scikit-learn-intelex 2024.5.0__py39-none-manylinux1_x86_64.whl → 2024.7.0__py39-none-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (73) hide show
  1. {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/METADATA +2 -2
  2. scikit_learn_intelex-2024.7.0.dist-info/RECORD +122 -0
  3. sklearnex/_config.py +3 -15
  4. sklearnex/_device_offload.py +9 -168
  5. sklearnex/basic_statistics/basic_statistics.py +127 -1
  6. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  7. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +1 -1
  8. sklearnex/cluster/dbscan.py +3 -1
  9. sklearnex/cluster/k_means.py +8 -0
  10. sklearnex/cluster/tests/test_dbscan.py +8 -6
  11. sklearnex/cluster/tests/test_kmeans.py +15 -3
  12. sklearnex/conftest.py +11 -1
  13. sklearnex/covariance/incremental_covariance.py +64 -13
  14. sklearnex/covariance/tests/test_incremental_covariance.py +35 -0
  15. sklearnex/decomposition/pca.py +25 -1
  16. sklearnex/decomposition/tests/test_pca.py +4 -2
  17. sklearnex/dispatcher.py +109 -1
  18. sklearnex/ensemble/_forest.py +121 -57
  19. sklearnex/ensemble/tests/test_forest.py +7 -0
  20. sklearnex/glob/dispatcher.py +16 -2
  21. sklearnex/linear_model/coordinate_descent.py +13 -0
  22. sklearnex/linear_model/incremental_linear.py +102 -25
  23. sklearnex/linear_model/linear.py +25 -39
  24. sklearnex/linear_model/logistic_regression.py +92 -74
  25. sklearnex/linear_model/ridge.py +7 -0
  26. sklearnex/linear_model/tests/test_incremental_linear.py +10 -10
  27. sklearnex/linear_model/tests/test_linear.py +30 -5
  28. sklearnex/linear_model/tests/test_logreg.py +45 -3
  29. sklearnex/manifold/t_sne.py +4 -0
  30. sklearnex/metrics/pairwise.py +5 -0
  31. sklearnex/metrics/ranking.py +3 -0
  32. sklearnex/model_selection/split.py +3 -0
  33. sklearnex/neighbors/_lof.py +9 -0
  34. sklearnex/neighbors/common.py +45 -1
  35. sklearnex/neighbors/knn_classification.py +1 -20
  36. sklearnex/neighbors/knn_regression.py +25 -20
  37. sklearnex/neighbors/knn_unsupervised.py +31 -7
  38. sklearnex/preview/__init__.py +1 -1
  39. sklearnex/preview/decomposition/__init__.py +19 -0
  40. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  41. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  42. sklearnex/preview/linear_model/__init__.py +19 -0
  43. sklearnex/preview/linear_model/ridge.py +419 -0
  44. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  45. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  46. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  47. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  48. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  49. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  50. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  51. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  52. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +163 -0
  53. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  54. sklearnex/svm/_common.py +163 -20
  55. sklearnex/svm/nusvc.py +40 -4
  56. sklearnex/svm/nusvr.py +31 -2
  57. sklearnex/svm/svc.py +40 -4
  58. sklearnex/svm/svr.py +31 -2
  59. sklearnex/svm/tests/test_svm.py +12 -20
  60. sklearnex/tests/_utils.py +185 -30
  61. sklearnex/tests/_utils_spmd.py +185 -0
  62. sklearnex/tests/test_common.py +54 -0
  63. sklearnex/tests/test_config.py +4 -0
  64. sklearnex/tests/test_memory_usage.py +185 -126
  65. sklearnex/tests/test_monkeypatch.py +12 -4
  66. sklearnex/tests/test_patching.py +21 -25
  67. sklearnex/tests/test_run_to_run_stability.py +295 -0
  68. sklearnex/utils/_namespace.py +1 -1
  69. scikit_learn_intelex-2024.5.0.dist-info/RECORD +0 -104
  70. sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
  71. {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/LICENSE.txt +0 -0
  72. {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/WHEEL +0 -0
  73. {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,295 @@
1
+ # ===============================================================================
2
+ # Copyright 2020 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import random
18
+ from collections.abc import Iterable
19
+ from functools import partial
20
+ from numbers import Number
21
+
22
+ import numpy as np
23
+ import pytest
24
+ from _utils import (
25
+ PATCHED_MODELS,
26
+ SPECIAL_INSTANCES,
27
+ _sklearn_clone_dict,
28
+ call_method,
29
+ gen_dataset,
30
+ gen_models_info,
31
+ )
32
+ from numpy.testing import assert_allclose
33
+ from scipy import sparse
34
+ from sklearn.datasets import (
35
+ load_breast_cancer,
36
+ load_diabetes,
37
+ load_iris,
38
+ make_classification,
39
+ make_regression,
40
+ )
41
+
42
+ import daal4py as d4p
43
+ from onedal.tests.utils._dataframes_support import _as_numpy, get_dataframes_and_queues
44
+ from sklearnex.cluster import DBSCAN, KMeans
45
+ from sklearnex.decomposition import PCA
46
+ from sklearnex.metrics import pairwise_distances, roc_auc_score
47
+ from sklearnex.model_selection import train_test_split
48
+ from sklearnex.neighbors import (
49
+ KNeighborsClassifier,
50
+ KNeighborsRegressor,
51
+ NearestNeighbors,
52
+ )
53
+ from sklearnex.svm import SVC
54
+
55
+ # to reproduce errors even in CI
56
+ d4p.daalinit(nthreads=100)
57
+
58
+ _dataset_dict = {
59
+ "classification": [
60
+ partial(load_iris, return_X_y=True),
61
+ partial(load_breast_cancer, return_X_y=True),
62
+ ],
63
+ "regression": [
64
+ partial(load_diabetes, return_X_y=True),
65
+ partial(
66
+ make_regression, n_samples=500, n_features=10, noise=64.0, random_state=42
67
+ ),
68
+ ],
69
+ }
70
+
71
+
72
+ def eval_method(X, y, est, method):
73
+ res = []
74
+ est.fit(X, y)
75
+
76
+ if method:
77
+ res = call_method(est, method, X, y)
78
+
79
+ if not isinstance(res, Iterable):
80
+ results = [_as_numpy(res)] if res is not est else []
81
+ else:
82
+ results = [_as_numpy(i) for i in res]
83
+
84
+ attributes = [method] * len(results)
85
+
86
+ # if estimator follows sklearn design rules, then set attributes should have a
87
+ # trailing underscore
88
+ attributes += [
89
+ i
90
+ for i in dir(est)
91
+ if hasattr(est, i) and not i.startswith("_") and i.endswith("_")
92
+ ]
93
+ results += [getattr(est, i) for i in attributes if i != method]
94
+ return results, attributes
95
+
96
+
97
+ def _run_test(estimator, method, datasets):
98
+
99
+ for X, y in datasets:
100
+ baseline, attributes = eval_method(X, y, estimator, method)
101
+
102
+ for i in range(10):
103
+ res, _ = eval_method(X, y, estimator, method)
104
+
105
+ for r, b, n in zip(res, baseline, attributes):
106
+ if (
107
+ isinstance(b, Number)
108
+ or hasattr(b, "__array__")
109
+ or hasattr(b, "__array_namespace__")
110
+ or hasattr(b, "__sycl_usm_ndarray__")
111
+ ):
112
+ assert_allclose(
113
+ r, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
114
+ )
115
+
116
+
117
+ SPARSE_INSTANCES = _sklearn_clone_dict(
118
+ {
119
+ str(i): i
120
+ for i in [
121
+ SVC(),
122
+ KMeans(),
123
+ KMeans(init="random"),
124
+ ]
125
+ }
126
+ )
127
+
128
+ STABILITY_INSTANCES = _sklearn_clone_dict(
129
+ {
130
+ str(i): i
131
+ for i in [
132
+ KNeighborsClassifier(algorithm="brute", weights="distance"),
133
+ KNeighborsClassifier(algorithm="kd_tree", weights="distance"),
134
+ KNeighborsClassifier(algorithm="kd_tree"),
135
+ KNeighborsRegressor(algorithm="brute", weights="distance"),
136
+ KNeighborsRegressor(algorithm="kd_tree", weights="distance"),
137
+ KNeighborsRegressor(algorithm="kd_tree"),
138
+ NearestNeighbors(algorithm="kd_tree"),
139
+ DBSCAN(algorithm="brute"),
140
+ PCA(n_components=0.5, svd_solver="covariance_eigh"),
141
+ KMeans(init="random"),
142
+ ]
143
+ }
144
+ )
145
+
146
+
147
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
148
+ @pytest.mark.parametrize("estimator, method", gen_models_info(PATCHED_MODELS))
149
+ def test_standard_estimator_stability(estimator, method, dataframe, queue):
150
+ if estimator in ["LogisticRegression", "TSNE"]:
151
+ pytest.skip(f"stability not guaranteed for {estimator}")
152
+ if estimator in ["KMeans", "PCA"] and "score" in method and queue == None:
153
+ pytest.skip(f"variation observed in {estimator}.score")
154
+ if estimator in ["IncrementalEmpiricalCovariance"] and method == "mahalanobis":
155
+ pytest.skip("allowed fallback to sklearn occurs")
156
+
157
+ if "NearestNeighbors" in estimator and "radius" in method:
158
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
159
+
160
+ est = PATCHED_MODELS[estimator]()
161
+
162
+ if method and not hasattr(est, method):
163
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
164
+
165
+ params = est.get_params().copy()
166
+ if "random_state" in params:
167
+ params["random_state"] = 0
168
+ est.set_params(**params)
169
+
170
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
171
+ _run_test(est, method, datasets)
172
+
173
+
174
+ @pytest.mark.allow_sklearn_fallback
175
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
176
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPECIAL_INSTANCES))
177
+ def test_special_estimator_stability(estimator, method, dataframe, queue):
178
+ if queue is None and estimator in ["LogisticRegression(solver='newton-cg')"]:
179
+ pytest.skip(f"stability not guaranteed for {estimator}")
180
+ if "KMeans" in estimator and method == "score" and queue == None:
181
+ pytest.skip(f"variation observed in KMeans.score")
182
+ if "NearestNeighbors" in estimator and "radius" in method:
183
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
184
+
185
+ est = SPECIAL_INSTANCES[estimator]
186
+
187
+ if method and not hasattr(est, method):
188
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
189
+
190
+ params = est.get_params().copy()
191
+ if "random_state" in params:
192
+ params["random_state"] = 0
193
+ est.set_params(**params)
194
+
195
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
196
+ _run_test(est, method, datasets)
197
+
198
+
199
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
200
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPARSE_INSTANCES))
201
+ def test_sparse_estimator_stability(estimator, method, dataframe, queue):
202
+ if "KMeans" in estimator and method == "score" and queue == None:
203
+ pytest.skip(f"variation observed in KMeans.score")
204
+
205
+ if "NearestNeighbors" in estimator and "radius" in method:
206
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
207
+ est = SPARSE_INSTANCES[estimator]
208
+
209
+ if method and not hasattr(est, method):
210
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
211
+
212
+ params = est.get_params().copy()
213
+ if "random_state" in params:
214
+ params["random_state"] = 0
215
+ est.set_params(**params)
216
+
217
+ datasets = gen_dataset(
218
+ est, sparse=True, datasets=_dataset_dict, queue=queue, target_df=dataframe
219
+ )
220
+ _run_test(est, method, datasets)
221
+
222
+
223
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
224
+ @pytest.mark.parametrize("estimator, method", gen_models_info(STABILITY_INSTANCES))
225
+ def test_other_estimator_stability(estimator, method, dataframe, queue):
226
+ if "KMeans" in estimator and method == "score" and queue == None:
227
+ pytest.skip(f"variation observed in KMeans.score")
228
+ if "NearestNeighbors" in estimator and "radius" in method:
229
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
230
+
231
+ est = STABILITY_INSTANCES[estimator]
232
+
233
+ if method and not hasattr(est, method):
234
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
235
+
236
+ params = est.get_params().copy()
237
+ if "random_state" in params:
238
+ params["random_state"] = 0
239
+ est.set_params(**params)
240
+
241
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
242
+ _run_test(est, method, datasets)
243
+
244
+
245
+ @pytest.mark.parametrize("features", range(5, 10))
246
+ def test_train_test_split(features):
247
+ X, y = make_classification(
248
+ n_samples=4000,
249
+ n_features=features,
250
+ n_informative=features,
251
+ n_redundant=0,
252
+ n_clusters_per_class=8,
253
+ random_state=0,
254
+ )
255
+ (
256
+ baseline_X_train,
257
+ baseline_X_test,
258
+ baseline_y_train,
259
+ baseline_y_test,
260
+ ) = train_test_split(X, y, test_size=0.33, random_state=0)
261
+ baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
262
+ for _ in range(10):
263
+ X_train, X_test, y_train, y_test = train_test_split(
264
+ X, y, test_size=0.33, random_state=0
265
+ )
266
+ res = [X_train, X_test, y_train, y_test]
267
+ for a, b in zip(res, baseline):
268
+ np.testing.assert_allclose(
269
+ a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
270
+ )
271
+
272
+
273
+ @pytest.mark.parametrize("metric", ["cosine", "correlation"])
274
+ def test_pairwise_distances(metric):
275
+ X = np.random.rand(1000)
276
+ X = np.array(X, dtype=np.float64)
277
+ baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
278
+ for _ in range(5):
279
+ res = pairwise_distances(X.reshape(1, -1), metric=metric)
280
+ for a, b in zip(res, baseline):
281
+ np.testing.assert_allclose(
282
+ a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
283
+ )
284
+
285
+
286
+ @pytest.mark.parametrize("array_size", [100, 1000, 10000])
287
+ def test_roc_auc(array_size):
288
+ a = [random.randint(0, 1) for i in range(array_size)]
289
+ b = [random.randint(0, 1) for i in range(array_size)]
290
+ baseline = roc_auc_score(a, b)
291
+ for _ in range(5):
292
+ res = roc_auc_score(a, b)
293
+ np.testing.assert_allclose(
294
+ baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
295
+ )
@@ -94,4 +94,4 @@ def get_namespace(*arrays):
94
94
  elif sklearn_check_version("1.2"):
95
95
  return sklearn_get_namespace(*arrays)
96
96
  else:
97
- return np, True
97
+ return np, False
@@ -1,104 +0,0 @@
1
- sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
2
- sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
3
- sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
4
- sklearnex/_device_offload.py,sha256=m8Hspffwx6Tn3f-OYLqwf5cUCKq4vZ3aSLmhY92qp08,8876
5
- sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
6
- sklearnex/conftest.py,sha256=ZvcfQljZNBa3zlE1iITvuacHblugVtK6X80LwNXrnWI,2130
7
- sklearnex/dispatcher.py,sha256=FtPF7nezu67wKhG33FAxJCWK8jCj65G87k7AITOIxtw,15390
8
- sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
9
- sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
10
- sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=NNWF9zdxBz2jT7dzt5hL6HRvjQIGosvViQE3KJMF1L4,10048
11
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=zTb_04DBGYSfwcpRaP0OJzi4Z6jz4jqV_kDRAp1x-no,14926
12
- sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
13
- sklearnex/cluster/dbscan.py,sha256=JJaNVhV4dVK0xte9xzQpCAka80xVu3M7_SzmvD3k-EY,6736
14
- sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
15
- sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
16
- sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
17
- sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
18
- sklearnex/covariance/incremental_covariance.py,sha256=0MvYlGnmuZ8_kRBaIkMzg3RyGdcSMjO-I7dhw2VpTsg,11010
19
- sklearnex/covariance/tests/test_incremental_covariance.py,sha256=ZbEfup4ICm278RW4hZIHPciOiqhFhx_k1l3lpnw0M6s,6763
20
- sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
21
- sklearnex/decomposition/pca.py,sha256=JkyxsSz_8vVGUjJrfxyAwwY1Yf2uht-qxwOisEHv9mY,15550
22
- sklearnex/decomposition/tests/test_pca.py,sha256=-3r3QwALcZregRq-MX8aUFSVaHu0D2ffGt-V5JOnNgE,2223
23
- sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
24
- sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
25
- sklearnex/ensemble/_forest.py,sha256=6vyyQvg60Df-0v9ITIgwrSj2J1RQvGPa2-8Xs5_qXrQ,70003
26
- sklearnex/ensemble/tests/test_forest.py,sha256=r1GSPQuVVuWYoNB3ZLiGKfMSwq3lp5i6k-Rgr7InonQ,4456
27
- sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
28
- sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
29
- sklearnex/linear_model/__init__.py,sha256=mzZ0EaBhDH66ETNt2vylznSoZbCYexgL2qE_jKppYYc,1144
30
- sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
31
- sklearnex/linear_model/incremental_linear.py,sha256=26XywxAyyTM6kUCJsuayRtCijKKmSfckiNjrkn5VzHc,13021
32
- sklearnex/linear_model/linear.py,sha256=2VPcB7SNWlZKK1iHeAQagM2OxBPGFKK4FlY8TjBSZ3U,11162
33
- sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
34
- sklearnex/linear_model/logistic_regression.py,sha256=6TRaDJ8nIHxjofIfUvmeJOP9_EwmUgVKKK1sxe9vS5A,14171
35
- sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
36
- sklearnex/linear_model/tests/test_incremental_linear.py,sha256=AfebVKne6fb36Vyr8uPSKYWa9upfPHYZUURHa4Q-mPs,7303
37
- sklearnex/linear_model/tests/test_linear.py,sha256=nw5EqvF4sAy1dFBQobX0blvHUxZieDbt3wztQcuHrME,4315
38
- sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
39
- sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
40
- sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
41
- sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
42
- sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
43
- sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
44
- sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
45
- sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
46
- sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
47
- sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
48
- sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
49
- sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
50
- sklearnex/neighbors/_lof.py,sha256=5MPkWIb6FS55Q8xWzgc22Ec_PsouuN94SPovt-vsBGE,8648
51
- sklearnex/neighbors/common.py,sha256=8DxDoYtXtEM4RNoMCimpTVSDOOxUIJlNVOQvBXBhkd4,10875
52
- sklearnex/neighbors/knn_classification.py,sha256=ONoBbtwb5xoVLcpg5COpRNu1ZBOQ2EDh03RzbWDy5yo,8537
53
- sklearnex/neighbors/knn_regression.py,sha256=YBjvh6h56OaJHSZNGq8ZV8lsB-XpSWduEcVeHRuPorQ,6692
54
- sklearnex/neighbors/knn_unsupervised.py,sha256=qkj-hSEq8QetYsWlofnik3PpFvo1iBUbIOhywo8wFWk,5362
55
- sklearnex/neighbors/tests/test_neighbors.py,sha256=yAlMnLt9GrdT6Ceph5B7iFuMJXpDURiHWTE99oO8EDw,3417
56
- sklearnex/preview/__init__.py,sha256=OXC_k2kudA13rVesXb5ZlEC7_mKUS7uUra_BR-Tin30,780
57
- sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
58
- sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
59
- sklearnex/preview/cluster/k_means.py,sha256=RdF9mwgvZ1xgyeLhCQA2WaPvPsS1ndktXXcaNj6S460,10464
60
- sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
61
- sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
62
- sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
63
- sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
64
- sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
65
- sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
66
- sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
67
- sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
68
- sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
69
- sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
70
- sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
71
- sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
72
- sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
73
- sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
74
- sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
75
- sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
76
- sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
77
- sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
78
- sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
79
- sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
80
- sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
81
- sklearnex/svm/_common.py,sha256=52csEWTYWEVgUVWUm3RjX1VD_5VyyawXBvc7lBBp5qY,7010
82
- sklearnex/svm/nusvc.py,sha256=J4F_Tm9oYC-WK1Nf_CNqSnvuYEEZZ9xa3VY-x0G_2cw,9871
83
- sklearnex/svm/nusvr.py,sha256=ZFBnQzMgD4aRSk3BRIxwKfwErVyDJnNoR7vrIMm5WLk,3655
84
- sklearnex/svm/svc.py,sha256=u9wQ8dsvQvO4XP_3JSfYFBNJcuDyv3HVG5NY6jZqhZk,11125
85
- sklearnex/svm/svr.py,sha256=ldNWehrU4vgqX_0T8splmBjPsQln7w_h8L4XNpIgP6A,3655
86
- sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
87
- sklearnex/tests/_utils.py,sha256=bQR9PJ3GZzp3eZD35pLE8y-ts2a1VGq9ZbwFzh0e5q8,5598
88
- sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
89
- sklearnex/tests/test_memory_usage.py,sha256=nNVYn6S05q_J-eepNeGDfUKvzZCcHpCnm5jaZhCoPB8,7540
90
- sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
91
- sklearnex/tests/test_n_jobs_support.py,sha256=NziTP4GwZEDoBe1CDvhHZnp8JpwjYQmCNvXEDfS7Wo4,4313
92
- sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
93
- sklearnex/tests/test_patching.py,sha256=mDTw-tzO8yibUeRp_ZE560fXnwfnsSq-JAHmXihx1hI,14920
94
- sklearnex/tests/test_run_to_run_stability_tests.py,sha256=DFKMdIGyzGOBbi7A-o3zPZHLPAIDGIfLRxWzKIYa4hw,14019
95
- sklearnex/utils/__init__.py,sha256=FFlM8zc2qnSdPYpLjSt4Ma_9FjC8qk8wXJa-5B8hCs0,898
96
- sklearnex/utils/_namespace.py,sha256=lWzvzcObxq350A-Ms8JyTbaQStR8rgH4DgQYhWruHL4,3166
97
- sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
98
- sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
99
- sklearnex/utils/tests/test_finite.py,sha256=AzJRY71X0VvDUicUI8Ey9Le6_yKp5O-3ZikhDVJNWms,2943
100
- scikit_learn_intelex-2024.5.0.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
101
- scikit_learn_intelex-2024.5.0.dist-info/METADATA,sha256=dvtXeQgf40S23qHORmZUGIJaFgl0KF5sqtvHueNvq3Y,12449
102
- scikit_learn_intelex-2024.5.0.dist-info/WHEEL,sha256=rxMEw7jRW2YnjujGudhK0a-ZC6J_VMIRJJ7uhbmewD4,107
103
- scikit_learn_intelex-2024.5.0.dist-info/top_level.txt,sha256=kzKChSWGJEYFmdj5PwE63HNuP_PVOhWfD32ytH9rL9Q,10
104
- scikit_learn_intelex-2024.5.0.dist-info/RECORD,,