scikit-learn-intelex 2024.6.0__py311-none-win_amd64.whl → 2024.7.0__py311-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (125) hide show
  1. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/_config.py +3 -15
  2. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +98 -0
  3. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +143 -0
  4. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  5. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +1 -1
  6. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -1
  7. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +8 -0
  8. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +15 -3
  9. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +64 -13
  10. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +35 -0
  11. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +25 -1
  12. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +94 -0
  13. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +8 -35
  14. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +9 -12
  15. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +13 -0
  16. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +2 -34
  17. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +79 -59
  18. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +7 -0
  19. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +28 -3
  20. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +45 -3
  21. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +21 -0
  22. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +5 -0
  23. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -0
  24. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +3 -0
  25. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +9 -0
  26. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +45 -1
  27. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +1 -20
  28. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +1 -20
  29. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +31 -7
  30. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  31. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py → scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +19 -17
  32. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py +419 -0
  33. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  34. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  35. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  36. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  37. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  38. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  39. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  40. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  41. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +163 -0
  42. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  43. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +19 -21
  44. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +12 -20
  45. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +143 -20
  46. scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/_utils_spmd.py +185 -0
  47. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +4 -0
  48. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +12 -4
  49. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +16 -13
  50. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +21 -9
  51. {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/METADATA +2 -2
  52. scikit_learn_intelex-2024.7.0.dist-info/RECORD +122 -0
  53. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -257
  54. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -17
  55. scikit_learn_intelex-2024.6.0.dist-info/RECORD +0 -108
  56. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  57. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  58. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  59. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  60. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
  61. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  62. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  63. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
  64. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  65. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  66. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -0
  67. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  68. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  69. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  70. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  71. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
  72. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +0 -0
  73. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  74. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +0 -0
  75. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  76. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  77. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  78. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  79. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  80. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  81. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
  83. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  84. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  85. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
  86. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  87. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
  88. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
  89. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -0
  90. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +0 -0
  91. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +0 -0
  92. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  94. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  95. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  96. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  97. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  98. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  99. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  100. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  101. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  102. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  103. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  104. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  105. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  106. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  107. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  108. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  109. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  110. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +0 -0
  111. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +0 -0
  112. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +0 -0
  113. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +0 -0
  114. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_common.py +0 -0
  115. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -0
  116. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -0
  117. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  118. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  119. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +0 -0
  120. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  121. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +0 -0
  122. {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  123. {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/LICENSE.txt +0 -0
  124. {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/WHEEL +0 -0
  125. {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,185 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ from numpy.testing import assert_allclose
19
+ from sklearn.datasets import make_blobs, make_classification, make_regression
20
+ from sklearn.model_selection import train_test_split
21
+
22
+ from onedal.tests.utils._dataframes_support import _as_numpy
23
+
24
+ try:
25
+ import dpctl
26
+ from dpctl import SyclQueue
27
+ from mpi4py import MPI
28
+
29
+ mpi_libs_available = True
30
+ gpu_is_available = dpctl.has_gpu_devices()
31
+ except (ImportError, ModuleNotFoundError):
32
+ mpi_libs_available = False
33
+
34
+ _mpi_libs_and_gpu_available = mpi_libs_available and gpu_is_available
35
+
36
+
37
+ def _get_local_tensor(full_data):
38
+ """Splits data across ranks.
39
+
40
+ Called on each rank to extract the subset of data assigned to that rank.
41
+
42
+ Args:
43
+ full_data (numpy or dpctl array): The entire set of data
44
+
45
+ Returns:
46
+ local_data (numpy or dpctl array): The subset of data used by the rank
47
+ """
48
+
49
+ # create sycl queue and gather communicator details
50
+ q = SyclQueue("gpu")
51
+ comm = MPI.COMM_WORLD
52
+ rank = comm.Get_rank()
53
+ size = comm.Get_size()
54
+
55
+ # divide data across ranks and move to dpt tensor
56
+ data_rows = full_data.shape[0]
57
+ local_start = rank * data_rows // size
58
+ local_end = (1 + rank) * data_rows // size
59
+ local_data = full_data[local_start:local_end]
60
+
61
+ return local_data
62
+
63
+
64
+ def _generate_regression_data(n_samples, n_features, dtype=np.float64, random_state=42):
65
+ # Generates regression data and divides between train and test
66
+ X, y = make_regression(
67
+ n_samples=n_samples, n_features=n_features, random_state=random_state
68
+ )
69
+ X = X.astype(dtype)
70
+ y = y.astype(dtype)
71
+ X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_state)
72
+ return X_train, X_test, y_train, y_test
73
+
74
+
75
+ def _generate_classification_data(
76
+ n_samples, n_features, n_classes=2, dtype=np.float64, random_state=42
77
+ ):
78
+ # Generates classification data and divides between train and test
79
+ X, y = make_classification(
80
+ n_samples=n_samples,
81
+ n_features=n_features,
82
+ n_classes=n_classes,
83
+ n_informative=int(0.5 * n_classes + 1),
84
+ random_state=random_state,
85
+ )
86
+ X = X.astype(dtype)
87
+ y = y.astype(dtype)
88
+ X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_state)
89
+ return X_train, X_test, y_train, y_test
90
+
91
+
92
+ def _generate_statistic_data(n_samples, n_features, dtype=np.float64, random_state=42):
93
+ # Generates statistical data
94
+ gen = np.random.default_rng(random_state)
95
+ data = gen.uniform(low=-0.3, high=+0.7, size=(n_samples, n_features)).astype(dtype)
96
+ return data
97
+
98
+
99
+ def _generate_clustering_data(
100
+ n_samples, n_features, centers=None, dtype=np.float64, random_state=42
101
+ ):
102
+ # Generates clustering data and divides between train and test
103
+ X, _ = make_blobs(
104
+ n_samples=n_samples,
105
+ centers=centers,
106
+ n_features=n_features,
107
+ random_state=random_state,
108
+ )
109
+ X = X.astype(dtype)
110
+ X_train, X_test = train_test_split(X, random_state=random_state)
111
+ return X_train, X_test
112
+
113
+
114
+ def _spmd_assert_allclose(spmd_result, batch_result, **kwargs):
115
+ """Calls assert_allclose on spmd and batch results.
116
+
117
+ Called on each rank to compare the spmd result specific to that rank and
118
+ subset of batch result that corresponds to that rank.
119
+
120
+ Args:
121
+ spmd_result (numpy or dpctl array): The result for the subset of data on the rank the function is called from, computed by the spmd estimator
122
+ batch_result (numpy array): The result for all data, computed by the batch estimator
123
+
124
+ Raises:
125
+ AssertionError: If all results are not adequately close.
126
+ """
127
+
128
+ # extract chunk from batch result to match with local spmd result
129
+ local_batch_result = _get_local_tensor(batch_result)
130
+
131
+ assert_allclose(_as_numpy(spmd_result), _as_numpy(local_batch_result), **kwargs)
132
+
133
+
134
+ def _assert_unordered_allclose(spmd_result, batch_result, localize=False, **kwargs):
135
+ """Checks if rows in spmd and batch results are aligned, even if not in the same order.
136
+
137
+ Called to verify correct unordered results are present. Useful to check KMeans centers
138
+ or KNN neighbors, where order does not matter. Sorts inputs to handle unordering. Also
139
+ capable of handling localization.
140
+
141
+ Args:
142
+ spmd_result (numpy or dpctl array): Result computed by the spmd estimator
143
+ batch_result (numpy array): Result computed by batch estimator
144
+ localize (bool): Whether of not spmd result is specific to the rank, in which case batch result needs to be localized
145
+
146
+ Raises:
147
+ AssertionError: If results do not match.
148
+ """
149
+
150
+ sorted_spmd_result = spmd_result[np.argsort(np.linalg.norm(spmd_result, axis=1))]
151
+ if localize:
152
+ local_batch_result = _get_local_tensor(batch_result)
153
+ sorted_batch_result = local_batch_result[
154
+ np.argsort(np.linalg.norm(local_batch_result, axis=1))
155
+ ]
156
+ else:
157
+ sorted_batch_result = batch_result[
158
+ np.argsort(np.linalg.norm(batch_result, axis=1))
159
+ ]
160
+
161
+ assert_allclose(_as_numpy(sorted_spmd_result), sorted_batch_result, **kwargs)
162
+
163
+
164
+ def _assert_kmeans_labels_allclose(
165
+ spmd_labels, batch_labels, spmd_centers, batch_centers, **kwargs
166
+ ):
167
+ """Checks if labels for spmd and batch results are aligned, even cluster indices don't match.
168
+
169
+ Called to verify labels are assigned the same way on spmd and batch. Uses raw labels (which
170
+ may not match) to identify cluster center and ensure results match.
171
+
172
+ Args:
173
+ spmd_labels (numpy or dpctl array): The labels for the subset of data on the rank the function is called from, computed by the spmd estimator
174
+ batch_labels (numpy array): The labels for all data, computed by the batch estimator
175
+ spmd_centers (numpy or dpctl array): Centers computed by the spmd estimator
176
+ batch_centers (numpy array): Centers computed by batch estimator
177
+
178
+ Raises:
179
+ AssertionError: If clusters are not correctly assigned.
180
+ """
181
+
182
+ local_batch_labels = _get_local_tensor(batch_labels)
183
+ assert_allclose(
184
+ spmd_centers[_as_numpy(spmd_labels)], batch_centers[local_batch_labels], **kwargs
185
+ )
@@ -16,6 +16,7 @@
16
16
 
17
17
  import sklearn
18
18
 
19
+ import onedal
19
20
  import sklearnex
20
21
 
21
22
 
@@ -33,7 +34,10 @@ def test_set_config_works():
33
34
  )
34
35
 
35
36
  config = sklearnex.get_config()
37
+ onedal_config = onedal._config._get_config()
36
38
  assert config["target_offload"] == "cpu:0"
37
39
  assert config["allow_fallback_to_host"]
38
40
  assert config["assume_finite"]
41
+ assert onedal_config["target_offload"] == "cpu:0"
42
+ assert onedal_config["allow_fallback_to_host"]
39
43
  sklearnex.set_config(**default_config)
@@ -208,10 +208,11 @@ def test_preview_namespace():
208
208
  from sklearn.cluster import DBSCAN
209
209
  from sklearn.decomposition import PCA
210
210
  from sklearn.ensemble import RandomForestClassifier
211
- from sklearn.linear_model import LinearRegression
211
+ from sklearn.linear_model import LinearRegression, Ridge
212
212
  from sklearn.svm import SVC
213
213
 
214
214
  return (
215
+ Ridge(),
215
216
  LinearRegression(),
216
217
  PCA(),
217
218
  DBSCAN(),
@@ -226,9 +227,12 @@ def test_preview_namespace():
226
227
 
227
228
  assert _is_preview_enabled()
228
229
 
229
- lr, pca, dbscan, svc, rfc = get_estimators()
230
+ ridge, lr, pca, dbscan, svc, rfc = get_estimators()
230
231
  assert "sklearnex" in rfc.__module__
231
232
 
233
+ if daal_check_version((2024, "P", 600)):
234
+ assert "sklearnex.preview" in ridge.__module__
235
+
232
236
  if daal_check_version((2023, "P", 100)):
233
237
  assert "sklearnex" in lr.__module__
234
238
  else:
@@ -242,7 +246,8 @@ def test_preview_namespace():
242
246
  sklearnex.unpatch_sklearn()
243
247
 
244
248
  # no patching behavior
245
- lr, pca, dbscan, svc, rfc = get_estimators()
249
+ ridge, lr, pca, dbscan, svc, rfc = get_estimators()
250
+ assert "sklearn." in ridge.__module__ and "daal4py" not in ridge.__module__
246
251
  assert "sklearn." in lr.__module__ and "daal4py" not in lr.__module__
247
252
  assert "sklearn." in pca.__module__ and "daal4py" not in pca.__module__
248
253
  assert "sklearn." in dbscan.__module__ and "daal4py" not in dbscan.__module__
@@ -254,7 +259,10 @@ def test_preview_namespace():
254
259
  sklearnex.patch_sklearn()
255
260
  assert not _is_preview_enabled()
256
261
 
257
- lr, pca, dbscan, svc, rfc = get_estimators()
262
+ ridge, lr, pca, dbscan, svc, rfc = get_estimators()
263
+
264
+ assert "daal4py" in ridge.__module__
265
+
258
266
  if daal_check_version((2023, "P", 100)):
259
267
  assert "sklearnex" in lr.__module__
260
268
  else:
@@ -43,6 +43,7 @@ from sklearnex.tests._utils import (
43
43
  SPECIAL_INSTANCES,
44
44
  UNPATCHED_FUNCTIONS,
45
45
  UNPATCHED_MODELS,
46
+ call_method,
46
47
  gen_dataset,
47
48
  gen_models_info,
48
49
  )
@@ -139,6 +140,9 @@ def test_standard_estimator_patching(caplog, dataframe, queue, dtype, estimator,
139
140
  ]:
140
141
  pytest.skip(f"{estimator} does not support GPU queues")
141
142
 
143
+ if "NearestNeighbors" in estimator and "radius" in method:
144
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
145
+
142
146
  if estimator == "TSNE" and method == "fit_transform":
143
147
  pytest.skip("TSNE.fit_transform is too slow for common testing")
144
148
  elif (
@@ -161,10 +165,8 @@ def test_standard_estimator_patching(caplog, dataframe, queue, dtype, estimator,
161
165
  est.fit(X, y)
162
166
 
163
167
  if method:
164
- if method != "score":
165
- getattr(est, method)(X)
166
- else:
167
- est.score(X, y)
168
+ call_method(est, method, X, y)
169
+
168
170
  assert all(
169
171
  [
170
172
  "running accelerated version" in i.message
@@ -183,11 +185,15 @@ def test_special_estimator_patching(caplog, dataframe, queue, dtype, estimator,
183
185
  with caplog.at_level(logging.WARNING, logger="sklearnex"):
184
186
  est = SPECIAL_INSTANCES[estimator]
185
187
 
186
- # Its not possible to get the dpnp/dpctl arrays to be in the proper dtype
187
- if dtype == np.float16 and queue and not queue.sycl_device.has_aspect_fp16:
188
- pytest.skip("Hardware does not support fp16 SYCL testing")
189
- elif dtype == np.float64 and queue and not queue.sycl_device.has_aspect_fp64:
190
- pytest.skip("Hardware does not support fp64 SYCL testing")
188
+ if queue:
189
+ # Its not possible to get the dpnp/dpctl arrays to be in the proper dtype
190
+ if dtype == np.float16 and not queue.sycl_device.has_aspect_fp16:
191
+ pytest.skip("Hardware does not support fp16 SYCL testing")
192
+ elif dtype == np.float64 and not queue.sycl_device.has_aspect_fp64:
193
+ pytest.skip("Hardware does not support fp64 SYCL testing")
194
+
195
+ if "NearestNeighbors" in estimator and "radius" in method:
196
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
191
197
 
192
198
  X, y = gen_dataset(est, queue=queue, target_df=dataframe, dtype=dtype)[0]
193
199
  est.fit(X, y)
@@ -196,10 +202,7 @@ def test_special_estimator_patching(caplog, dataframe, queue, dtype, estimator,
196
202
  pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
197
203
 
198
204
  if method:
199
- if method != "score":
200
- getattr(est, method)(X)
201
- else:
202
- est.score(X, y)
205
+ call_method(est, method, X, y)
203
206
 
204
207
  assert all(
205
208
  [
@@ -25,6 +25,7 @@ from _utils import (
25
25
  PATCHED_MODELS,
26
26
  SPECIAL_INSTANCES,
27
27
  _sklearn_clone_dict,
28
+ call_method,
28
29
  gen_dataset,
29
30
  gen_models_info,
30
31
  )
@@ -73,23 +74,23 @@ def eval_method(X, y, est, method):
73
74
  est.fit(X, y)
74
75
 
75
76
  if method:
76
- if method != "score":
77
- res = getattr(est, method)(X)
78
- else:
79
- res = est.score(X, y)
77
+ res = call_method(est, method, X, y)
80
78
 
81
79
  if not isinstance(res, Iterable):
82
- res = [res]
80
+ results = [_as_numpy(res)] if res is not est else []
81
+ else:
82
+ results = [_as_numpy(i) for i in res]
83
+
84
+ attributes = [method] * len(results)
83
85
 
84
86
  # if estimator follows sklearn design rules, then set attributes should have a
85
87
  # trailing underscore
86
- attributes = [
88
+ attributes += [
87
89
  i
88
90
  for i in dir(est)
89
91
  if hasattr(est, i) and not i.startswith("_") and i.endswith("_")
90
92
  ]
91
- results = [getattr(est, i) for i in attributes] + [_as_numpy(i) for i in res]
92
- attributes += [method for i in res]
93
+ results += [getattr(est, i) for i in attributes if i != method]
93
94
  return results, attributes
94
95
 
95
96
 
@@ -148,8 +149,13 @@ STABILITY_INSTANCES = _sklearn_clone_dict(
148
149
  def test_standard_estimator_stability(estimator, method, dataframe, queue):
149
150
  if estimator in ["LogisticRegression", "TSNE"]:
150
151
  pytest.skip(f"stability not guaranteed for {estimator}")
151
- if estimator in ["KMeans", "PCA"] and method == "score" and queue == None:
152
+ if estimator in ["KMeans", "PCA"] and "score" in method and queue == None:
152
153
  pytest.skip(f"variation observed in {estimator}.score")
154
+ if estimator in ["IncrementalEmpiricalCovariance"] and method == "mahalanobis":
155
+ pytest.skip("allowed fallback to sklearn occurs")
156
+
157
+ if "NearestNeighbors" in estimator and "radius" in method:
158
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
153
159
 
154
160
  est = PATCHED_MODELS[estimator]()
155
161
 
@@ -173,6 +179,8 @@ def test_special_estimator_stability(estimator, method, dataframe, queue):
173
179
  pytest.skip(f"stability not guaranteed for {estimator}")
174
180
  if "KMeans" in estimator and method == "score" and queue == None:
175
181
  pytest.skip(f"variation observed in KMeans.score")
182
+ if "NearestNeighbors" in estimator and "radius" in method:
183
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
176
184
 
177
185
  est = SPECIAL_INSTANCES[estimator]
178
186
 
@@ -194,6 +202,8 @@ def test_sparse_estimator_stability(estimator, method, dataframe, queue):
194
202
  if "KMeans" in estimator and method == "score" and queue == None:
195
203
  pytest.skip(f"variation observed in KMeans.score")
196
204
 
205
+ if "NearestNeighbors" in estimator and "radius" in method:
206
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
197
207
  est = SPARSE_INSTANCES[estimator]
198
208
 
199
209
  if method and not hasattr(est, method):
@@ -215,6 +225,8 @@ def test_sparse_estimator_stability(estimator, method, dataframe, queue):
215
225
  def test_other_estimator_stability(estimator, method, dataframe, queue):
216
226
  if "KMeans" in estimator and method == "score" and queue == None:
217
227
  pytest.skip(f"variation observed in KMeans.score")
228
+ if "NearestNeighbors" in estimator and "radius" in method:
229
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
218
230
 
219
231
  est = STABILITY_INSTANCES[estimator]
220
232
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-learn-intelex
3
- Version: 2024.6.0
3
+ Version: 2024.7.0
4
4
  Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
5
  Home-page: https://github.com/intel/scikit-learn-intelex
6
6
  Author: Intel Corporation
@@ -31,7 +31,7 @@ Classifier: Topic :: Software Development
31
31
  Requires-Python: >=3.7
32
32
  Description-Content-Type: text/markdown
33
33
  License-File: LICENSE.txt
34
- Requires-Dist: daal4py ==2024.6.0
34
+ Requires-Dist: daal4py ==2024.7.0
35
35
  Requires-Dist: scikit-learn >=0.22
36
36
 
37
37
 
@@ -0,0 +1,122 @@
1
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
2
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
3
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=38wvKg2wG79ZctkvICl-Ay7hy8InXdR0t-P3n3h1NUs,3613
4
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=h5lw46OS2shk5w3Nd-1Dk2eb4jV2eq5oTl3RtR7Xusc,3456
5
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
6
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ODuhlscC0HNGXiA8olEfHTDULzjevqG9_sn0yMGRkHg,2376
7
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=xxIcQ6YLSW37bvaDitlqE7qBeKfZx-c7cPAXGLNjbhk,18695
8
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
9
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=1U_60TqIaNoWxA6XX1LQf18PP-1oOEjkyrskTBFBS7g,5482
10
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=NNWF9zdxBz2jT7dzt5hL6HRvjQIGosvViQE3KJMF1L4,10048
11
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py,sha256=dsJCHOPdjwZt5Kod1VdD8sdQrpoabPPUJNGN5S8cVvU,9533
12
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=0a5zE0iMzAQMiRyKTpcvQjGHBM86aNhnQZ0l_Ry1fNY,14914
13
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
14
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=hpP-R2VTdeXjyoZkSw8AegdGtEa2kRt2KHIokZNHFXo,6824
15
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=vo9NXztaphr3LWdsnwqPndycIbFsispSD2QldInyGRw,1262
16
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
17
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=TCPlrO0hrFkP3Aba_sHe2ZEAR0q16_YCLFMBBymQjdI,1643
18
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
19
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=JnB6On_9MvDsNcDsSIb-4G9P38cx2A2qmomO3XjVi5I,13045
20
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=mhH66DSlqBweySB3HZ4a9GQhz_a8BngB0HQSQkJ5Oc8,8010
21
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
22
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=eoNighcTXtuVbH4KP1fBaHbAUUBLup2Bqbjd5fs_J1Q,16586
23
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=EoCgpSojE2S2e7hOUwW0Bh3vVGTUywawAhU7ThVAlW0,2319
24
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
25
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
26
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=J3TN37gIIuWkPrVTY8xLKQNh4Xr3LSi7wAH7zCsl9X0,72353
27
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=uBpxWlhIOkaSzfd_nS6Ui0O7PcS-fVDzB5my2WQWOi0,4843
28
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
29
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
30
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=mzZ0EaBhDH66ETNt2vylznSoZbCYexgL2qE_jKppYYc,1144
31
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=h7ATAXbLTPisnRRQjt4nZiFzRjR53F2M_XSeZi_pFNw,1547
32
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py,sha256=iDad4Z4xMDImvG-Jgtt0Hz3Qp9MVhSi-IjUPcV0Y_ks,16101
33
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=BDexE22Nl6egzHoMiruBp6L_biUfy0eWaZWbHMG9rJc,10740
34
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
35
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=e7tZhQX6URfoyuZ5OweiGGgTY19vfMrGGH02qiTXT0M,14881
36
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=ZrBcYGylPMRqFj3jUvJ7nQAioh8YbvCd8CttJlx1RgM,1183
37
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py,sha256=e0ZADjB0myq1QcdwYxlVYl6tGFs4tVZIfBoV1xkdFuw,7337
38
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=7PN4sCZ0bdcknKPdxoV0WtFg__-GHm_0PeNVOAz6HGY,5553
39
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=h_5X-IeKDE7TOSyCiP05WEa4ZbnZIQZ66Nwz9r8NzdM,4881
40
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
41
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=EsyViHWIGt5vzHDUkGXBF3LGO6g10503ENLIHvdiv_Q,1005
42
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
43
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
44
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=OVbb4F-NdHDIfxf9ThkZXD1wqIaFTOZ1J-_EEYIlv90,980
45
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=ktFsbK6ILIQTwHM134KOf5MNTo0DoJYzfxV8GMHjRr8,957
46
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
47
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
48
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=IdUeCJghfifj5n2VCoxXfbHtIIRBaimyOEixB_UUKbM,974
49
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
50
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
51
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=AtmBVdYBUpk7kqDNXbtvBNWkGNcmE0Lq_VtFgjelwhE,9120
52
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=G79Ifl656rSOHDoBWhBMoqBUer65BOeLFWo9ttdEpEU,12527
53
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=EJAColAfBUpUuBxBhWD3XmMDFqlPcgIotQa4RoJsdfU,7835
54
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=eKVqlEB-S2dPgeq8BOzaZwqPnKR2ZNeUBlvJkSSCUlg,6779
55
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=GhvVlvcarq681OYHkmWqJ16z62HW_kAkDsrf6KErXmU,6067
56
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=yAlMnLt9GrdT6Ceph5B7iFuMJXpDURiHWTE99oO8EDw,3417
57
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=hZfIgTkkkUVaQ-SKaqI-S_SiXCkUzCUYxpSnbrhhEJU,813
58
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
59
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
60
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=RdF9mwgvZ1xgyeLhCQA2WaPvPsS1ndktXXcaNj6S460,10464
61
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
62
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
63
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
64
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py,sha256=9VcJPWKgSrWDFEXUY6ZCpAT2XGbOVA4a1j_XgfJBnTM,839
65
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py,sha256=SsY1-AQt0mFTJGP5yzVxZvopNz2tSeXUO9p9c_3uVus,7820
66
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py,sha256=tsAlM18nzfIQxic7Ry986Ue0ovUdbopWFNckqQLK5xU,10776
67
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py,sha256=azZix9bU9zjwl12g0gB_K5RiVPJvkrinHHCwqVTLQLY,792
68
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py,sha256=SmUYSeBrBALJQUxsD3h4bWxuhU4oO7JhLGNnS3hxb1w,15343
69
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py,sha256=Ru6D9fY2o6bXyxSeUo6O7sHF8jKHX30J545yBk0LRSo,4056
70
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
71
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
72
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
73
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py,sha256=I-VV-JTCR7Pu5Z36XtRxoLY6EUoeNp62DmM0vPu-NGY,3787
74
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
75
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
76
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
77
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py,sha256=lGh7tWhoQaYMrwS3_BWcUkX2-GjsstWjLRw4JxMQgGA,3494
78
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py,sha256=ll4WL1TJDuLg-t3-Qvcl18J9uZLBJHEraf5jH3HQBKQ,5857
79
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
80
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
81
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py,sha256=xH4jZ2F77KqVGYK5fyHTM28xNew7qN814lHAfrY1f50,3918
82
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
83
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
84
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py,sha256=9OktZfMTGz5fZfPLBSdOcDKtkcKl7I06CbLnqDajtW4,4709
85
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
86
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
87
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py,sha256=YOE2sDXWvVHAPj4sswc8iPuWgnXzUSl_AKXDlN1w4zM,9245
88
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
89
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
90
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
91
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py,sha256=l9bC5gDTNAS2QqZwUAgdbgG0GPvvQOT9XuyqajoAvic,5202
92
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py,sha256=NweDwFyElY5HSwGRLH8IPNFqSnvynPCvQ97OFFe6Z68,6187
93
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
94
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
95
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py,sha256=aetHv4hdun2FaaHJTokCLc02szhkp0Yi552EdfboWeA,10488
96
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
97
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=2ml2e44mWvAufo6wCoJX3w6RbNON3OnyCaykZX0nkr8,12700
98
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=-SfYz2bUMLaosYg_qeTBYf1Ra-bFuGmI62xIerf3XeE,11262
99
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=9nbRaPCoDQ5SBGH_jLgcaX_PWGDh667w-gW5X2YbHBM,4764
100
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=fZ9oVpKkgH5OYBXo4mPdZ-8cP07hSzPHoJsyItpXmcQ,12470
101
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=NIWVUu7NjV4Fe4L-Y4vIqd3KePFdMJ1-jupeH4ZvNsg,4733
102
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=KnjWVfmHzU0sJqlhDdfLdhFJA_BV_tULPqNlOLXShXg,4194
103
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=rkZhH5VbMAIBBLBm2Mi5y5DQ_wMXQUq2LqR5X4wcEK0,10556
104
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/_utils_spmd.py,sha256=Kj6TdQXHyCUcI43H2qjcySyuHt4oy6OEqvX8BC8BiyM,6909
105
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py,sha256=MYx0y7oomArxWu9qe2zNs7YL-ScPGFnzvw8PZ1or04A,1813
106
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=9ek00NtpWSU7HXNqXXM1kFX09FFS8DCHejVIFMii6kM,1540
107
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=FTtQgaa7p5ScDGscB93LkpU4B3DzfqnVMi84b2vSL30,10957
108
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=Qeq0Z84UMKLEAVoQP7WEScouf6gNPbp21fjQ2erxMQo,9962
109
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=NziTP4GwZEDoBe1CDvhHZnp8JpwjYQmCNvXEDfS7Wo4,4313
110
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
111
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=_-0IZ8n0tim0GRpZECzecOPebUUVmfKBA0yOUc7hbCw,14958
112
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py,sha256=Q4O7l1_0O4tZ_SM3kW1OxcOCuB73ugX_I4GZMi3Lrdg,10735
113
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=FFlM8zc2qnSdPYpLjSt4Ma_9FjC8qk8wXJa-5B8hCs0,898
114
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py,sha256=ohr8gOgEFgrccLecllMVYQPqbqqyye9uT-cWLtyxHFs,3167
115
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
116
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
117
+ scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py,sha256=AzJRY71X0VvDUicUI8Ey9Le6_yKp5O-3ZikhDVJNWms,2943
118
+ scikit_learn_intelex-2024.7.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
119
+ scikit_learn_intelex-2024.7.0.dist-info/METADATA,sha256=ryTj2JbQIVj5tK8WbS7JeSBA7Uz-QpqArcC73l30sRc,12674
120
+ scikit_learn_intelex-2024.7.0.dist-info/WHEEL,sha256=fYPxMJyL6cLg6ZFjTu_6jkf-iP59lZW2reKZ_YvmbSA,100
121
+ scikit_learn_intelex-2024.7.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
122
+ scikit_learn_intelex-2024.7.0.dist-info/RECORD,,