scikit-learn-intelex 2024.5.0__py310-none-win_amd64.whl → 2024.6.0__py310-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/conftest.py +11 -1
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +4 -2
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +15 -1
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +114 -23
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +13 -3
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +102 -25
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +25 -7
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +13 -15
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +10 -10
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +24 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +228 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +330 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +40 -4
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +31 -2
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +40 -4
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +31 -2
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +49 -17
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +54 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +290 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +5 -12
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +283 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +1 -1
- {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +5 -2
- scikit_learn_intelex-2024.6.0.dist-info/RECORD +108 -0
- {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -231
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.5.0.dist-info/RECORD +0 -104
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +0 -0
- {scikit_learn_intelex-2024.5.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,283 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2020 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import random
|
|
18
|
+
from collections.abc import Iterable
|
|
19
|
+
from functools import partial
|
|
20
|
+
from numbers import Number
|
|
21
|
+
|
|
22
|
+
import numpy as np
|
|
23
|
+
import pytest
|
|
24
|
+
from _utils import (
|
|
25
|
+
PATCHED_MODELS,
|
|
26
|
+
SPECIAL_INSTANCES,
|
|
27
|
+
_sklearn_clone_dict,
|
|
28
|
+
gen_dataset,
|
|
29
|
+
gen_models_info,
|
|
30
|
+
)
|
|
31
|
+
from numpy.testing import assert_allclose
|
|
32
|
+
from scipy import sparse
|
|
33
|
+
from sklearn.datasets import (
|
|
34
|
+
load_breast_cancer,
|
|
35
|
+
load_diabetes,
|
|
36
|
+
load_iris,
|
|
37
|
+
make_classification,
|
|
38
|
+
make_regression,
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
import daal4py as d4p
|
|
42
|
+
from onedal.tests.utils._dataframes_support import _as_numpy, get_dataframes_and_queues
|
|
43
|
+
from sklearnex.cluster import DBSCAN, KMeans
|
|
44
|
+
from sklearnex.decomposition import PCA
|
|
45
|
+
from sklearnex.metrics import pairwise_distances, roc_auc_score
|
|
46
|
+
from sklearnex.model_selection import train_test_split
|
|
47
|
+
from sklearnex.neighbors import (
|
|
48
|
+
KNeighborsClassifier,
|
|
49
|
+
KNeighborsRegressor,
|
|
50
|
+
NearestNeighbors,
|
|
51
|
+
)
|
|
52
|
+
from sklearnex.svm import SVC
|
|
53
|
+
|
|
54
|
+
# to reproduce errors even in CI
|
|
55
|
+
d4p.daalinit(nthreads=100)
|
|
56
|
+
|
|
57
|
+
_dataset_dict = {
|
|
58
|
+
"classification": [
|
|
59
|
+
partial(load_iris, return_X_y=True),
|
|
60
|
+
partial(load_breast_cancer, return_X_y=True),
|
|
61
|
+
],
|
|
62
|
+
"regression": [
|
|
63
|
+
partial(load_diabetes, return_X_y=True),
|
|
64
|
+
partial(
|
|
65
|
+
make_regression, n_samples=500, n_features=10, noise=64.0, random_state=42
|
|
66
|
+
),
|
|
67
|
+
],
|
|
68
|
+
}
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def eval_method(X, y, est, method):
|
|
72
|
+
res = []
|
|
73
|
+
est.fit(X, y)
|
|
74
|
+
|
|
75
|
+
if method:
|
|
76
|
+
if method != "score":
|
|
77
|
+
res = getattr(est, method)(X)
|
|
78
|
+
else:
|
|
79
|
+
res = est.score(X, y)
|
|
80
|
+
|
|
81
|
+
if not isinstance(res, Iterable):
|
|
82
|
+
res = [res]
|
|
83
|
+
|
|
84
|
+
# if estimator follows sklearn design rules, then set attributes should have a
|
|
85
|
+
# trailing underscore
|
|
86
|
+
attributes = [
|
|
87
|
+
i
|
|
88
|
+
for i in dir(est)
|
|
89
|
+
if hasattr(est, i) and not i.startswith("_") and i.endswith("_")
|
|
90
|
+
]
|
|
91
|
+
results = [getattr(est, i) for i in attributes] + [_as_numpy(i) for i in res]
|
|
92
|
+
attributes += [method for i in res]
|
|
93
|
+
return results, attributes
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def _run_test(estimator, method, datasets):
|
|
97
|
+
|
|
98
|
+
for X, y in datasets:
|
|
99
|
+
baseline, attributes = eval_method(X, y, estimator, method)
|
|
100
|
+
|
|
101
|
+
for i in range(10):
|
|
102
|
+
res, _ = eval_method(X, y, estimator, method)
|
|
103
|
+
|
|
104
|
+
for r, b, n in zip(res, baseline, attributes):
|
|
105
|
+
if (
|
|
106
|
+
isinstance(b, Number)
|
|
107
|
+
or hasattr(b, "__array__")
|
|
108
|
+
or hasattr(b, "__array_namespace__")
|
|
109
|
+
or hasattr(b, "__sycl_usm_ndarray__")
|
|
110
|
+
):
|
|
111
|
+
assert_allclose(
|
|
112
|
+
r, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
SPARSE_INSTANCES = _sklearn_clone_dict(
|
|
117
|
+
{
|
|
118
|
+
str(i): i
|
|
119
|
+
for i in [
|
|
120
|
+
SVC(),
|
|
121
|
+
KMeans(),
|
|
122
|
+
KMeans(init="random"),
|
|
123
|
+
]
|
|
124
|
+
}
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
STABILITY_INSTANCES = _sklearn_clone_dict(
|
|
128
|
+
{
|
|
129
|
+
str(i): i
|
|
130
|
+
for i in [
|
|
131
|
+
KNeighborsClassifier(algorithm="brute", weights="distance"),
|
|
132
|
+
KNeighborsClassifier(algorithm="kd_tree", weights="distance"),
|
|
133
|
+
KNeighborsClassifier(algorithm="kd_tree"),
|
|
134
|
+
KNeighborsRegressor(algorithm="brute", weights="distance"),
|
|
135
|
+
KNeighborsRegressor(algorithm="kd_tree", weights="distance"),
|
|
136
|
+
KNeighborsRegressor(algorithm="kd_tree"),
|
|
137
|
+
NearestNeighbors(algorithm="kd_tree"),
|
|
138
|
+
DBSCAN(algorithm="brute"),
|
|
139
|
+
PCA(n_components=0.5, svd_solver="covariance_eigh"),
|
|
140
|
+
KMeans(init="random"),
|
|
141
|
+
]
|
|
142
|
+
}
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
@pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
|
|
147
|
+
@pytest.mark.parametrize("estimator, method", gen_models_info(PATCHED_MODELS))
|
|
148
|
+
def test_standard_estimator_stability(estimator, method, dataframe, queue):
|
|
149
|
+
if estimator in ["LogisticRegression", "TSNE"]:
|
|
150
|
+
pytest.skip(f"stability not guaranteed for {estimator}")
|
|
151
|
+
if estimator in ["KMeans", "PCA"] and method == "score" and queue == None:
|
|
152
|
+
pytest.skip(f"variation observed in {estimator}.score")
|
|
153
|
+
|
|
154
|
+
est = PATCHED_MODELS[estimator]()
|
|
155
|
+
|
|
156
|
+
if method and not hasattr(est, method):
|
|
157
|
+
pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
|
|
158
|
+
|
|
159
|
+
params = est.get_params().copy()
|
|
160
|
+
if "random_state" in params:
|
|
161
|
+
params["random_state"] = 0
|
|
162
|
+
est.set_params(**params)
|
|
163
|
+
|
|
164
|
+
datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
|
|
165
|
+
_run_test(est, method, datasets)
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
@pytest.mark.allow_sklearn_fallback
|
|
169
|
+
@pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
|
|
170
|
+
@pytest.mark.parametrize("estimator, method", gen_models_info(SPECIAL_INSTANCES))
|
|
171
|
+
def test_special_estimator_stability(estimator, method, dataframe, queue):
|
|
172
|
+
if queue is None and estimator in ["LogisticRegression(solver='newton-cg')"]:
|
|
173
|
+
pytest.skip(f"stability not guaranteed for {estimator}")
|
|
174
|
+
if "KMeans" in estimator and method == "score" and queue == None:
|
|
175
|
+
pytest.skip(f"variation observed in KMeans.score")
|
|
176
|
+
|
|
177
|
+
est = SPECIAL_INSTANCES[estimator]
|
|
178
|
+
|
|
179
|
+
if method and not hasattr(est, method):
|
|
180
|
+
pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
|
|
181
|
+
|
|
182
|
+
params = est.get_params().copy()
|
|
183
|
+
if "random_state" in params:
|
|
184
|
+
params["random_state"] = 0
|
|
185
|
+
est.set_params(**params)
|
|
186
|
+
|
|
187
|
+
datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
|
|
188
|
+
_run_test(est, method, datasets)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
@pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
|
|
192
|
+
@pytest.mark.parametrize("estimator, method", gen_models_info(SPARSE_INSTANCES))
|
|
193
|
+
def test_sparse_estimator_stability(estimator, method, dataframe, queue):
|
|
194
|
+
if "KMeans" in estimator and method == "score" and queue == None:
|
|
195
|
+
pytest.skip(f"variation observed in KMeans.score")
|
|
196
|
+
|
|
197
|
+
est = SPARSE_INSTANCES[estimator]
|
|
198
|
+
|
|
199
|
+
if method and not hasattr(est, method):
|
|
200
|
+
pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
|
|
201
|
+
|
|
202
|
+
params = est.get_params().copy()
|
|
203
|
+
if "random_state" in params:
|
|
204
|
+
params["random_state"] = 0
|
|
205
|
+
est.set_params(**params)
|
|
206
|
+
|
|
207
|
+
datasets = gen_dataset(
|
|
208
|
+
est, sparse=True, datasets=_dataset_dict, queue=queue, target_df=dataframe
|
|
209
|
+
)
|
|
210
|
+
_run_test(est, method, datasets)
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
@pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
|
|
214
|
+
@pytest.mark.parametrize("estimator, method", gen_models_info(STABILITY_INSTANCES))
|
|
215
|
+
def test_other_estimator_stability(estimator, method, dataframe, queue):
|
|
216
|
+
if "KMeans" in estimator and method == "score" and queue == None:
|
|
217
|
+
pytest.skip(f"variation observed in KMeans.score")
|
|
218
|
+
|
|
219
|
+
est = STABILITY_INSTANCES[estimator]
|
|
220
|
+
|
|
221
|
+
if method and not hasattr(est, method):
|
|
222
|
+
pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
|
|
223
|
+
|
|
224
|
+
params = est.get_params().copy()
|
|
225
|
+
if "random_state" in params:
|
|
226
|
+
params["random_state"] = 0
|
|
227
|
+
est.set_params(**params)
|
|
228
|
+
|
|
229
|
+
datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
|
|
230
|
+
_run_test(est, method, datasets)
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
@pytest.mark.parametrize("features", range(5, 10))
|
|
234
|
+
def test_train_test_split(features):
|
|
235
|
+
X, y = make_classification(
|
|
236
|
+
n_samples=4000,
|
|
237
|
+
n_features=features,
|
|
238
|
+
n_informative=features,
|
|
239
|
+
n_redundant=0,
|
|
240
|
+
n_clusters_per_class=8,
|
|
241
|
+
random_state=0,
|
|
242
|
+
)
|
|
243
|
+
(
|
|
244
|
+
baseline_X_train,
|
|
245
|
+
baseline_X_test,
|
|
246
|
+
baseline_y_train,
|
|
247
|
+
baseline_y_test,
|
|
248
|
+
) = train_test_split(X, y, test_size=0.33, random_state=0)
|
|
249
|
+
baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
|
|
250
|
+
for _ in range(10):
|
|
251
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
252
|
+
X, y, test_size=0.33, random_state=0
|
|
253
|
+
)
|
|
254
|
+
res = [X_train, X_test, y_train, y_test]
|
|
255
|
+
for a, b in zip(res, baseline):
|
|
256
|
+
np.testing.assert_allclose(
|
|
257
|
+
a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
@pytest.mark.parametrize("metric", ["cosine", "correlation"])
|
|
262
|
+
def test_pairwise_distances(metric):
|
|
263
|
+
X = np.random.rand(1000)
|
|
264
|
+
X = np.array(X, dtype=np.float64)
|
|
265
|
+
baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
266
|
+
for _ in range(5):
|
|
267
|
+
res = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
268
|
+
for a, b in zip(res, baseline):
|
|
269
|
+
np.testing.assert_allclose(
|
|
270
|
+
a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
|
|
271
|
+
)
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
@pytest.mark.parametrize("array_size", [100, 1000, 10000])
|
|
275
|
+
def test_roc_auc(array_size):
|
|
276
|
+
a = [random.randint(0, 1) for i in range(array_size)]
|
|
277
|
+
b = [random.randint(0, 1) for i in range(array_size)]
|
|
278
|
+
baseline = roc_auc_score(a, b)
|
|
279
|
+
for _ in range(5):
|
|
280
|
+
res = roc_auc_score(a, b)
|
|
281
|
+
np.testing.assert_allclose(
|
|
282
|
+
baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
|
|
283
|
+
)
|
{scikit_learn_intelex-2024.5.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: scikit-learn-intelex
|
|
3
|
-
Version: 2024.
|
|
3
|
+
Version: 2024.6.0
|
|
4
4
|
Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
|
|
5
5
|
Home-page: https://github.com/intel/scikit-learn-intelex
|
|
6
6
|
Author: Intel Corporation
|
|
@@ -11,6 +11,7 @@ Project-URL: Bug Tracker, https://github.com/intel/scikit-learn-intelex/issues
|
|
|
11
11
|
Project-URL: Documentation, https://intel.github.io/scikit-learn-intelex/
|
|
12
12
|
Project-URL: Source Code, https://github.com/intel/scikit-learn-intelex
|
|
13
13
|
Keywords: machine learning,scikit-learn,data science,data analytics
|
|
14
|
+
Platform: UNKNOWN
|
|
14
15
|
Classifier: Development Status :: 5 - Production/Stable
|
|
15
16
|
Classifier: Environment :: Console
|
|
16
17
|
Classifier: Intended Audience :: Developers
|
|
@@ -30,7 +31,7 @@ Classifier: Topic :: Software Development
|
|
|
30
31
|
Requires-Python: >=3.7
|
|
31
32
|
Description-Content-Type: text/markdown
|
|
32
33
|
License-File: LICENSE.txt
|
|
33
|
-
Requires-Dist: daal4py ==2024.
|
|
34
|
+
Requires-Dist: daal4py ==2024.6.0
|
|
34
35
|
Requires-Dist: scikit-learn >=0.22
|
|
35
36
|
|
|
36
37
|
|
|
@@ -225,3 +226,5 @@ For example, for DBSCAN you get one of these print statements depending on which
|
|
|
225
226
|
- `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
|
|
226
227
|
|
|
227
228
|
[Read more in the documentation](https://intel.github.io/scikit-learn-intelex/).
|
|
229
|
+
|
|
230
|
+
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
|
|
2
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
|
|
3
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
|
|
4
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=m8Hspffwx6Tn3f-OYLqwf5cUCKq4vZ3aSLmhY92qp08,8876
|
|
5
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
|
|
6
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ODuhlscC0HNGXiA8olEfHTDULzjevqG9_sn0yMGRkHg,2376
|
|
7
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=XElvy9dDJ8XNOci8asKUnWXJpr6JROXHehdWBc_od3g,15876
|
|
8
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
9
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
|
|
10
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=NNWF9zdxBz2jT7dzt5hL6HRvjQIGosvViQE3KJMF1L4,10048
|
|
11
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=zTb_04DBGYSfwcpRaP0OJzi4Z6jz4jqV_kDRAp1x-no,14926
|
|
12
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
|
|
13
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=EiAMRZq53KhGQ_d4_c867-frgG-pz8S1J88vd8hLAn4,6844
|
|
14
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
|
|
15
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
|
|
16
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
|
|
17
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
|
|
18
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=0MvYlGnmuZ8_kRBaIkMzg3RyGdcSMjO-I7dhw2VpTsg,11010
|
|
19
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=ZbEfup4ICm278RW4hZIHPciOiqhFhx_k1l3lpnw0M6s,6763
|
|
20
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
|
|
21
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=JkyxsSz_8vVGUjJrfxyAwwY1Yf2uht-qxwOisEHv9mY,15550
|
|
22
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=EoCgpSojE2S2e7hOUwW0Bh3vVGTUywawAhU7ThVAlW0,2319
|
|
23
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
|
|
24
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
|
|
25
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=tElkh0jezrp9QK2T3_kDCgye6El9W6hOlJepaeMIOM4,73494
|
|
26
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=UXj6pfSuOr8wm_KZciyE9zt6hh-we1U8s0XU9bShqHI,4735
|
|
27
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
|
|
28
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
|
|
29
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=mzZ0EaBhDH66ETNt2vylznSoZbCYexgL2qE_jKppYYc,1144
|
|
30
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
|
|
31
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py,sha256=iDad4Z4xMDImvG-Jgtt0Hz3Qp9MVhSi-IjUPcV0Y_ks,16101
|
|
32
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=SUoFFvpl4Eb308sYBp6FNbZls-4G69eg8wSeuPs0oAg,11765
|
|
33
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
|
|
34
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=jmsNs7MYHm-PncuG20m_TSqXbM5jXx_vHsoH-hReEFQ,14271
|
|
35
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
|
|
36
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py,sha256=e0ZADjB0myq1QcdwYxlVYl6tGFs4tVZIfBoV1xkdFuw,7337
|
|
37
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=9YQgyYmcGSL2rEgIfhZZxTIlj5v-Z6-ygBqYR6ly3oE,4357
|
|
38
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
|
|
39
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
|
|
40
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
|
|
41
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
|
|
42
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
|
|
43
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
|
|
44
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
|
|
45
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
|
|
46
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
|
|
47
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
|
|
48
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
|
|
49
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
|
|
50
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=5MPkWIb6FS55Q8xWzgc22Ec_PsouuN94SPovt-vsBGE,8648
|
|
51
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=8DxDoYtXtEM4RNoMCimpTVSDOOxUIJlNVOQvBXBhkd4,10875
|
|
52
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=ONoBbtwb5xoVLcpg5COpRNu1ZBOQ2EDh03RzbWDy5yo,8537
|
|
53
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=ge8VAMa8aJ58M5ccN5NMILFHuRYtYKzyoLF8fxxgGfo,7462
|
|
54
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=qkj-hSEq8QetYsWlofnik3PpFvo1iBUbIOhywo8wFWk,5362
|
|
55
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=yAlMnLt9GrdT6Ceph5B7iFuMJXpDURiHWTE99oO8EDw,3417
|
|
56
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=1QcbV6xCSP7QCXRxYLVPc_b4lxE0cQiyTrMm4xOnosM,797
|
|
57
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
|
|
58
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
|
|
59
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=RdF9mwgvZ1xgyeLhCQA2WaPvPsS1ndktXXcaNj6S460,10464
|
|
60
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
|
|
61
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
|
|
62
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
|
|
63
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py,sha256=9VcJPWKgSrWDFEXUY6ZCpAT2XGbOVA4a1j_XgfJBnTM,839
|
|
64
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py,sha256=SsY1-AQt0mFTJGP5yzVxZvopNz2tSeXUO9p9c_3uVus,7820
|
|
65
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py,sha256=tsAlM18nzfIQxic7Ry986Ue0ovUdbopWFNckqQLK5xU,10776
|
|
66
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
|
|
67
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
68
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
|
|
69
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
|
|
70
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
|
|
71
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
|
|
72
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
|
|
73
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
|
|
74
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
|
|
75
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
|
|
76
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
|
|
77
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
|
|
78
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
|
|
79
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
|
|
80
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
|
|
81
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
|
|
82
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
|
|
83
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
|
|
84
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=wH4LT6QIoe7xM3btaUBC7fpKJcqKLfNHJj16rAaEZ1k,12797
|
|
85
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=-SfYz2bUMLaosYg_qeTBYf1Ra-bFuGmI62xIerf3XeE,11262
|
|
86
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=9nbRaPCoDQ5SBGH_jLgcaX_PWGDh667w-gW5X2YbHBM,4764
|
|
87
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=fZ9oVpKkgH5OYBXo4mPdZ-8cP07hSzPHoJsyItpXmcQ,12470
|
|
88
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=NIWVUu7NjV4Fe4L-Y4vIqd3KePFdMJ1-jupeH4ZvNsg,4733
|
|
89
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
|
|
90
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=zRNpggSrZs4H0L-__UuiYRPm_ASqrqWm226ZQzlBQ7I,6252
|
|
91
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py,sha256=MYx0y7oomArxWu9qe2zNs7YL-ScPGFnzvw8PZ1or04A,1813
|
|
92
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
|
|
93
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=FTtQgaa7p5ScDGscB93LkpU4B3DzfqnVMi84b2vSL30,10957
|
|
94
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
|
|
95
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=NziTP4GwZEDoBe1CDvhHZnp8JpwjYQmCNvXEDfS7Wo4,4313
|
|
96
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
|
|
97
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=LKi-x0ELu_y5HEa86UYhDzOalJphiEBtEe5own89PEs,14782
|
|
98
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py,sha256=49WnqTcAaGGa5eP7RBwEePvr_dA9hfYsCK4-pZA8OPw,9984
|
|
99
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=FFlM8zc2qnSdPYpLjSt4Ma_9FjC8qk8wXJa-5B8hCs0,898
|
|
100
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py,sha256=ohr8gOgEFgrccLecllMVYQPqbqqyye9uT-cWLtyxHFs,3167
|
|
101
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
|
|
102
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
|
|
103
|
+
scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py,sha256=AzJRY71X0VvDUicUI8Ey9Le6_yKp5O-3ZikhDVJNWms,2943
|
|
104
|
+
scikit_learn_intelex-2024.6.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
|
|
105
|
+
scikit_learn_intelex-2024.6.0.dist-info/METADATA,sha256=5EaxEdRCGbRZSbI2UugxUxEWAj224Gnx0QNJOAh56ck,12674
|
|
106
|
+
scikit_learn_intelex-2024.6.0.dist-info/WHEEL,sha256=yHuPJe60ILR94EugYTdMlIF9E1QgZo3G3qPRkLw2TBk,100
|
|
107
|
+
scikit_learn_intelex-2024.6.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
108
|
+
scikit_learn_intelex-2024.6.0.dist-info/RECORD,,
|
|
@@ -1,185 +0,0 @@
|
|
|
1
|
-
# ==============================================================================
|
|
2
|
-
# Copyright 2021 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ==============================================================================
|
|
16
|
-
|
|
17
|
-
from abc import ABC
|
|
18
|
-
|
|
19
|
-
import numpy as np
|
|
20
|
-
from sklearn.calibration import CalibratedClassifierCV
|
|
21
|
-
from sklearn.model_selection import StratifiedKFold
|
|
22
|
-
from sklearn.preprocessing import LabelEncoder
|
|
23
|
-
|
|
24
|
-
from daal4py.sklearn._utils import sklearn_check_version
|
|
25
|
-
from onedal.utils import _column_or_1d
|
|
26
|
-
|
|
27
|
-
from .._utils import PatchingConditionsChain
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
def get_dual_coef(self):
|
|
31
|
-
return self.dual_coef_
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
def set_dual_coef(self, value):
|
|
35
|
-
self.dual_coef_ = value
|
|
36
|
-
if hasattr(self, "_onedal_estimator"):
|
|
37
|
-
self._onedal_estimator.dual_coef_ = value
|
|
38
|
-
if not self._is_in_fit:
|
|
39
|
-
del self._onedal_estimator._onedal_model
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
def get_intercept(self):
|
|
43
|
-
return self._intercept_
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
def set_intercept(self, value):
|
|
47
|
-
self._intercept_ = value
|
|
48
|
-
if hasattr(self, "_onedal_estimator"):
|
|
49
|
-
self._onedal_estimator.intercept_ = value
|
|
50
|
-
if not self._is_in_fit:
|
|
51
|
-
del self._onedal_estimator._onedal_model
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
class BaseSVM(ABC):
|
|
55
|
-
def _onedal_gpu_supported(self, method_name, *data):
|
|
56
|
-
patching_status = PatchingConditionsChain(f"sklearn.{method_name}")
|
|
57
|
-
patching_status.and_conditions([(False, "GPU offloading is not supported.")])
|
|
58
|
-
return patching_status
|
|
59
|
-
|
|
60
|
-
def _onedal_cpu_supported(self, method_name, *data):
|
|
61
|
-
class_name = self.__class__.__name__
|
|
62
|
-
patching_status = PatchingConditionsChain(
|
|
63
|
-
f"sklearn.svm.{class_name}.{method_name}"
|
|
64
|
-
)
|
|
65
|
-
if method_name == "fit":
|
|
66
|
-
patching_status.and_conditions(
|
|
67
|
-
[
|
|
68
|
-
(
|
|
69
|
-
self.kernel in ["linear", "rbf", "poly", "sigmoid"],
|
|
70
|
-
f'Kernel is "{self.kernel}" while '
|
|
71
|
-
'"linear", "rbf", "poly" and "sigmoid" are only supported.',
|
|
72
|
-
)
|
|
73
|
-
]
|
|
74
|
-
)
|
|
75
|
-
return patching_status
|
|
76
|
-
inference_methods = (
|
|
77
|
-
["predict"]
|
|
78
|
-
if class_name.endswith("R")
|
|
79
|
-
else ["predict", "predict_proba", "decision_function", "score"]
|
|
80
|
-
)
|
|
81
|
-
if method_name in inference_methods:
|
|
82
|
-
patching_status.and_conditions(
|
|
83
|
-
[(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained.")]
|
|
84
|
-
)
|
|
85
|
-
return patching_status
|
|
86
|
-
raise RuntimeError(f"Unknown method {method_name} in {class_name}")
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
class BaseSVC(BaseSVM):
|
|
90
|
-
def _compute_balanced_class_weight(self, y):
|
|
91
|
-
y_ = _column_or_1d(y)
|
|
92
|
-
classes, _ = np.unique(y_, return_inverse=True)
|
|
93
|
-
|
|
94
|
-
le = LabelEncoder()
|
|
95
|
-
y_ind = le.fit_transform(y_)
|
|
96
|
-
if not all(np.in1d(classes, le.classes_)):
|
|
97
|
-
raise ValueError("classes should have valid labels that are in y")
|
|
98
|
-
|
|
99
|
-
recip_freq = len(y_) / (len(le.classes_) * np.bincount(y_ind).astype(np.float64))
|
|
100
|
-
return recip_freq[le.transform(classes)]
|
|
101
|
-
|
|
102
|
-
def _fit_proba(self, X, y, sample_weight=None, queue=None):
|
|
103
|
-
params = self.get_params()
|
|
104
|
-
params["probability"] = False
|
|
105
|
-
params["decision_function_shape"] = "ovr"
|
|
106
|
-
clf_base = self.__class__(**params)
|
|
107
|
-
|
|
108
|
-
try:
|
|
109
|
-
n_splits = 5
|
|
110
|
-
n_jobs = n_splits if queue is None or queue.sycl_device.is_cpu else 1
|
|
111
|
-
cv = StratifiedKFold(
|
|
112
|
-
n_splits=n_splits, shuffle=True, random_state=self.random_state
|
|
113
|
-
)
|
|
114
|
-
self.clf_prob = CalibratedClassifierCV(
|
|
115
|
-
clf_base, ensemble=False, cv=cv, method="sigmoid", n_jobs=n_jobs
|
|
116
|
-
)
|
|
117
|
-
self.clf_prob.fit(X, y, sample_weight)
|
|
118
|
-
except ValueError:
|
|
119
|
-
clf_base = clf_base.fit(X, y, sample_weight)
|
|
120
|
-
self.clf_prob = CalibratedClassifierCV(
|
|
121
|
-
clf_base, cv="prefit", method="sigmoid"
|
|
122
|
-
)
|
|
123
|
-
self.clf_prob.fit(X, y, sample_weight)
|
|
124
|
-
|
|
125
|
-
def _save_attributes(self):
|
|
126
|
-
self.support_vectors_ = self._onedal_estimator.support_vectors_
|
|
127
|
-
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
128
|
-
self.fit_status_ = 0
|
|
129
|
-
self.dual_coef_ = self._onedal_estimator.dual_coef_
|
|
130
|
-
self.shape_fit_ = self._onedal_estimator.class_weight_
|
|
131
|
-
self.classes_ = self._onedal_estimator.classes_
|
|
132
|
-
self.class_weight_ = self._onedal_estimator.class_weight_
|
|
133
|
-
self.support_ = self._onedal_estimator.support_
|
|
134
|
-
|
|
135
|
-
self._intercept_ = self._onedal_estimator.intercept_
|
|
136
|
-
self._n_support = self._onedal_estimator._n_support
|
|
137
|
-
self._sparse = False
|
|
138
|
-
self._gamma = self._onedal_estimator._gamma
|
|
139
|
-
if self.probability:
|
|
140
|
-
length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
|
|
141
|
-
self._probA = np.zeros(length)
|
|
142
|
-
self._probB = np.zeros(length)
|
|
143
|
-
else:
|
|
144
|
-
self._probA = np.empty(0)
|
|
145
|
-
self._probB = np.empty(0)
|
|
146
|
-
|
|
147
|
-
self._dual_coef_ = property(get_dual_coef, set_dual_coef)
|
|
148
|
-
self.intercept_ = property(get_intercept, set_intercept)
|
|
149
|
-
|
|
150
|
-
self._is_in_fit = True
|
|
151
|
-
self._dual_coef_ = self.dual_coef_
|
|
152
|
-
self.intercept_ = self._intercept_
|
|
153
|
-
self._is_in_fit = False
|
|
154
|
-
|
|
155
|
-
if sklearn_check_version("1.1"):
|
|
156
|
-
length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
|
|
157
|
-
self.n_iter_ = np.full((length,), self._onedal_estimator.n_iter_)
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
class BaseSVR(BaseSVM):
|
|
161
|
-
def _save_attributes(self):
|
|
162
|
-
self.support_vectors_ = self._onedal_estimator.support_vectors_
|
|
163
|
-
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
164
|
-
self.fit_status_ = 0
|
|
165
|
-
self.dual_coef_ = self._onedal_estimator.dual_coef_
|
|
166
|
-
self.shape_fit_ = self._onedal_estimator.shape_fit_
|
|
167
|
-
self.support_ = self._onedal_estimator.support_
|
|
168
|
-
|
|
169
|
-
self._intercept_ = self._onedal_estimator.intercept_
|
|
170
|
-
self._n_support = [self.support_vectors_.shape[0]]
|
|
171
|
-
self._sparse = False
|
|
172
|
-
self._gamma = self._onedal_estimator._gamma
|
|
173
|
-
self._probA = None
|
|
174
|
-
self._probB = None
|
|
175
|
-
|
|
176
|
-
self._dual_coef_ = property(get_dual_coef, set_dual_coef)
|
|
177
|
-
self.intercept_ = property(get_intercept, set_intercept)
|
|
178
|
-
|
|
179
|
-
self._is_in_fit = True
|
|
180
|
-
self._dual_coef_ = self.dual_coef_
|
|
181
|
-
self.intercept_ = self._intercept_
|
|
182
|
-
self._is_in_fit = False
|
|
183
|
-
|
|
184
|
-
if sklearn_check_version("1.1"):
|
|
185
|
-
self.n_iter_ = self._onedal_estimator.n_iter_
|