
|
+
|
|
274
|
+
X = self._validate_data(
|
|
275
|
+
X,
|
|
276
|
+
accept_sparse="csr",
|
|
277
|
+
reset=False,
|
|
278
|
+
dtype=[np.float64, np.float32],
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
if not sklearn_check_version("1.5") and sklearn_check_version("1.3"):
|
|
282
|
+
if isinstance(sample_weight, str) and sample_weight == "deprecated":
|
|
283
|
+
sample_weight = None
|
|
284
|
+
|
|
285
|
+
if sample_weight is not None:
|
|
286
|
+
warnings.warn(
|
|
287
|
+
"'sample_weight' was deprecated in version 1.3 and "
|
|
288
|
+
"will be removed in 1.5.",
|
|
289
|
+
FutureWarning,
|
|
290
|
+
)
|
|
291
|
+
|
|
292
|
+
if not hasattr(self, "_onedal_estimator"):
|
|
293
|
+
self._initialize_onedal_estimator()
|
|
294
|
+
self._onedal_estimator.cluster_centers_ = self.cluster_centers_
|
|
295
|
+
|
|
296
|
+
return self._onedal_estimator.predict(X, queue=queue)
|
|
297
|
+
|
|
298
|
+
def _onedal_supported(self, method_name, *data):
|
|
299
|
+
if method_name == "fit":
|
|
300
|
+
return self._onedal_fit_supported(method_name, *data)
|
|
301
|
+
if method_name in ["predict", "score"]:
|
|
302
|
+
return self._onedal_predict_supported(method_name, *data)
|
|
303
|
+
raise RuntimeError(
|
|
304
|
+
f"Unknown method {method_name} in {self.__class__.__name__}"
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
_onedal_gpu_supported = _onedal_supported
|
|
308
|
+
_onedal_cpu_supported = _onedal_supported
|
|
309
|
+
|
|
310
|
+
@wrap_output_data
|
|
311
|
+
def fit_transform(self, X, y=None, sample_weight=None):
|
|
312
|
+
return self.fit(X, sample_weight=sample_weight)._transform(X)
|
|
313
|
+
|
|
314
|
+
@wrap_output_data
|
|
315
|
+
def transform(self, X):
|
|
316
|
+
check_is_fitted(self)
|
|
317
|
+
|
|
318
|
+
X = self._check_test_data(X)
|
|
319
|
+
return self._transform(X)
|
|
320
|
+
|
|
321
|
+
@wrap_output_data
|
|
322
|
+
def score(self, X, y=None, sample_weight=None):
|
|
323
|
+
return dispatch(
|
|
324
|
+
self,
|
|
325
|
+
"score",
|
|
326
|
+
{
|
|
327
|
+
"onedal": self.__class__._onedal_score,
|
|
328
|
+
"sklearn": sklearn_KMeans.score,
|
|
329
|
+
},
|
|
330
|
+
X,
|
|
331
|
+
y,
|
|
332
|
+
sample_weight=sample_weight,
|
|
333
|
+
)
|
|
334
|
+
|
|
335
|
+
def _onedal_score(self, X, y, sample_weight=None, queue=None):
|
|
336
|
+
check_is_fitted(self)
|
|
337
|
+
|
|
338
|
+
X = self._validate_data(
|
|
339
|
+
X,
|
|
340
|
+
accept_sparse="csr",
|
|
341
|
+
reset=False,
|
|
342
|
+
dtype=[np.float64, np.float32],
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
if not sklearn_check_version("1.5") and sklearn_check_version("1.3"):
|
|
346
|
+
if isinstance(sample_weight, str) and sample_weight == "deprecated":
|
|
347
|
+
sample_weight = None
|
|
348
|
+
|
|
349
|
+
if sample_weight is not None:
|
|
350
|
+
warnings.warn(
|
|
351
|
+
"'sample_weight' was deprecated in version 1.3 and "
|
|
352
|
+
"will be removed in 1.5.",
|
|
353
|
+
FutureWarning,
|
|
354
|
+
)
|
|
355
|
+
|
|
356
|
+
if not hasattr(self, "_onedal_estimator"):
|
|
357
|
+
self._initialize_onedal_estimator()
|
|
358
|
+
self._onedal_estimator.cluster_centers_ = self.cluster_centers_
|
|
359
|
+
|
|
360
|
+
return self._onedal_estimator.score(X, queue=queue)
|
|
361
|
+
|
|
362
|
+
def _save_attributes(self):
|
|
363
|
+
assert hasattr(self, "_onedal_estimator")
|
|
364
|
+
self.cluster_centers_ = self._onedal_estimator.cluster_centers_
|
|
365
|
+
self.labels_ = self._onedal_estimator.labels_
|
|
366
|
+
self.inertia_ = self._onedal_estimator.inertia_
|
|
367
|
+
self.n_iter_ = self._onedal_estimator.n_iter_
|
|
368
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
369
|
+
|
|
370
|
+
self._n_init = self._onedal_estimator._n_init
|
|
371
|
+
|
|
372
|
+
fit.__doc__ = sklearn_KMeans.fit.__doc__
|
|
373
|
+
predict.__doc__ = sklearn_KMeans.predict.__doc__
|
|
374
|
+
transform.__doc__ = sklearn_KMeans.transform.__doc__
|
|
375
|
+
fit_transform.__doc__ = sklearn_KMeans.fit_transform.__doc__
|
|
376
|
+
score.__doc__ = sklearn_KMeans.score.__doc__
|
|
377
|
+
|
|
378
|
+
else:
|
|
379
|
+
from daal4py.sklearn.cluster import KMeans
|
|
380
|
+
|
|
381
|
+
logging.warning(
|
|
382
|
+
"Sklearnex KMeans requires oneDAL version >= 2023.2, falling back to daal4py."
|
|
383
|
+
)
|
scikit_learn_intelex-2025.0.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
from scipy.sparse import csr_matrix
|
|
21
|
+
from sklearn.datasets import make_blobs
|
|
22
|
+
|
|
23
|
+
from daal4py.sklearn._utils import daal_check_version, sklearn_check_version
|
|
24
|
+
from onedal.tests.utils._dataframes_support import (
|
|
25
|
+
_as_numpy,
|
|
26
|
+
_convert_to_dataframe,
|
|
27
|
+
get_dataframes_and_queues,
|
|
28
|
+
get_queues,
|
|
29
|
+
)
|
|
30
|
+
from sklearnex import config_context
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def generate_dense_dataset(n_samples, n_features, density, n_clusters):
|
|
34
|
+
np.random.seed(2024 + n_samples + n_features + n_clusters)
|
|
35
|
+
X, _ = make_blobs(
|
|
36
|
+
n_samples=n_samples,
|
|
37
|
+
n_features=n_features,
|
|
38
|
+
centers=n_clusters,
|
|
39
|
+
cluster_std=1.0,
|
|
40
|
+
random_state=42,
|
|
41
|
+
)
|
|
42
|
+
mask = np.random.binomial(1, density, (n_samples, n_features))
|
|
43
|
+
X = X * mask
|
|
44
|
+
return X
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
48
|
+
@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"])
|
|
49
|
+
@pytest.mark.parametrize("init", ["k-means++", "random"])
|
|
50
|
+
def test_sklearnex_import_for_dense_data(dataframe, queue, algorithm, init):
|
|
51
|
+
if not sklearn_check_version("1.1") and algorithm == "lloyd":
|
|
52
|
+
pytest.skip("lloyd requires sklearn>=1.1.")
|
|
53
|
+
from sklearnex.cluster import KMeans
|
|
54
|
+
|
|
55
|
+
X_dense = generate_dense_dataset(1000, 10, 0.5, 3)
|
|
56
|
+
X_dense_df = _convert_to_dataframe(X_dense, sycl_queue=queue, target_df=dataframe)
|
|
57
|
+
|
|
58
|
+
kmeans_dense = KMeans(
|
|
59
|
+
n_clusters=3, random_state=0, algorithm=algorithm, init=init
|
|
60
|
+
).fit(X_dense_df)
|
|
61
|
+
|
|
62
|
+
if daal_check_version((2023, "P", 200)):
|
|
63
|
+
assert "sklearnex" in kmeans_dense.__module__
|
|
64
|
+
else:
|
|
65
|
+
assert "daal4py" in kmeans_dense.__module__
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
@pytest.mark.skipif(
|
|
69
|
+
not daal_check_version((2024, "P", 700)),
|
|
70
|
+
reason="Sparse data requires oneDAL>=2024.7.0",
|
|
71
|
+
)
|
|
72
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
73
|
+
@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"])
|
|
74
|
+
@pytest.mark.parametrize("init", ["k-means++", "random"])
|
|
75
|
+
def test_sklearnex_import_for_sparse_data(queue, algorithm, init):
|
|
76
|
+
from sklearnex.cluster import KMeans
|
|
77
|
+
|
|
78
|
+
X_dense = generate_dense_dataset(1000, 10, 0.5, 3)
|
|
79
|
+
X_sparse = csr_matrix(X_dense)
|
|
80
|
+
|
|
81
|
+
kmeans_sparse = KMeans(
|
|
82
|
+
n_clusters=3, random_state=0, algorithm=algorithm, init=init
|
|
83
|
+
).fit(X_sparse)
|
|
84
|
+
|
|
85
|
+
assert "sklearnex" in kmeans_sparse.__module__
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
89
|
+
@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"])
|
|
90
|
+
def test_results_on_dense_gold_data(dataframe, queue, algorithm):
|
|
91
|
+
if not sklearn_check_version("1.1") and algorithm == "lloyd":
|
|
92
|
+
pytest.skip("lloyd requires sklearn>=1.1.")
|
|
93
|
+
|
|
94
|
+
from sklearnex.cluster import KMeans
|
|
95
|
+
|
|
96
|
+
X_train = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]])
|
|
97
|
+
X_test = np.array([[0, 0], [12, 3]])
|
|
98
|
+
X_train_df = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
|
|
99
|
+
X_test_df = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
100
|
+
|
|
101
|
+
kmeans = KMeans(n_clusters=2, random_state=0, algorithm=algorithm).fit(X_train_df)
|
|
102
|
+
|
|
103
|
+
if queue and queue.sycl_device.is_gpu:
|
|
104
|
+
# KMeans Init Dense GPU implementation is different from CPU
|
|
105
|
+
expected_cluster_labels = np.array([0, 1], dtype=np.int32)
|
|
106
|
+
expected_cluster_centers = np.array([[1.0, 2.0], [10.0, 2.0]], dtype=np.float32)
|
|
107
|
+
expected_inertia = 16.0
|
|
108
|
+
else:
|
|
109
|
+
expected_cluster_labels = np.array([1, 0], dtype=np.int32)
|
|
110
|
+
expected_cluster_centers = np.array([[10.0, 2.0], [1.0, 2.0]], dtype=np.float32)
|
|
111
|
+
expected_inertia = 16.0
|
|
112
|
+
|
|
113
|
+
assert_allclose(expected_cluster_labels, _as_numpy(kmeans.predict(X_test_df)))
|
|
114
|
+
assert_allclose(expected_cluster_centers, _as_numpy(kmeans.cluster_centers_))
|
|
115
|
+
assert expected_inertia == kmeans.inertia_
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
@pytest.mark.skipif(
|
|
119
|
+
not daal_check_version((2024, "P", 700)),
|
|
120
|
+
reason="Sparse data requires oneDAL>=2024.7.0",
|
|
121
|
+
)
|
|
122
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
123
|
+
@pytest.mark.parametrize("init", ["k-means++", "random", "arraylike"])
|
|
124
|
+
@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"])
|
|
125
|
+
@pytest.mark.parametrize(
|
|
126
|
+
"dims", [(1000, 10, 0.95, 3), (50000, 100, 0.75, 10), (10000, 10, 0.8, 5)]
|
|
127
|
+
)
|
|
128
|
+
def test_dense_vs_sparse(queue, init, algorithm, dims):
|
|
129
|
+
from sklearnex.cluster import KMeans
|
|
130
|
+
|
|
131
|
+
if init == "random":
|
|
132
|
+
pytest.skip("Random initialization in sparse K-means is buggy.")
|
|
133
|
+
|
|
134
|
+
# For higher level of sparsity (smaller density) the test may fail
|
|
135
|
+
n_samples, n_features, density, n_clusters = dims
|
|
136
|
+
X_dense = generate_dense_dataset(n_samples, n_features, density, n_clusters)
|
|
137
|
+
X_sparse = csr_matrix(X_dense)
|
|
138
|
+
|
|
139
|
+
if init == "arraylike":
|
|
140
|
+
np.random.seed(2024 + n_samples + n_features + n_clusters)
|
|
141
|
+
init = X_dense[np.random.choice(n_samples, size=n_clusters, replace=False)]
|
|
142
|
+
|
|
143
|
+
kmeans_dense = KMeans(
|
|
144
|
+
n_clusters=n_clusters, random_state=0, init=init, algorithm=algorithm
|
|
145
|
+
).fit(X_dense)
|
|
146
|
+
kmeans_sparse = KMeans(
|
|
147
|
+
n_clusters=n_clusters, random_state=0, init=init, algorithm=algorithm
|
|
148
|
+
).fit(X_sparse)
|
|
149
|
+
|
|
150
|
+
assert_allclose(
|
|
151
|
+
kmeans_dense.cluster_centers_,
|
|
152
|
+
kmeans_sparse.cluster_centers_,
|
|
153
|
+
)
|
|
@@ -19,13 +19,14 @@ import warnings
|
|
|
19
19
|
|
|
20
20
|
import numpy as np
|
|
21
21
|
from scipy import linalg
|
|
22
|
-
from sklearn.base import BaseEstimator
|
|
22
|
+
from sklearn.base import BaseEstimator, clone
|
|
23
23
|
from sklearn.covariance import EmpiricalCovariance as sklearn_EmpiricalCovariance
|
|
24
|
+
from sklearn.covariance import log_likelihood
|
|
24
25
|
from sklearn.utils import check_array, gen_batches
|
|
26
|
+
from sklearn.utils.validation import _num_features
|
|
25
27
|
|
|
26
28
|
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
27
29
|
from daal4py.sklearn._utils import daal_check_version, sklearn_check_version
|
|
28
|
-
from onedal._device_offload import support_usm_ndarray
|
|
29
30
|
from onedal.covariance import (
|
|
30
31
|
IncrementalEmpiricalCovariance as onedal_IncrementalEmpiricalCovariance,
|
|
31
32
|
)
|
|
@@ -34,6 +35,7 @@ from sklearnex import config_context
|
|
|
34
35
|
from .._device_offload import dispatch, wrap_output_data
|
|
35
36
|
from .._utils import PatchingConditionsChain, register_hyperparameters
|
|
36
37
|
from ..metrics import pairwise_distances
|
|
38
|
+
from ..utils._array_api import get_namespace
|
|
37
39
|
|
|
38
40
|
if sklearn_check_version("1.2"):
|
|
39
41
|
from sklearn.utils._param_validation import Interval
|
|
@@ -98,7 +100,6 @@ class IncrementalEmpiricalCovariance(BaseEstimator):
|
|
|
98
100
|
|
|
99
101
|
get_precision = sklearn_EmpiricalCovariance.get_precision
|
|
100
102
|
error_norm = wrap_output_data(sklearn_EmpiricalCovariance.error_norm)
|
|
101
|
-
score = wrap_output_data(sklearn_EmpiricalCovariance.score)
|
|
102
103
|
|
|
103
104
|
def __init__(
|
|
104
105
|
self, *, store_precision=False, assume_centered=False, batch_size=None, copy=True
|
|
@@ -114,9 +115,9 @@ class IncrementalEmpiricalCovariance(BaseEstimator):
|
|
|
114
115
|
)
|
|
115
116
|
return patching_status
|
|
116
117
|
|
|
117
|
-
def _onedal_finalize_fit(self):
|
|
118
|
+
def _onedal_finalize_fit(self, queue=None):
|
|
118
119
|
assert hasattr(self, "_onedal_estimator")
|
|
119
|
-
self._onedal_estimator.finalize_fit()
|
|
120
|
+
self._onedal_estimator.finalize_fit(queue=queue)
|
|
120
121
|
self._need_to_finalize = False
|
|
121
122
|
|
|
122
123
|
if not daal_check_version((2024, "P", 400)) and self.assume_centered:
|
|
@@ -191,12 +192,49 @@ class IncrementalEmpiricalCovariance(BaseEstimator):
|
|
|
191
192
|
else:
|
|
192
193
|
self.n_samples_seen_ += X.shape[0]
|
|
193
194
|
|
|
194
|
-
self._onedal_estimator.partial_fit(X, queue)
|
|
195
|
+
self._onedal_estimator.partial_fit(X, queue=queue)
|
|
195
196
|
finally:
|
|
196
197
|
self._need_to_finalize = True
|
|
197
198
|
|
|
198
199
|
return self
|
|
199
200
|
|
|
201
|
+
@wrap_output_data
|
|
202
|
+
def score(self, X_test, y=None):
|
|
203
|
+
xp, _ = get_namespace(X_test)
|
|
204
|
+
|
|
205
|
+
location = self.location_
|
|
206
|
+
if sklearn_check_version("1.0"):
|
|
207
|
+
X = self._validate_data(
|
|
208
|
+
X_test,
|
|
209
|
+
dtype=[np.float64, np.float32],
|
|
210
|
+
reset=False,
|
|
211
|
+
)
|
|
212
|
+
else:
|
|
213
|
+
X = check_array(
|
|
214
|
+
X_test,
|
|
215
|
+
dtype=[np.float64, np.float32],
|
|
216
|
+
)
|
|
217
|
+
|
|
218
|
+
if "numpy" not in xp.__name__:
|
|
219
|
+
location = xp.asarray(location, device=X_test.device)
|
|
220
|
+
# depending on the sklearn version, check_array
|
|
221
|
+
# and validate_data will return only numpy arrays
|
|
222
|
+
# which will break dpnp/dpctl support. If the
|
|
223
|
+
# array namespace isn't from numpy and the data
|
|
224
|
+
# is now a numpy array, it has been validated and
|
|
225
|
+
# the original can be used.
|
|
226
|
+
if isinstance(X, np.ndarray):
|
|
227
|
+
X = X_test
|
|
228
|
+
|
|
229
|
+
est = clone(self)
|
|
230
|
+
est.set_params(**{"assume_centered": True})
|
|
231
|
+
|
|
232
|
+
# test_cov is a numpy array, but calculated on device
|
|
233
|
+
test_cov = est.fit(X - location).covariance_
|
|
234
|
+
res = log_likelihood(test_cov, self.get_precision())
|
|
235
|
+
|
|
236
|
+
return res
|
|
237
|
+
|
|
200
238
|
def partial_fit(self, X, y=None, check_input=True):
|
|
201
239
|
"""
|
|
202
240
|
Incremental fit with X. All of X is processed as a single batch.
|
|
@@ -288,26 +326,39 @@ class IncrementalEmpiricalCovariance(BaseEstimator):
|
|
|
288
326
|
X_batch = X[batch]
|
|
289
327
|
self._onedal_partial_fit(X_batch, queue=queue, check_input=False)
|
|
290
328
|
|
|
291
|
-
self._onedal_finalize_fit()
|
|
329
|
+
self._onedal_finalize_fit(queue=queue)
|
|
292
330
|
|
|
293
331
|
return self
|
|
294
332
|
|
|
295
333
|
# expose sklearnex pairwise_distances if mahalanobis distance eventually supported
|
|
296
|
-
@wrap_output_data
|
|
297
334
|
def mahalanobis(self, X):
|
|
298
335
|
if sklearn_check_version("1.0"):
|
|
299
|
-
self.
|
|
300
|
-
else:
|
|
301
|
-
check_array(X, copy=self.copy)
|
|
336
|
+
self._check_feature_names(X, reset=False)
|
|
302
337
|
|
|
338
|
+
xp, _ = get_namespace(X)
|
|
303
339
|
precision = self.get_precision()
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
340
|
+
# compute mahalanobis distances
|
|
341
|
+
# pairwise_distances will check n_features (via n_feature matching with
|
|
342
|
+
# self.location_) , and will check for finiteness via check array
|
|
343
|
+
# check_feature_names will match _validate_data functionally
|
|
344
|
+
location = self.location_[np.newaxis, :]
|
|
345
|
+
if "numpy" not in xp.__name__:
|
|
346
|
+
# Guarantee that inputs to pairwise_distances match in type and location
|
|
347
|
+
location = xp.asarray(location, device=X.device)
|
|
348
|
+
|
|
349
|
+
try:
|
|
350
|
+
dist = pairwise_distances(X, location, metric="mahalanobis", VI=precision)
|
|
351
|
+
except ValueError as e:
|
|
352
|
+
# Throw the expected sklearn error in an n_feature length violation
|
|
353
|
+
if "Incompatible dimension for X and Y matrices: X.shape[1] ==" in str(e):
|
|
354
|
+
raise ValueError(
|
|
355
|
+
f"X has {_num_features(X)} features, but {self.__class__.__name__} "
|
|
356
|
+
f"is expecting {self.n_features_in_} features as input."
|
|
357
|
+
)
|
|
358
|
+
else:
|
|
359
|
+
raise e
|
|
309
360
|
|
|
310
|
-
return
|
|
361
|
+
return (xp.reshape(dist, (-1,))) ** 2
|
|
311
362
|
|
|
312
363
|
_onedal_cpu_supported = _onedal_supported
|
|
313
364
|
_onedal_gpu_supported = _onedal_supported
|