scikit-learn-intelex 2024.5.0__py312-none-win_amd64.whl → 2024.7.0__py312-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/_config.py +3 -15
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +98 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +143 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +1 -1
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -1
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +8 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +15 -3
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/conftest.py +11 -1
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +64 -13
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +35 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +25 -1
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +4 -2
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +109 -1
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +121 -57
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +7 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +13 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +102 -25
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +25 -39
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +92 -74
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +7 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +10 -10
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +30 -5
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +45 -3
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +21 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +5 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +3 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +9 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +45 -1
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +1 -20
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +25 -20
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +31 -7
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +228 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py → scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +19 -17
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py +419 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +163 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +328 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +40 -4
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +31 -2
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +40 -4
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +31 -2
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +12 -20
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py +328 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/_utils_spmd.py +185 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +54 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +4 -0
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +290 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +12 -4
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +21 -25
- scikit_learn_intelex-2024.7.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +295 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +1 -1
- {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/METADATA +5 -2
- scikit_learn_intelex-2024.7.0.dist-info/RECORD +122 -0
- {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -257
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -17
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py +0 -173
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -231
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.5.0.dist-info/RECORD +0 -104
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.7.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.7.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,266 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
22
|
+
from onedal.tests.utils._dataframes_support import (
|
|
23
|
+
_as_numpy,
|
|
24
|
+
_convert_to_dataframe,
|
|
25
|
+
get_dataframes_and_queues,
|
|
26
|
+
)
|
|
27
|
+
from sklearnex.preview.decomposition import IncrementalPCA
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
31
|
+
def test_sklearnex_import(dataframe, queue):
|
|
32
|
+
X = [[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]
|
|
33
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
34
|
+
incpca = IncrementalPCA(n_components=2)
|
|
35
|
+
result = incpca.fit(X)
|
|
36
|
+
assert "sklearnex" in incpca.__module__
|
|
37
|
+
assert hasattr(incpca, "_onedal_estimator")
|
|
38
|
+
assert_allclose(_as_numpy(result.singular_values_), [6.30061232, 0.54980396])
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def check_pca_on_gold_data(incpca, dtype, whiten, transformed_data):
|
|
42
|
+
expected_n_samples_seen_ = 6
|
|
43
|
+
expected_n_features_in_ = 2
|
|
44
|
+
expected_n_components_ = 2
|
|
45
|
+
expected_components_ = np.array([[0.83849224, 0.54491354], [-0.54491354, 0.83849224]])
|
|
46
|
+
expected_singular_values_ = np.array([6.30061232, 0.54980396])
|
|
47
|
+
expected_mean_ = np.array([0, 0])
|
|
48
|
+
expected_var_ = np.array([5.6, 2.4])
|
|
49
|
+
expected_explained_variance_ = np.array([7.93954312, 0.06045688])
|
|
50
|
+
expected_explained_variance_ratio_ = np.array([0.99244289, 0.00755711])
|
|
51
|
+
expected_noise_variance_ = 0.0
|
|
52
|
+
expected_transformed_data = (
|
|
53
|
+
np.array(
|
|
54
|
+
[
|
|
55
|
+
[-0.49096647, -1.19399271],
|
|
56
|
+
[-0.78854479, 1.02218579],
|
|
57
|
+
[-1.27951125, -0.17180692],
|
|
58
|
+
[0.49096647, 1.19399271],
|
|
59
|
+
[0.78854479, -1.02218579],
|
|
60
|
+
[1.27951125, 0.17180692],
|
|
61
|
+
]
|
|
62
|
+
)
|
|
63
|
+
if whiten
|
|
64
|
+
else np.array(
|
|
65
|
+
[
|
|
66
|
+
[-1.38340578, -0.2935787],
|
|
67
|
+
[-2.22189802, 0.25133484],
|
|
68
|
+
[-3.6053038, -0.04224385],
|
|
69
|
+
[1.38340578, 0.2935787],
|
|
70
|
+
[2.22189802, -0.25133484],
|
|
71
|
+
[3.6053038, 0.04224385],
|
|
72
|
+
]
|
|
73
|
+
)
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
tol = 1e-7
|
|
77
|
+
if transformed_data.dtype == np.float32:
|
|
78
|
+
tol = 7e-6 if whiten else 1e-6
|
|
79
|
+
|
|
80
|
+
assert incpca.n_samples_seen_ == expected_n_samples_seen_
|
|
81
|
+
assert incpca.n_features_in_ == expected_n_features_in_
|
|
82
|
+
assert incpca.n_components_ == expected_n_components_
|
|
83
|
+
|
|
84
|
+
assert_allclose(incpca.singular_values_, expected_singular_values_, atol=tol)
|
|
85
|
+
assert_allclose(incpca.mean_, expected_mean_, atol=tol)
|
|
86
|
+
assert_allclose(incpca.var_, expected_var_, atol=tol)
|
|
87
|
+
assert_allclose(incpca.explained_variance_, expected_explained_variance_, atol=tol)
|
|
88
|
+
assert_allclose(
|
|
89
|
+
incpca.explained_variance_ratio_, expected_explained_variance_ratio_, atol=tol
|
|
90
|
+
)
|
|
91
|
+
assert np.abs(incpca.noise_variance_ - expected_noise_variance_) < tol
|
|
92
|
+
if daal_check_version((2024, "P", 500)):
|
|
93
|
+
assert_allclose(incpca.components_, expected_components_, atol=tol)
|
|
94
|
+
assert_allclose(_as_numpy(transformed_data), expected_transformed_data, atol=tol)
|
|
95
|
+
else:
|
|
96
|
+
for i in range(incpca.n_components_):
|
|
97
|
+
abs_dot_product = np.abs(
|
|
98
|
+
np.dot(incpca.components_[i], expected_components_[i])
|
|
99
|
+
)
|
|
100
|
+
assert np.abs(abs_dot_product - 1.0) < tol
|
|
101
|
+
|
|
102
|
+
if np.dot(incpca.components_[i], expected_components_[i]) < 0:
|
|
103
|
+
assert_allclose(
|
|
104
|
+
_as_numpy(-transformed_data[i]),
|
|
105
|
+
expected_transformed_data[i],
|
|
106
|
+
atol=tol,
|
|
107
|
+
)
|
|
108
|
+
else:
|
|
109
|
+
assert_allclose(
|
|
110
|
+
_as_numpy(transformed_data[i]), expected_transformed_data[i], atol=tol
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
def check_pca(incpca, dtype, whiten, data, transformed_data):
|
|
115
|
+
tol = 3e-3 if transformed_data.dtype == np.float32 else 2e-6
|
|
116
|
+
|
|
117
|
+
n_components = incpca.n_components_
|
|
118
|
+
|
|
119
|
+
expected_n_samples_seen = data.shape[0]
|
|
120
|
+
expected_n_features_in = data.shape[1]
|
|
121
|
+
n_samples_seen = incpca.n_samples_seen_
|
|
122
|
+
n_features_in = incpca.n_features_in_
|
|
123
|
+
assert n_samples_seen == expected_n_samples_seen
|
|
124
|
+
assert n_features_in == expected_n_features_in
|
|
125
|
+
|
|
126
|
+
components = incpca.components_
|
|
127
|
+
singular_values = incpca.singular_values_
|
|
128
|
+
centered_data = data - np.mean(data, axis=0)
|
|
129
|
+
cov_eigenvalues, cov_eigenvectors = np.linalg.eig(
|
|
130
|
+
centered_data.T @ centered_data / (n_samples_seen - 1)
|
|
131
|
+
)
|
|
132
|
+
cov_eigenvalues = np.nan_to_num(cov_eigenvalues)
|
|
133
|
+
cov_eigenvalues[cov_eigenvalues < 0] = 0
|
|
134
|
+
eigenvalues_order = np.argsort(cov_eigenvalues)[::-1]
|
|
135
|
+
sorted_eigenvalues = cov_eigenvalues[eigenvalues_order]
|
|
136
|
+
sorted_eigenvectors = cov_eigenvectors[:, eigenvalues_order]
|
|
137
|
+
expected_singular_values = np.sqrt(sorted_eigenvalues * (n_samples_seen - 1))[
|
|
138
|
+
:n_components
|
|
139
|
+
]
|
|
140
|
+
expected_components = sorted_eigenvectors.T[:n_components]
|
|
141
|
+
|
|
142
|
+
assert_allclose(singular_values, expected_singular_values, atol=tol)
|
|
143
|
+
for i in range(n_components):
|
|
144
|
+
component_length = np.dot(components[i], components[i])
|
|
145
|
+
assert np.abs(component_length - 1.0) < tol
|
|
146
|
+
abs_dot_product = np.abs(np.dot(components[i], expected_components[i]))
|
|
147
|
+
assert np.abs(abs_dot_product - 1.0) < tol
|
|
148
|
+
|
|
149
|
+
expected_mean = np.mean(data, axis=0)
|
|
150
|
+
assert_allclose(incpca.mean_, expected_mean, atol=tol)
|
|
151
|
+
|
|
152
|
+
expected_var = np.var(_as_numpy(data), ddof=1, axis=0)
|
|
153
|
+
assert_allclose(incpca.var_, expected_var, atol=tol)
|
|
154
|
+
|
|
155
|
+
expected_explained_variance = sorted_eigenvalues[:n_components]
|
|
156
|
+
assert_allclose(incpca.explained_variance_, expected_explained_variance, atol=tol)
|
|
157
|
+
|
|
158
|
+
expected_explained_variance_ratio = expected_explained_variance / np.sum(
|
|
159
|
+
sorted_eigenvalues
|
|
160
|
+
)
|
|
161
|
+
assert_allclose(
|
|
162
|
+
incpca.explained_variance_ratio_, expected_explained_variance_ratio, atol=tol
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
expected_noise_variance = (
|
|
166
|
+
np.mean(sorted_eigenvalues[n_components:])
|
|
167
|
+
if len(sorted_eigenvalues) > n_components
|
|
168
|
+
else 0.0
|
|
169
|
+
)
|
|
170
|
+
# TODO Fix noise variance computation (It is necessary to update C++ side)
|
|
171
|
+
# assert np.abs(incpca.noise_variance_ - expected_noise_variance) < tol
|
|
172
|
+
|
|
173
|
+
expected_transformed_data = centered_data @ components.T
|
|
174
|
+
if whiten:
|
|
175
|
+
scale = np.sqrt(incpca.explained_variance_)
|
|
176
|
+
min_scale = np.finfo(scale.dtype).eps
|
|
177
|
+
scale[scale < min_scale] = np.inf
|
|
178
|
+
expected_transformed_data /= scale
|
|
179
|
+
|
|
180
|
+
if not (whiten and n_components == n_samples_seen):
|
|
181
|
+
assert_allclose(_as_numpy(transformed_data), expected_transformed_data, atol=tol)
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
185
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
186
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 3])
|
|
187
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
188
|
+
def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, whiten, num_blocks, dtype):
|
|
189
|
+
|
|
190
|
+
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
|
191
|
+
X = X.astype(dtype=dtype)
|
|
192
|
+
X_split = np.array_split(X, num_blocks)
|
|
193
|
+
incpca = IncrementalPCA(whiten=whiten)
|
|
194
|
+
|
|
195
|
+
for i in range(num_blocks):
|
|
196
|
+
X_split_df = _convert_to_dataframe(
|
|
197
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
198
|
+
)
|
|
199
|
+
incpca.partial_fit(X_split_df)
|
|
200
|
+
|
|
201
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
202
|
+
transformed_data = incpca.transform(X_df)
|
|
203
|
+
check_pca_on_gold_data(incpca, dtype, whiten, transformed_data)
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
207
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
208
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 3])
|
|
209
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
210
|
+
def test_sklearnex_fit_on_gold_data(dataframe, queue, whiten, num_blocks, dtype):
|
|
211
|
+
|
|
212
|
+
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
|
213
|
+
X = X.astype(dtype=dtype)
|
|
214
|
+
incpca = IncrementalPCA(whiten=whiten, batch_size=X.shape[0] // num_blocks)
|
|
215
|
+
|
|
216
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
217
|
+
incpca.fit(X_df)
|
|
218
|
+
transformed_data = incpca.transform(X_df)
|
|
219
|
+
|
|
220
|
+
check_pca_on_gold_data(incpca, dtype, whiten, transformed_data)
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
224
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
225
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 3])
|
|
226
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
227
|
+
def test_sklearnex_fit_transform_on_gold_data(
|
|
228
|
+
dataframe, queue, whiten, num_blocks, dtype
|
|
229
|
+
):
|
|
230
|
+
|
|
231
|
+
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
|
232
|
+
X = X.astype(dtype=dtype)
|
|
233
|
+
incpca = IncrementalPCA(whiten=whiten, batch_size=X.shape[0] // num_blocks)
|
|
234
|
+
|
|
235
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
236
|
+
transformed_data = incpca.fit_transform(X_df)
|
|
237
|
+
|
|
238
|
+
check_pca_on_gold_data(incpca, dtype, whiten, transformed_data)
|
|
239
|
+
|
|
240
|
+
|
|
241
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
242
|
+
@pytest.mark.parametrize("n_components", [None, 1, 5])
|
|
243
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
244
|
+
@pytest.mark.parametrize("num_blocks", [1, 10])
|
|
245
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
246
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
247
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
248
|
+
def test_sklearnex_partial_fit_on_random_data(
|
|
249
|
+
dataframe, queue, n_components, whiten, num_blocks, row_count, column_count, dtype
|
|
250
|
+
):
|
|
251
|
+
seed = 81
|
|
252
|
+
gen = np.random.default_rng(seed)
|
|
253
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
254
|
+
X = X.astype(dtype=dtype)
|
|
255
|
+
X_split = np.array_split(X, num_blocks)
|
|
256
|
+
incpca = IncrementalPCA(n_components=n_components, whiten=whiten)
|
|
257
|
+
|
|
258
|
+
for i in range(num_blocks):
|
|
259
|
+
X_split_df = _convert_to_dataframe(
|
|
260
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
261
|
+
)
|
|
262
|
+
incpca.partial_fit(X_split_df)
|
|
263
|
+
|
|
264
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
265
|
+
transformed_data = incpca.transform(X_df)
|
|
266
|
+
check_pca(incpca, dtype, whiten, X, transformed_data)
|
|
@@ -1,17 +1,19 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
from
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from .ridge import Ridge
|
|
18
|
+
|
|
19
|
+
__all__ = ["Ridge"]
|