scikit-learn-intelex 2024.6.0__py310-none-win_amd64.whl → 2024.7.0__py310-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/_config.py +3 -15
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +98 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +143 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +1 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +8 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +15 -3
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +64 -13
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +35 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +25 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +94 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +8 -35
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +9 -12
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +13 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +2 -34
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +79 -59
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +7 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +28 -3
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +45 -3
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +21 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +5 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +3 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +9 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +45 -1
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +1 -20
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +1 -20
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +31 -7
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py → scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +19 -17
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py +419 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +163 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +19 -21
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +12 -20
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +143 -20
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/_utils_spmd.py +185 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +4 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +12 -4
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +16 -13
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +21 -9
- {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/METADATA +2 -2
- scikit_learn_intelex-2024.7.0.dist-info/RECORD +122 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -257
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -17
- scikit_learn_intelex-2024.6.0.dist-info/RECORD +0 -108
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_common.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +0 -0
- {scikit_learn_intelex-2024.6.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.6.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,265 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from sklearn.datasets import make_regression
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_convert_to_dataframe,
|
|
23
|
+
get_dataframes_and_queues,
|
|
24
|
+
)
|
|
25
|
+
from sklearnex.tests._utils_spmd import (
|
|
26
|
+
_generate_classification_data,
|
|
27
|
+
_generate_regression_data,
|
|
28
|
+
_get_local_tensor,
|
|
29
|
+
_mpi_libs_and_gpu_available,
|
|
30
|
+
_spmd_assert_allclose,
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
@pytest.mark.skipif(
|
|
35
|
+
not _mpi_libs_and_gpu_available,
|
|
36
|
+
reason="GPU device and MPI libs required for test",
|
|
37
|
+
)
|
|
38
|
+
@pytest.mark.parametrize(
|
|
39
|
+
"dataframe,queue",
|
|
40
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
41
|
+
)
|
|
42
|
+
@pytest.mark.mpi
|
|
43
|
+
def test_rfcls_spmd_gold(dataframe, queue):
|
|
44
|
+
# Import spmd and batch algo
|
|
45
|
+
from sklearnex.ensemble import RandomForestClassifier as RandomForestClassifier_Batch
|
|
46
|
+
from sklearnex.spmd.ensemble import (
|
|
47
|
+
RandomForestClassifier as RandomForestClassifier_SPMD,
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
# Create gold data and convert to dataframe
|
|
51
|
+
X_train = np.array(
|
|
52
|
+
[
|
|
53
|
+
[0.0, 0.0],
|
|
54
|
+
[0.0, 1.0],
|
|
55
|
+
[1.0, 0.0],
|
|
56
|
+
[0.0, 2.0],
|
|
57
|
+
[2.0, 0.0],
|
|
58
|
+
[1.0, 1.0],
|
|
59
|
+
[0.0, -1.0],
|
|
60
|
+
[-1.0, 0.0],
|
|
61
|
+
[-1.0, -1.0],
|
|
62
|
+
]
|
|
63
|
+
)
|
|
64
|
+
y_train = np.array([0, 2, 1, 2, 1, 0, 1, 2, 0])
|
|
65
|
+
X_test = np.array(
|
|
66
|
+
[
|
|
67
|
+
[1.0, -1.0],
|
|
68
|
+
[-1.0, 1.0],
|
|
69
|
+
[0.0, 1.0],
|
|
70
|
+
[10.0, -10.0],
|
|
71
|
+
]
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
75
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
76
|
+
)
|
|
77
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
78
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
79
|
+
)
|
|
80
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
81
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
# Ensure predictions of batch algo match spmd
|
|
85
|
+
spmd_model = RandomForestClassifier_SPMD(n_estimators=3, random_state=0).fit(
|
|
86
|
+
local_dpt_X_train, local_dpt_y_train
|
|
87
|
+
)
|
|
88
|
+
batch_model = RandomForestClassifier_Batch(n_estimators=3, random_state=0).fit(
|
|
89
|
+
X_train, y_train
|
|
90
|
+
)
|
|
91
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
92
|
+
batch_result = batch_model.predict(X_test)
|
|
93
|
+
|
|
94
|
+
pytest.skip("SPMD and batch random forest results not aligned")
|
|
95
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
@pytest.mark.skipif(
|
|
99
|
+
not _mpi_libs_and_gpu_available,
|
|
100
|
+
reason="GPU device and MPI libs required for test",
|
|
101
|
+
)
|
|
102
|
+
@pytest.mark.parametrize("n_samples", [200, 1000])
|
|
103
|
+
@pytest.mark.parametrize("n_features_and_classes", [(5, 2), (25, 2), (25, 10)])
|
|
104
|
+
@pytest.mark.parametrize("n_estimators", [10, 100])
|
|
105
|
+
@pytest.mark.parametrize("max_depth", [3, None])
|
|
106
|
+
@pytest.mark.parametrize(
|
|
107
|
+
"dataframe,queue",
|
|
108
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
109
|
+
)
|
|
110
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
111
|
+
@pytest.mark.mpi
|
|
112
|
+
def test_rfcls_spmd_synthetic(
|
|
113
|
+
n_samples, n_features_and_classes, n_estimators, max_depth, dataframe, queue, dtype
|
|
114
|
+
):
|
|
115
|
+
n_features, n_classes = n_features_and_classes
|
|
116
|
+
# Import spmd and batch algo
|
|
117
|
+
from sklearnex.ensemble import RandomForestClassifier as RandomForestClassifier_Batch
|
|
118
|
+
from sklearnex.spmd.ensemble import (
|
|
119
|
+
RandomForestClassifier as RandomForestClassifier_SPMD,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
# Generate data and convert to dataframe
|
|
123
|
+
X_train, X_test, y_train, _ = _generate_classification_data(
|
|
124
|
+
n_samples, n_features, n_classes, dtype=dtype
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
128
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
129
|
+
)
|
|
130
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
131
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
132
|
+
)
|
|
133
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
134
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
# Ensure predictions of batch algo match spmd
|
|
138
|
+
spmd_model = RandomForestClassifier_SPMD(
|
|
139
|
+
n_estimators=n_estimators, max_depth=max_depth, random_state=0
|
|
140
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
141
|
+
batch_model = RandomForestClassifier_Batch(
|
|
142
|
+
n_estimators=n_estimators, max_depth=max_depth, random_state=0
|
|
143
|
+
).fit(X_train, y_train)
|
|
144
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
145
|
+
batch_result = batch_model.predict(X_test)
|
|
146
|
+
|
|
147
|
+
pytest.skip("SPMD and batch random forest results not aligned")
|
|
148
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
@pytest.mark.skipif(
|
|
152
|
+
not _mpi_libs_and_gpu_available,
|
|
153
|
+
reason="GPU device and MPI libs required for test",
|
|
154
|
+
)
|
|
155
|
+
@pytest.mark.parametrize(
|
|
156
|
+
"dataframe,queue",
|
|
157
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
158
|
+
)
|
|
159
|
+
@pytest.mark.mpi
|
|
160
|
+
def test_rfreg_spmd_gold(dataframe, queue):
|
|
161
|
+
# Import spmd and batch algo
|
|
162
|
+
from sklearnex.ensemble import RandomForestRegressor as RandomForestRegressor_Batch
|
|
163
|
+
from sklearnex.spmd.ensemble import (
|
|
164
|
+
RandomForestRegressor as RandomForestRegressor_SPMD,
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
# Create gold data and convert to dataframe
|
|
168
|
+
X_train = np.array(
|
|
169
|
+
[
|
|
170
|
+
[0.0, 0.0],
|
|
171
|
+
[0.0, 1.0],
|
|
172
|
+
[1.0, 0.0],
|
|
173
|
+
[0.0, 2.0],
|
|
174
|
+
[2.0, 0.0],
|
|
175
|
+
[1.0, 1.0],
|
|
176
|
+
[0.0, -1.0],
|
|
177
|
+
[-1.0, 0.0],
|
|
178
|
+
[-1.0, -1.0],
|
|
179
|
+
]
|
|
180
|
+
)
|
|
181
|
+
y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
|
|
182
|
+
X_test = np.array(
|
|
183
|
+
[
|
|
184
|
+
[1.0, -1.0],
|
|
185
|
+
[-1.0, 1.0],
|
|
186
|
+
[0.0, 1.0],
|
|
187
|
+
[10.0, -10.0],
|
|
188
|
+
]
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
192
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
193
|
+
)
|
|
194
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
195
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
196
|
+
)
|
|
197
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
198
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
# Ensure predictions of batch algo match spmd
|
|
202
|
+
spmd_model = RandomForestRegressor_SPMD(n_estimators=3, random_state=0).fit(
|
|
203
|
+
local_dpt_X_train, local_dpt_y_train
|
|
204
|
+
)
|
|
205
|
+
batch_model = RandomForestRegressor_Batch(n_estimators=3, random_state=0).fit(
|
|
206
|
+
X_train, y_train
|
|
207
|
+
)
|
|
208
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
209
|
+
batch_result = batch_model.predict(X_test)
|
|
210
|
+
|
|
211
|
+
pytest.skip("SPMD and batch random forest results not aligned")
|
|
212
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
@pytest.mark.skipif(
|
|
216
|
+
not _mpi_libs_and_gpu_available,
|
|
217
|
+
reason="GPU device and MPI libs required for test",
|
|
218
|
+
)
|
|
219
|
+
@pytest.mark.parametrize("n_samples", [200, 1000])
|
|
220
|
+
@pytest.mark.parametrize("n_features", [5, 25])
|
|
221
|
+
@pytest.mark.parametrize("n_estimators", [10, 100])
|
|
222
|
+
@pytest.mark.parametrize("max_depth", [3, None])
|
|
223
|
+
@pytest.mark.parametrize(
|
|
224
|
+
"dataframe,queue",
|
|
225
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
226
|
+
)
|
|
227
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
228
|
+
@pytest.mark.mpi
|
|
229
|
+
def test_rfreg_spmd_synthetic(
|
|
230
|
+
n_samples, n_features, n_estimators, max_depth, dataframe, queue, dtype
|
|
231
|
+
):
|
|
232
|
+
# Import spmd and batch algo
|
|
233
|
+
from sklearnex.ensemble import RandomForestRegressor as RandomForestRegressor_Batch
|
|
234
|
+
from sklearnex.spmd.ensemble import (
|
|
235
|
+
RandomForestRegressor as RandomForestRegressor_SPMD,
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
# Generate data and convert to dataframe
|
|
239
|
+
X_train, X_test, y_train, _ = _generate_regression_data(
|
|
240
|
+
n_samples, n_features, dtype=dtype
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
244
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
245
|
+
)
|
|
246
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
247
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
248
|
+
)
|
|
249
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
250
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
251
|
+
)
|
|
252
|
+
|
|
253
|
+
# Ensure predictions of batch algo match spmd
|
|
254
|
+
spmd_model = RandomForestRegressor_Batch(
|
|
255
|
+
n_estimators=n_estimators, max_depth=max_depth, random_state=0
|
|
256
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
257
|
+
batch_model = RandomForestRegressor_Batch(
|
|
258
|
+
n_estimators=n_estimators, max_depth=max_depth, random_state=0
|
|
259
|
+
).fit(X_train, y_train)
|
|
260
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
261
|
+
batch_result = batch_model.predict(X_test)
|
|
262
|
+
|
|
263
|
+
# TODO: remove skips when SPMD and batch are aligned
|
|
264
|
+
pytest.skip("SPMD and batch random forest results not aligned")
|
|
265
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_convert_to_dataframe,
|
|
23
|
+
get_dataframes_and_queues,
|
|
24
|
+
)
|
|
25
|
+
from sklearnex.tests._utils_spmd import (
|
|
26
|
+
_generate_regression_data,
|
|
27
|
+
_get_local_tensor,
|
|
28
|
+
_mpi_libs_and_gpu_available,
|
|
29
|
+
_spmd_assert_allclose,
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@pytest.mark.skipif(
|
|
34
|
+
not _mpi_libs_and_gpu_available,
|
|
35
|
+
reason="GPU device and MPI libs required for test",
|
|
36
|
+
)
|
|
37
|
+
@pytest.mark.parametrize(
|
|
38
|
+
"dataframe,queue",
|
|
39
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
40
|
+
)
|
|
41
|
+
@pytest.mark.mpi
|
|
42
|
+
def test_linear_spmd_gold(dataframe, queue):
|
|
43
|
+
# Import spmd and batch algo
|
|
44
|
+
from sklearnex.linear_model import LinearRegression as LinearRegression_Batch
|
|
45
|
+
from sklearnex.spmd.linear_model import LinearRegression as LinearRegression_SPMD
|
|
46
|
+
|
|
47
|
+
# Create gold data and convert to dataframe
|
|
48
|
+
X_train = np.array(
|
|
49
|
+
[
|
|
50
|
+
[0.0, 0.0],
|
|
51
|
+
[0.0, 1.0],
|
|
52
|
+
[1.0, 0.0],
|
|
53
|
+
[0.0, 2.0],
|
|
54
|
+
[2.0, 0.0],
|
|
55
|
+
[1.0, 1.0],
|
|
56
|
+
[0.0, -1.0],
|
|
57
|
+
[-1.0, 0.0],
|
|
58
|
+
[-1.0, -1.0],
|
|
59
|
+
]
|
|
60
|
+
)
|
|
61
|
+
y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
|
|
62
|
+
X_test = np.array(
|
|
63
|
+
[
|
|
64
|
+
[1.0, -1.0],
|
|
65
|
+
[-1.0, 1.0],
|
|
66
|
+
[0.0, 1.0],
|
|
67
|
+
[10.0, -10.0],
|
|
68
|
+
]
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
72
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
73
|
+
)
|
|
74
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
75
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
76
|
+
)
|
|
77
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
78
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
# ensure trained model of batch algo matches spmd
|
|
82
|
+
spmd_model = LinearRegression_SPMD().fit(local_dpt_X_train, local_dpt_y_train)
|
|
83
|
+
batch_model = LinearRegression_Batch().fit(X_train, y_train)
|
|
84
|
+
|
|
85
|
+
assert_allclose(spmd_model.coef_, batch_model.coef_)
|
|
86
|
+
assert_allclose(spmd_model.intercept_, batch_model.intercept_)
|
|
87
|
+
|
|
88
|
+
# ensure predictions of batch algo match spmd
|
|
89
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
90
|
+
batch_result = batch_model.predict(X_test)
|
|
91
|
+
|
|
92
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
@pytest.mark.skipif(
|
|
96
|
+
not _mpi_libs_and_gpu_available,
|
|
97
|
+
reason="GPU device and MPI libs required for test",
|
|
98
|
+
)
|
|
99
|
+
@pytest.mark.parametrize("n_samples", [100, 10000])
|
|
100
|
+
@pytest.mark.parametrize("n_features", [10, 100])
|
|
101
|
+
@pytest.mark.parametrize(
|
|
102
|
+
"dataframe,queue",
|
|
103
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
104
|
+
)
|
|
105
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
106
|
+
@pytest.mark.mpi
|
|
107
|
+
def test_linear_spmd_synthetic(n_samples, n_features, dataframe, queue, dtype):
|
|
108
|
+
# Import spmd and batch algo
|
|
109
|
+
from sklearnex.linear_model import LinearRegression as LinearRegression_Batch
|
|
110
|
+
from sklearnex.spmd.linear_model import LinearRegression as LinearRegression_SPMD
|
|
111
|
+
|
|
112
|
+
# Generate data and convert to dataframe
|
|
113
|
+
X_train, X_test, y_train, _ = _generate_regression_data(
|
|
114
|
+
n_samples, n_features, dtype=dtype
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
118
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
119
|
+
)
|
|
120
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
121
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
122
|
+
)
|
|
123
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
124
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
# TODO: support linear regression on wide datasets and remove this skip
|
|
128
|
+
if local_dpt_X_train.shape[0] < n_features:
|
|
129
|
+
pytest.skip(
|
|
130
|
+
"SPMD Linear Regression does not support cases where n_rows_rank < n_features"
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
# ensure trained model of batch algo matches spmd
|
|
134
|
+
spmd_model = LinearRegression_SPMD().fit(local_dpt_X_train, local_dpt_y_train)
|
|
135
|
+
batch_model = LinearRegression_Batch().fit(X_train, y_train)
|
|
136
|
+
|
|
137
|
+
tol = 1e-3 if dtype == np.float32 else 1e-7
|
|
138
|
+
assert_allclose(spmd_model.coef_, batch_model.coef_, rtol=tol, atol=tol)
|
|
139
|
+
assert_allclose(spmd_model.intercept_, batch_model.intercept_, rtol=tol, atol=tol)
|
|
140
|
+
|
|
141
|
+
# ensure predictions of batch algo match spmd
|
|
142
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
143
|
+
batch_result = batch_model.predict(X_test)
|
|
144
|
+
|
|
145
|
+
_spmd_assert_allclose(spmd_result, batch_result, rtol=tol, atol=tol)
|
|
@@ -0,0 +1,163 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_as_numpy,
|
|
23
|
+
_convert_to_dataframe,
|
|
24
|
+
get_dataframes_and_queues,
|
|
25
|
+
)
|
|
26
|
+
from sklearnex.tests._utils_spmd import (
|
|
27
|
+
_generate_classification_data,
|
|
28
|
+
_get_local_tensor,
|
|
29
|
+
_mpi_libs_and_gpu_available,
|
|
30
|
+
_spmd_assert_allclose,
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
@pytest.mark.skipif(
|
|
35
|
+
not _mpi_libs_and_gpu_available,
|
|
36
|
+
reason="GPU device and MPI libs required for test",
|
|
37
|
+
)
|
|
38
|
+
@pytest.mark.parametrize(
|
|
39
|
+
"dataframe,queue",
|
|
40
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
41
|
+
)
|
|
42
|
+
@pytest.mark.mpi
|
|
43
|
+
def test_logistic_spmd_gold(dataframe, queue):
|
|
44
|
+
# Import spmd and batch algo
|
|
45
|
+
from sklearnex.linear_model import LogisticRegression as LogisticRegression_Batch
|
|
46
|
+
from sklearnex.spmd.linear_model import LogisticRegression as LogisticRegression_SPMD
|
|
47
|
+
|
|
48
|
+
# Create gold data and convert to dataframe
|
|
49
|
+
X_train = np.array(
|
|
50
|
+
[
|
|
51
|
+
[0.0, 0.0],
|
|
52
|
+
[0.0, 1.0],
|
|
53
|
+
[1.0, 0.0],
|
|
54
|
+
[0.0, 2.0],
|
|
55
|
+
[2.0, 0.0],
|
|
56
|
+
[1.0, 1.0],
|
|
57
|
+
[0.0, -1.0],
|
|
58
|
+
[-1.0, 0.0],
|
|
59
|
+
[-1.0, -1.0],
|
|
60
|
+
]
|
|
61
|
+
)
|
|
62
|
+
y_train = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0])
|
|
63
|
+
X_test = np.array(
|
|
64
|
+
[
|
|
65
|
+
[1.0, -1.0],
|
|
66
|
+
[-1.0, 1.0],
|
|
67
|
+
[0.0, 1.0],
|
|
68
|
+
[10.0, -10.0],
|
|
69
|
+
]
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
73
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
74
|
+
)
|
|
75
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
76
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
77
|
+
)
|
|
78
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
79
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
80
|
+
)
|
|
81
|
+
dpt_X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
|
|
82
|
+
dpt_y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
|
|
83
|
+
dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
84
|
+
|
|
85
|
+
# Ensure trained model of batch algo matches spmd
|
|
86
|
+
spmd_model = LogisticRegression_SPMD(random_state=0, solver="newton-cg").fit(
|
|
87
|
+
local_dpt_X_train, local_dpt_y_train
|
|
88
|
+
)
|
|
89
|
+
batch_model = LogisticRegression_Batch(random_state=0, solver="newton-cg").fit(
|
|
90
|
+
dpt_X_train, dpt_y_train
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
assert_allclose(spmd_model.coef_, batch_model.coef_, rtol=1e-2)
|
|
94
|
+
assert_allclose(spmd_model.intercept_, batch_model.intercept_, rtol=1e-2)
|
|
95
|
+
|
|
96
|
+
# Ensure predictions of batch algo match spmd
|
|
97
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
98
|
+
batch_result = batch_model.predict(dpt_X_test)
|
|
99
|
+
|
|
100
|
+
_spmd_assert_allclose(spmd_result, _as_numpy(batch_result))
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
# parametrize max_iter, C, tol
|
|
104
|
+
@pytest.mark.skipif(
|
|
105
|
+
not _mpi_libs_and_gpu_available,
|
|
106
|
+
reason="GPU device and MPI libs required for test",
|
|
107
|
+
)
|
|
108
|
+
@pytest.mark.parametrize("n_samples", [100, 10000])
|
|
109
|
+
@pytest.mark.parametrize("n_features", [10, 100])
|
|
110
|
+
@pytest.mark.parametrize("C", [0.5, 1.0, 2.0])
|
|
111
|
+
@pytest.mark.parametrize("tol", [1e-2, 1e-4])
|
|
112
|
+
@pytest.mark.parametrize(
|
|
113
|
+
"dataframe,queue",
|
|
114
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
115
|
+
)
|
|
116
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
117
|
+
@pytest.mark.mpi
|
|
118
|
+
def test_logistic_spmd_synthetic(n_samples, n_features, C, tol, dataframe, queue, dtype):
|
|
119
|
+
pytest.skip("Sporadic failures on coef_ check. Test disabled while fix in progress")
|
|
120
|
+
# TODO: Resolve numerical issues when n_rows_rank < n_cols
|
|
121
|
+
if n_samples <= n_features:
|
|
122
|
+
pytest.skip("Numerical issues when rank rows < columns")
|
|
123
|
+
|
|
124
|
+
# Import spmd and batch algo
|
|
125
|
+
from sklearnex.linear_model import LogisticRegression as LogisticRegression_Batch
|
|
126
|
+
from sklearnex.spmd.linear_model import LogisticRegression as LogisticRegression_SPMD
|
|
127
|
+
|
|
128
|
+
# Generate data and convert to dataframe
|
|
129
|
+
X_train, X_test, y_train, _ = _generate_classification_data(
|
|
130
|
+
n_samples, n_features, dtype=dtype
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
134
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
135
|
+
)
|
|
136
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
137
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
138
|
+
)
|
|
139
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
140
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
141
|
+
)
|
|
142
|
+
dpt_X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
|
|
143
|
+
dpt_y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
|
|
144
|
+
dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
145
|
+
|
|
146
|
+
# Ensure trained model of batch algo matches spmd
|
|
147
|
+
spmd_model = LogisticRegression_SPMD(
|
|
148
|
+
random_state=0, solver="newton-cg", C=C, tol=tol
|
|
149
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
150
|
+
batch_model = LogisticRegression_Batch(
|
|
151
|
+
random_state=0, solver="newton-cg", C=C, tol=tol
|
|
152
|
+
).fit(dpt_X_train, dpt_y_train)
|
|
153
|
+
|
|
154
|
+
# TODO: Logistic Regression coefficients do not align
|
|
155
|
+
tol = 1e-2
|
|
156
|
+
assert_allclose(spmd_model.coef_, batch_model.coef_, rtol=tol, atol=tol)
|
|
157
|
+
assert_allclose(spmd_model.intercept_, batch_model.intercept_, rtol=tol, atol=tol)
|
|
158
|
+
|
|
159
|
+
# Ensure predictions of batch algo match spmd
|
|
160
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
161
|
+
batch_result = batch_model.predict(dpt_X_test)
|
|
162
|
+
|
|
163
|
+
_spmd_assert_allclose(spmd_result, _as_numpy(batch_result))
|