scikit-learn-intelex 2024.5.0__py312-none-win_amd64.whl → 2024.6.0__py312-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (112) hide show
  1. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -0
  2. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
  3. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/conftest.py +11 -1
  4. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +4 -2
  5. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +15 -1
  6. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +114 -23
  7. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +13 -3
  8. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
  9. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +102 -25
  10. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +25 -7
  11. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +13 -15
  12. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +10 -10
  13. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
  14. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +24 -0
  15. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  16. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
  17. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +228 -0
  18. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  19. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +330 -0
  20. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +40 -4
  21. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +31 -2
  22. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +40 -4
  23. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +31 -2
  24. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +49 -17
  25. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +54 -0
  26. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +290 -0
  27. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +5 -12
  28. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +283 -0
  29. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +1 -1
  30. {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +5 -2
  31. scikit_learn_intelex-2024.6.0.dist-info/RECORD +108 -0
  32. {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +1 -1
  33. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
  34. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -231
  35. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
  36. scikit_learn_intelex-2024.5.0.dist-info/RECORD +0 -104
  37. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  38. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  39. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  40. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +0 -0
  41. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  42. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  43. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  44. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
  45. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +0 -0
  46. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  47. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  48. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  49. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  50. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -0
  51. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -0
  52. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  53. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -0
  54. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  55. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  56. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  57. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
  58. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  59. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  60. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  61. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  62. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  63. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  64. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  65. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  66. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  67. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  68. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  69. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  70. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  71. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  72. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  73. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
  74. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
  75. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
  76. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
  77. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
  78. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  79. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  80. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
  81. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
  83. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
  84. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  86. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  87. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  89. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  90. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  91. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  92. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  94. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  95. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  96. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  97. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  98. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  99. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  100. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  101. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  102. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  103. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  104. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  105. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -0
  106. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  107. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  108. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  109. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +0 -0
  110. {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  111. {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
  112. {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,283 @@
1
+ # ===============================================================================
2
+ # Copyright 2020 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import random
18
+ from collections.abc import Iterable
19
+ from functools import partial
20
+ from numbers import Number
21
+
22
+ import numpy as np
23
+ import pytest
24
+ from _utils import (
25
+ PATCHED_MODELS,
26
+ SPECIAL_INSTANCES,
27
+ _sklearn_clone_dict,
28
+ gen_dataset,
29
+ gen_models_info,
30
+ )
31
+ from numpy.testing import assert_allclose
32
+ from scipy import sparse
33
+ from sklearn.datasets import (
34
+ load_breast_cancer,
35
+ load_diabetes,
36
+ load_iris,
37
+ make_classification,
38
+ make_regression,
39
+ )
40
+
41
+ import daal4py as d4p
42
+ from onedal.tests.utils._dataframes_support import _as_numpy, get_dataframes_and_queues
43
+ from sklearnex.cluster import DBSCAN, KMeans
44
+ from sklearnex.decomposition import PCA
45
+ from sklearnex.metrics import pairwise_distances, roc_auc_score
46
+ from sklearnex.model_selection import train_test_split
47
+ from sklearnex.neighbors import (
48
+ KNeighborsClassifier,
49
+ KNeighborsRegressor,
50
+ NearestNeighbors,
51
+ )
52
+ from sklearnex.svm import SVC
53
+
54
+ # to reproduce errors even in CI
55
+ d4p.daalinit(nthreads=100)
56
+
57
+ _dataset_dict = {
58
+ "classification": [
59
+ partial(load_iris, return_X_y=True),
60
+ partial(load_breast_cancer, return_X_y=True),
61
+ ],
62
+ "regression": [
63
+ partial(load_diabetes, return_X_y=True),
64
+ partial(
65
+ make_regression, n_samples=500, n_features=10, noise=64.0, random_state=42
66
+ ),
67
+ ],
68
+ }
69
+
70
+
71
+ def eval_method(X, y, est, method):
72
+ res = []
73
+ est.fit(X, y)
74
+
75
+ if method:
76
+ if method != "score":
77
+ res = getattr(est, method)(X)
78
+ else:
79
+ res = est.score(X, y)
80
+
81
+ if not isinstance(res, Iterable):
82
+ res = [res]
83
+
84
+ # if estimator follows sklearn design rules, then set attributes should have a
85
+ # trailing underscore
86
+ attributes = [
87
+ i
88
+ for i in dir(est)
89
+ if hasattr(est, i) and not i.startswith("_") and i.endswith("_")
90
+ ]
91
+ results = [getattr(est, i) for i in attributes] + [_as_numpy(i) for i in res]
92
+ attributes += [method for i in res]
93
+ return results, attributes
94
+
95
+
96
+ def _run_test(estimator, method, datasets):
97
+
98
+ for X, y in datasets:
99
+ baseline, attributes = eval_method(X, y, estimator, method)
100
+
101
+ for i in range(10):
102
+ res, _ = eval_method(X, y, estimator, method)
103
+
104
+ for r, b, n in zip(res, baseline, attributes):
105
+ if (
106
+ isinstance(b, Number)
107
+ or hasattr(b, "__array__")
108
+ or hasattr(b, "__array_namespace__")
109
+ or hasattr(b, "__sycl_usm_ndarray__")
110
+ ):
111
+ assert_allclose(
112
+ r, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
113
+ )
114
+
115
+
116
+ SPARSE_INSTANCES = _sklearn_clone_dict(
117
+ {
118
+ str(i): i
119
+ for i in [
120
+ SVC(),
121
+ KMeans(),
122
+ KMeans(init="random"),
123
+ ]
124
+ }
125
+ )
126
+
127
+ STABILITY_INSTANCES = _sklearn_clone_dict(
128
+ {
129
+ str(i): i
130
+ for i in [
131
+ KNeighborsClassifier(algorithm="brute", weights="distance"),
132
+ KNeighborsClassifier(algorithm="kd_tree", weights="distance"),
133
+ KNeighborsClassifier(algorithm="kd_tree"),
134
+ KNeighborsRegressor(algorithm="brute", weights="distance"),
135
+ KNeighborsRegressor(algorithm="kd_tree", weights="distance"),
136
+ KNeighborsRegressor(algorithm="kd_tree"),
137
+ NearestNeighbors(algorithm="kd_tree"),
138
+ DBSCAN(algorithm="brute"),
139
+ PCA(n_components=0.5, svd_solver="covariance_eigh"),
140
+ KMeans(init="random"),
141
+ ]
142
+ }
143
+ )
144
+
145
+
146
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
147
+ @pytest.mark.parametrize("estimator, method", gen_models_info(PATCHED_MODELS))
148
+ def test_standard_estimator_stability(estimator, method, dataframe, queue):
149
+ if estimator in ["LogisticRegression", "TSNE"]:
150
+ pytest.skip(f"stability not guaranteed for {estimator}")
151
+ if estimator in ["KMeans", "PCA"] and method == "score" and queue == None:
152
+ pytest.skip(f"variation observed in {estimator}.score")
153
+
154
+ est = PATCHED_MODELS[estimator]()
155
+
156
+ if method and not hasattr(est, method):
157
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
158
+
159
+ params = est.get_params().copy()
160
+ if "random_state" in params:
161
+ params["random_state"] = 0
162
+ est.set_params(**params)
163
+
164
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
165
+ _run_test(est, method, datasets)
166
+
167
+
168
+ @pytest.mark.allow_sklearn_fallback
169
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
170
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPECIAL_INSTANCES))
171
+ def test_special_estimator_stability(estimator, method, dataframe, queue):
172
+ if queue is None and estimator in ["LogisticRegression(solver='newton-cg')"]:
173
+ pytest.skip(f"stability not guaranteed for {estimator}")
174
+ if "KMeans" in estimator and method == "score" and queue == None:
175
+ pytest.skip(f"variation observed in KMeans.score")
176
+
177
+ est = SPECIAL_INSTANCES[estimator]
178
+
179
+ if method and not hasattr(est, method):
180
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
181
+
182
+ params = est.get_params().copy()
183
+ if "random_state" in params:
184
+ params["random_state"] = 0
185
+ est.set_params(**params)
186
+
187
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
188
+ _run_test(est, method, datasets)
189
+
190
+
191
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
192
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPARSE_INSTANCES))
193
+ def test_sparse_estimator_stability(estimator, method, dataframe, queue):
194
+ if "KMeans" in estimator and method == "score" and queue == None:
195
+ pytest.skip(f"variation observed in KMeans.score")
196
+
197
+ est = SPARSE_INSTANCES[estimator]
198
+
199
+ if method and not hasattr(est, method):
200
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
201
+
202
+ params = est.get_params().copy()
203
+ if "random_state" in params:
204
+ params["random_state"] = 0
205
+ est.set_params(**params)
206
+
207
+ datasets = gen_dataset(
208
+ est, sparse=True, datasets=_dataset_dict, queue=queue, target_df=dataframe
209
+ )
210
+ _run_test(est, method, datasets)
211
+
212
+
213
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
214
+ @pytest.mark.parametrize("estimator, method", gen_models_info(STABILITY_INSTANCES))
215
+ def test_other_estimator_stability(estimator, method, dataframe, queue):
216
+ if "KMeans" in estimator and method == "score" and queue == None:
217
+ pytest.skip(f"variation observed in KMeans.score")
218
+
219
+ est = STABILITY_INSTANCES[estimator]
220
+
221
+ if method and not hasattr(est, method):
222
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
223
+
224
+ params = est.get_params().copy()
225
+ if "random_state" in params:
226
+ params["random_state"] = 0
227
+ est.set_params(**params)
228
+
229
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
230
+ _run_test(est, method, datasets)
231
+
232
+
233
+ @pytest.mark.parametrize("features", range(5, 10))
234
+ def test_train_test_split(features):
235
+ X, y = make_classification(
236
+ n_samples=4000,
237
+ n_features=features,
238
+ n_informative=features,
239
+ n_redundant=0,
240
+ n_clusters_per_class=8,
241
+ random_state=0,
242
+ )
243
+ (
244
+ baseline_X_train,
245
+ baseline_X_test,
246
+ baseline_y_train,
247
+ baseline_y_test,
248
+ ) = train_test_split(X, y, test_size=0.33, random_state=0)
249
+ baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
250
+ for _ in range(10):
251
+ X_train, X_test, y_train, y_test = train_test_split(
252
+ X, y, test_size=0.33, random_state=0
253
+ )
254
+ res = [X_train, X_test, y_train, y_test]
255
+ for a, b in zip(res, baseline):
256
+ np.testing.assert_allclose(
257
+ a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
258
+ )
259
+
260
+
261
+ @pytest.mark.parametrize("metric", ["cosine", "correlation"])
262
+ def test_pairwise_distances(metric):
263
+ X = np.random.rand(1000)
264
+ X = np.array(X, dtype=np.float64)
265
+ baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
266
+ for _ in range(5):
267
+ res = pairwise_distances(X.reshape(1, -1), metric=metric)
268
+ for a, b in zip(res, baseline):
269
+ np.testing.assert_allclose(
270
+ a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
271
+ )
272
+
273
+
274
+ @pytest.mark.parametrize("array_size", [100, 1000, 10000])
275
+ def test_roc_auc(array_size):
276
+ a = [random.randint(0, 1) for i in range(array_size)]
277
+ b = [random.randint(0, 1) for i in range(array_size)]
278
+ baseline = roc_auc_score(a, b)
279
+ for _ in range(5):
280
+ res = roc_auc_score(a, b)
281
+ np.testing.assert_allclose(
282
+ baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
283
+ )
@@ -94,4 +94,4 @@ def get_namespace(*arrays):
94
94
  elif sklearn_check_version("1.2"):
95
95
  return sklearn_get_namespace(*arrays)
96
96
  else:
97
- return np, True
97
+ return np, False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-learn-intelex
3
- Version: 2024.5.0
3
+ Version: 2024.6.0
4
4
  Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
5
  Home-page: https://github.com/intel/scikit-learn-intelex
6
6
  Author: Intel Corporation
@@ -11,6 +11,7 @@ Project-URL: Bug Tracker, https://github.com/intel/scikit-learn-intelex/issues
11
11
  Project-URL: Documentation, https://intel.github.io/scikit-learn-intelex/
12
12
  Project-URL: Source Code, https://github.com/intel/scikit-learn-intelex
13
13
  Keywords: machine learning,scikit-learn,data science,data analytics
14
+ Platform: UNKNOWN
14
15
  Classifier: Development Status :: 5 - Production/Stable
15
16
  Classifier: Environment :: Console
16
17
  Classifier: Intended Audience :: Developers
@@ -30,7 +31,7 @@ Classifier: Topic :: Software Development
30
31
  Requires-Python: >=3.7
31
32
  Description-Content-Type: text/markdown
32
33
  License-File: LICENSE.txt
33
- Requires-Dist: daal4py ==2024.5.0
34
+ Requires-Dist: daal4py ==2024.6.0
34
35
  Requires-Dist: scikit-learn >=0.22
35
36
 
36
37
 
@@ -225,3 +226,5 @@ For example, for DBSCAN you get one of these print statements depending on which
225
226
  - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
226
227
 
227
228
  [Read more in the documentation](https://intel.github.io/scikit-learn-intelex/).
229
+
230
+
@@ -0,0 +1,108 @@
1
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
2
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
3
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
4
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=m8Hspffwx6Tn3f-OYLqwf5cUCKq4vZ3aSLmhY92qp08,8876
5
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
6
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ODuhlscC0HNGXiA8olEfHTDULzjevqG9_sn0yMGRkHg,2376
7
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=XElvy9dDJ8XNOci8asKUnWXJpr6JROXHehdWBc_od3g,15876
8
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
9
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
10
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=NNWF9zdxBz2jT7dzt5hL6HRvjQIGosvViQE3KJMF1L4,10048
11
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=zTb_04DBGYSfwcpRaP0OJzi4Z6jz4jqV_kDRAp1x-no,14926
12
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
13
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=EiAMRZq53KhGQ_d4_c867-frgG-pz8S1J88vd8hLAn4,6844
14
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
15
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
16
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
17
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
18
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=0MvYlGnmuZ8_kRBaIkMzg3RyGdcSMjO-I7dhw2VpTsg,11010
19
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=ZbEfup4ICm278RW4hZIHPciOiqhFhx_k1l3lpnw0M6s,6763
20
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
21
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=JkyxsSz_8vVGUjJrfxyAwwY1Yf2uht-qxwOisEHv9mY,15550
22
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=EoCgpSojE2S2e7hOUwW0Bh3vVGTUywawAhU7ThVAlW0,2319
23
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
24
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
25
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=tElkh0jezrp9QK2T3_kDCgye6El9W6hOlJepaeMIOM4,73494
26
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=UXj6pfSuOr8wm_KZciyE9zt6hh-we1U8s0XU9bShqHI,4735
27
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
28
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
29
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=mzZ0EaBhDH66ETNt2vylznSoZbCYexgL2qE_jKppYYc,1144
30
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
31
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py,sha256=iDad4Z4xMDImvG-Jgtt0Hz3Qp9MVhSi-IjUPcV0Y_ks,16101
32
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=SUoFFvpl4Eb308sYBp6FNbZls-4G69eg8wSeuPs0oAg,11765
33
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
34
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=jmsNs7MYHm-PncuG20m_TSqXbM5jXx_vHsoH-hReEFQ,14271
35
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
36
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py,sha256=e0ZADjB0myq1QcdwYxlVYl6tGFs4tVZIfBoV1xkdFuw,7337
37
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=9YQgyYmcGSL2rEgIfhZZxTIlj5v-Z6-ygBqYR6ly3oE,4357
38
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
39
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
40
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
41
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
42
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
43
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
44
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
45
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
46
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
47
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
48
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
49
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
50
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=5MPkWIb6FS55Q8xWzgc22Ec_PsouuN94SPovt-vsBGE,8648
51
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=8DxDoYtXtEM4RNoMCimpTVSDOOxUIJlNVOQvBXBhkd4,10875
52
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=ONoBbtwb5xoVLcpg5COpRNu1ZBOQ2EDh03RzbWDy5yo,8537
53
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=ge8VAMa8aJ58M5ccN5NMILFHuRYtYKzyoLF8fxxgGfo,7462
54
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=qkj-hSEq8QetYsWlofnik3PpFvo1iBUbIOhywo8wFWk,5362
55
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=yAlMnLt9GrdT6Ceph5B7iFuMJXpDURiHWTE99oO8EDw,3417
56
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=1QcbV6xCSP7QCXRxYLVPc_b4lxE0cQiyTrMm4xOnosM,797
57
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
58
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
59
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=RdF9mwgvZ1xgyeLhCQA2WaPvPsS1ndktXXcaNj6S460,10464
60
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
61
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
62
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
63
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py,sha256=9VcJPWKgSrWDFEXUY6ZCpAT2XGbOVA4a1j_XgfJBnTM,839
64
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py,sha256=SsY1-AQt0mFTJGP5yzVxZvopNz2tSeXUO9p9c_3uVus,7820
65
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py,sha256=tsAlM18nzfIQxic7Ry986Ue0ovUdbopWFNckqQLK5xU,10776
66
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
67
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
68
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
69
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
70
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
71
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
72
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
73
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
74
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
75
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
76
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
77
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
78
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
79
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
80
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
81
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
82
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
83
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
84
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=wH4LT6QIoe7xM3btaUBC7fpKJcqKLfNHJj16rAaEZ1k,12797
85
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=-SfYz2bUMLaosYg_qeTBYf1Ra-bFuGmI62xIerf3XeE,11262
86
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=9nbRaPCoDQ5SBGH_jLgcaX_PWGDh667w-gW5X2YbHBM,4764
87
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=fZ9oVpKkgH5OYBXo4mPdZ-8cP07hSzPHoJsyItpXmcQ,12470
88
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=NIWVUu7NjV4Fe4L-Y4vIqd3KePFdMJ1-jupeH4ZvNsg,4733
89
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
90
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=zRNpggSrZs4H0L-__UuiYRPm_ASqrqWm226ZQzlBQ7I,6252
91
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py,sha256=MYx0y7oomArxWu9qe2zNs7YL-ScPGFnzvw8PZ1or04A,1813
92
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
93
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=FTtQgaa7p5ScDGscB93LkpU4B3DzfqnVMi84b2vSL30,10957
94
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
95
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=NziTP4GwZEDoBe1CDvhHZnp8JpwjYQmCNvXEDfS7Wo4,4313
96
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
97
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=LKi-x0ELu_y5HEa86UYhDzOalJphiEBtEe5own89PEs,14782
98
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py,sha256=49WnqTcAaGGa5eP7RBwEePvr_dA9hfYsCK4-pZA8OPw,9984
99
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=FFlM8zc2qnSdPYpLjSt4Ma_9FjC8qk8wXJa-5B8hCs0,898
100
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py,sha256=ohr8gOgEFgrccLecllMVYQPqbqqyye9uT-cWLtyxHFs,3167
101
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
102
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
103
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py,sha256=AzJRY71X0VvDUicUI8Ey9Le6_yKp5O-3ZikhDVJNWms,2943
104
+ scikit_learn_intelex-2024.6.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
105
+ scikit_learn_intelex-2024.6.0.dist-info/METADATA,sha256=5EaxEdRCGbRZSbI2UugxUxEWAj224Gnx0QNJOAh56ck,12674
106
+ scikit_learn_intelex-2024.6.0.dist-info/WHEEL,sha256=1E4TxeBrRxPeqIgdcbzb5s4s1uYHbWXmHHl-JqhFHCA,100
107
+ scikit_learn_intelex-2024.6.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
108
+ scikit_learn_intelex-2024.6.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: bdist_wheel (0.43.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py312-none-win_amd64
5
5
 
@@ -1,185 +0,0 @@
1
- # ==============================================================================
2
- # Copyright 2021 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ==============================================================================
16
-
17
- from abc import ABC
18
-
19
- import numpy as np
20
- from sklearn.calibration import CalibratedClassifierCV
21
- from sklearn.model_selection import StratifiedKFold
22
- from sklearn.preprocessing import LabelEncoder
23
-
24
- from daal4py.sklearn._utils import sklearn_check_version
25
- from onedal.utils import _column_or_1d
26
-
27
- from .._utils import PatchingConditionsChain
28
-
29
-
30
- def get_dual_coef(self):
31
- return self.dual_coef_
32
-
33
-
34
- def set_dual_coef(self, value):
35
- self.dual_coef_ = value
36
- if hasattr(self, "_onedal_estimator"):
37
- self._onedal_estimator.dual_coef_ = value
38
- if not self._is_in_fit:
39
- del self._onedal_estimator._onedal_model
40
-
41
-
42
- def get_intercept(self):
43
- return self._intercept_
44
-
45
-
46
- def set_intercept(self, value):
47
- self._intercept_ = value
48
- if hasattr(self, "_onedal_estimator"):
49
- self._onedal_estimator.intercept_ = value
50
- if not self._is_in_fit:
51
- del self._onedal_estimator._onedal_model
52
-
53
-
54
- class BaseSVM(ABC):
55
- def _onedal_gpu_supported(self, method_name, *data):
56
- patching_status = PatchingConditionsChain(f"sklearn.{method_name}")
57
- patching_status.and_conditions([(False, "GPU offloading is not supported.")])
58
- return patching_status
59
-
60
- def _onedal_cpu_supported(self, method_name, *data):
61
- class_name = self.__class__.__name__
62
- patching_status = PatchingConditionsChain(
63
- f"sklearn.svm.{class_name}.{method_name}"
64
- )
65
- if method_name == "fit":
66
- patching_status.and_conditions(
67
- [
68
- (
69
- self.kernel in ["linear", "rbf", "poly", "sigmoid"],
70
- f'Kernel is "{self.kernel}" while '
71
- '"linear", "rbf", "poly" and "sigmoid" are only supported.',
72
- )
73
- ]
74
- )
75
- return patching_status
76
- inference_methods = (
77
- ["predict"]
78
- if class_name.endswith("R")
79
- else ["predict", "predict_proba", "decision_function", "score"]
80
- )
81
- if method_name in inference_methods:
82
- patching_status.and_conditions(
83
- [(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained.")]
84
- )
85
- return patching_status
86
- raise RuntimeError(f"Unknown method {method_name} in {class_name}")
87
-
88
-
89
- class BaseSVC(BaseSVM):
90
- def _compute_balanced_class_weight(self, y):
91
- y_ = _column_or_1d(y)
92
- classes, _ = np.unique(y_, return_inverse=True)
93
-
94
- le = LabelEncoder()
95
- y_ind = le.fit_transform(y_)
96
- if not all(np.in1d(classes, le.classes_)):
97
- raise ValueError("classes should have valid labels that are in y")
98
-
99
- recip_freq = len(y_) / (len(le.classes_) * np.bincount(y_ind).astype(np.float64))
100
- return recip_freq[le.transform(classes)]
101
-
102
- def _fit_proba(self, X, y, sample_weight=None, queue=None):
103
- params = self.get_params()
104
- params["probability"] = False
105
- params["decision_function_shape"] = "ovr"
106
- clf_base = self.__class__(**params)
107
-
108
- try:
109
- n_splits = 5
110
- n_jobs = n_splits if queue is None or queue.sycl_device.is_cpu else 1
111
- cv = StratifiedKFold(
112
- n_splits=n_splits, shuffle=True, random_state=self.random_state
113
- )
114
- self.clf_prob = CalibratedClassifierCV(
115
- clf_base, ensemble=False, cv=cv, method="sigmoid", n_jobs=n_jobs
116
- )
117
- self.clf_prob.fit(X, y, sample_weight)
118
- except ValueError:
119
- clf_base = clf_base.fit(X, y, sample_weight)
120
- self.clf_prob = CalibratedClassifierCV(
121
- clf_base, cv="prefit", method="sigmoid"
122
- )
123
- self.clf_prob.fit(X, y, sample_weight)
124
-
125
- def _save_attributes(self):
126
- self.support_vectors_ = self._onedal_estimator.support_vectors_
127
- self.n_features_in_ = self._onedal_estimator.n_features_in_
128
- self.fit_status_ = 0
129
- self.dual_coef_ = self._onedal_estimator.dual_coef_
130
- self.shape_fit_ = self._onedal_estimator.class_weight_
131
- self.classes_ = self._onedal_estimator.classes_
132
- self.class_weight_ = self._onedal_estimator.class_weight_
133
- self.support_ = self._onedal_estimator.support_
134
-
135
- self._intercept_ = self._onedal_estimator.intercept_
136
- self._n_support = self._onedal_estimator._n_support
137
- self._sparse = False
138
- self._gamma = self._onedal_estimator._gamma
139
- if self.probability:
140
- length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
141
- self._probA = np.zeros(length)
142
- self._probB = np.zeros(length)
143
- else:
144
- self._probA = np.empty(0)
145
- self._probB = np.empty(0)
146
-
147
- self._dual_coef_ = property(get_dual_coef, set_dual_coef)
148
- self.intercept_ = property(get_intercept, set_intercept)
149
-
150
- self._is_in_fit = True
151
- self._dual_coef_ = self.dual_coef_
152
- self.intercept_ = self._intercept_
153
- self._is_in_fit = False
154
-
155
- if sklearn_check_version("1.1"):
156
- length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
157
- self.n_iter_ = np.full((length,), self._onedal_estimator.n_iter_)
158
-
159
-
160
- class BaseSVR(BaseSVM):
161
- def _save_attributes(self):
162
- self.support_vectors_ = self._onedal_estimator.support_vectors_
163
- self.n_features_in_ = self._onedal_estimator.n_features_in_
164
- self.fit_status_ = 0
165
- self.dual_coef_ = self._onedal_estimator.dual_coef_
166
- self.shape_fit_ = self._onedal_estimator.shape_fit_
167
- self.support_ = self._onedal_estimator.support_
168
-
169
- self._intercept_ = self._onedal_estimator.intercept_
170
- self._n_support = [self.support_vectors_.shape[0]]
171
- self._sparse = False
172
- self._gamma = self._onedal_estimator._gamma
173
- self._probA = None
174
- self._probB = None
175
-
176
- self._dual_coef_ = property(get_dual_coef, set_dual_coef)
177
- self.intercept_ = property(get_intercept, set_intercept)
178
-
179
- self._is_in_fit = True
180
- self._dual_coef_ = self.dual_coef_
181
- self.intercept_ = self._intercept_
182
- self._is_in_fit = False
183
-
184
- if sklearn_check_version("1.1"):
185
- self.n_iter_ = self._onedal_estimator.n_iter_