scikit-learn-intelex 2024.4.0__py39-none-win_amd64.whl → 2024.5.0__py39-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +8 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +68 -13
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +2 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +31 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +5 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +387 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +2 -2
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +21 -12
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +5 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +4 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +27 -8
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +1 -1
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/METADATA +227 -230
- scikit_learn_intelex-2024.5.0.dist-info/RECORD +104 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
- scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,200 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_as_numpy,
|
|
23
|
+
_convert_to_dataframe,
|
|
24
|
+
get_dataframes_and_queues,
|
|
25
|
+
)
|
|
26
|
+
from sklearnex.linear_model import IncrementalLinearRegression
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
30
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
31
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
32
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
33
|
+
def test_sklearnex_fit_on_gold_data(dataframe, queue, fit_intercept, macro_block, dtype):
|
|
34
|
+
X = np.array([[1], [2]])
|
|
35
|
+
X = X.astype(dtype=dtype)
|
|
36
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
37
|
+
y = np.array([1, 2])
|
|
38
|
+
y = y.astype(dtype=dtype)
|
|
39
|
+
y_df = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
40
|
+
|
|
41
|
+
inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
|
|
42
|
+
if macro_block is not None:
|
|
43
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
44
|
+
hparams.cpu_macro_block = macro_block
|
|
45
|
+
hparams.gpu_macro_block = macro_block
|
|
46
|
+
inclin.fit(X_df, y_df)
|
|
47
|
+
|
|
48
|
+
y_pred = inclin.predict(X_df)
|
|
49
|
+
|
|
50
|
+
tol = 2e-6 if dtype == np.float32 else 1e-7
|
|
51
|
+
assert_allclose(inclin.coef_, [1], atol=tol)
|
|
52
|
+
if fit_intercept:
|
|
53
|
+
assert_allclose(inclin.intercept_, [0], atol=tol)
|
|
54
|
+
assert_allclose(_as_numpy(y_pred), y, atol=tol)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
58
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
59
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
60
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
61
|
+
def test_sklearnex_partial_fit_on_gold_data(
|
|
62
|
+
dataframe, queue, fit_intercept, macro_block, dtype
|
|
63
|
+
):
|
|
64
|
+
X = np.array([[1], [2], [3], [4]])
|
|
65
|
+
X = X.astype(dtype=dtype)
|
|
66
|
+
y = X + 3
|
|
67
|
+
y = y.astype(dtype=dtype)
|
|
68
|
+
X_split = np.array_split(X, 2)
|
|
69
|
+
y_split = np.array_split(y, 2)
|
|
70
|
+
|
|
71
|
+
inclin = IncrementalLinearRegression()
|
|
72
|
+
if macro_block is not None:
|
|
73
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
74
|
+
hparams.cpu_macro_block = macro_block
|
|
75
|
+
hparams.gpu_macro_block = macro_block
|
|
76
|
+
for i in range(2):
|
|
77
|
+
X_split_df = _convert_to_dataframe(
|
|
78
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
79
|
+
)
|
|
80
|
+
y_split_df = _convert_to_dataframe(
|
|
81
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
82
|
+
)
|
|
83
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
84
|
+
|
|
85
|
+
assert inclin.n_features_in_ == 1
|
|
86
|
+
tol = 2e-6 if dtype == np.float32 else 1e-7
|
|
87
|
+
assert_allclose(inclin.coef_, [[1]], atol=tol)
|
|
88
|
+
if fit_intercept:
|
|
89
|
+
assert_allclose(inclin.intercept_, 3, atol=tol)
|
|
90
|
+
|
|
91
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
92
|
+
y_pred = inclin.predict(X_df)
|
|
93
|
+
|
|
94
|
+
assert_allclose(_as_numpy(y_pred), y, atol=tol)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
98
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
99
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
100
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
101
|
+
def test_sklearnex_partial_fit_multitarget_on_gold_data(
|
|
102
|
+
dataframe, queue, fit_intercept, macro_block, dtype
|
|
103
|
+
):
|
|
104
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
105
|
+
X = X.astype(dtype=dtype)
|
|
106
|
+
y = np.dot(X, [1, 2]) + 3
|
|
107
|
+
y = y.astype(dtype=dtype)
|
|
108
|
+
X_split = np.array_split(X, 2)
|
|
109
|
+
y_split = np.array_split(y, 2)
|
|
110
|
+
|
|
111
|
+
inclin = IncrementalLinearRegression()
|
|
112
|
+
if macro_block is not None:
|
|
113
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
114
|
+
hparams.cpu_macro_block = macro_block
|
|
115
|
+
hparams.gpu_macro_block = macro_block
|
|
116
|
+
for i in range(2):
|
|
117
|
+
X_split_df = _convert_to_dataframe(
|
|
118
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
119
|
+
)
|
|
120
|
+
y_split_df = _convert_to_dataframe(
|
|
121
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
122
|
+
)
|
|
123
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
124
|
+
|
|
125
|
+
assert inclin.n_features_in_ == 2
|
|
126
|
+
tol = 7e-6 if dtype == np.float32 else 1e-7
|
|
127
|
+
assert_allclose(inclin.coef_, [1.0, 2.0], atol=tol)
|
|
128
|
+
if fit_intercept:
|
|
129
|
+
assert_allclose(inclin.intercept_, 3.0, atol=tol)
|
|
130
|
+
|
|
131
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
132
|
+
y_pred = inclin.predict(X_df)
|
|
133
|
+
|
|
134
|
+
assert_allclose(_as_numpy(y_pred), y, atol=tol)
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
138
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
139
|
+
@pytest.mark.parametrize("num_samples", [100, 1000])
|
|
140
|
+
@pytest.mark.parametrize("num_features", [5, 10])
|
|
141
|
+
@pytest.mark.parametrize("num_targets", [1, 2])
|
|
142
|
+
@pytest.mark.parametrize("num_blocks", [1, 10])
|
|
143
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
144
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
145
|
+
def test_sklearnex_partial_fit_on_random_data(
|
|
146
|
+
dataframe,
|
|
147
|
+
queue,
|
|
148
|
+
fit_intercept,
|
|
149
|
+
num_samples,
|
|
150
|
+
num_features,
|
|
151
|
+
num_targets,
|
|
152
|
+
num_blocks,
|
|
153
|
+
macro_block,
|
|
154
|
+
dtype,
|
|
155
|
+
):
|
|
156
|
+
seed = 42
|
|
157
|
+
gen = np.random.default_rng(seed)
|
|
158
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
159
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
160
|
+
|
|
161
|
+
X = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
162
|
+
if fit_intercept:
|
|
163
|
+
y = X @ coef + intercept[np.newaxis, :]
|
|
164
|
+
else:
|
|
165
|
+
y = X @ coef
|
|
166
|
+
|
|
167
|
+
X_split = np.array_split(X, num_blocks)
|
|
168
|
+
y_split = np.array_split(y, num_blocks)
|
|
169
|
+
|
|
170
|
+
inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
|
|
171
|
+
if macro_block is not None:
|
|
172
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
173
|
+
hparams.cpu_macro_block = macro_block
|
|
174
|
+
hparams.gpu_macro_block = macro_block
|
|
175
|
+
for i in range(num_blocks):
|
|
176
|
+
X_split_df = _convert_to_dataframe(
|
|
177
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
178
|
+
)
|
|
179
|
+
y_split_df = _convert_to_dataframe(
|
|
180
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
181
|
+
)
|
|
182
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
183
|
+
|
|
184
|
+
tol = 1e-4 if dtype == np.float32 else 1e-7
|
|
185
|
+
assert_allclose(coef, inclin.coef_.T, atol=tol)
|
|
186
|
+
|
|
187
|
+
if fit_intercept:
|
|
188
|
+
assert_allclose(intercept, inclin.intercept_, atol=tol)
|
|
189
|
+
|
|
190
|
+
X_test = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
191
|
+
if fit_intercept:
|
|
192
|
+
expected_y_pred = X_test @ coef + intercept[np.newaxis, :]
|
|
193
|
+
else:
|
|
194
|
+
expected_y_pred = X_test @ coef
|
|
195
|
+
|
|
196
|
+
X_test_df = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
197
|
+
|
|
198
|
+
y_pred = inclin.predict(X_test_df)
|
|
199
|
+
|
|
200
|
+
assert_allclose(expected_y_pred, _as_numpy(y_pred), atol=tol)
|
|
@@ -52,7 +52,7 @@ def test_sklearnex_import_linear(dataframe, queue, dtype, macro_block):
|
|
|
52
52
|
assert "sklearnex" in linreg.__module__
|
|
53
53
|
assert linreg.n_features_in_ == 2
|
|
54
54
|
|
|
55
|
-
tol = 1e-5 if
|
|
55
|
+
tol = 1e-5 if dtype == np.float32 else 1e-7
|
|
56
56
|
assert_allclose(_as_numpy(linreg.intercept_), 3.0, rtol=tol)
|
|
57
57
|
assert_allclose(_as_numpy(linreg.coef_), [1.0, 2.0], rtol=tol)
|
|
58
58
|
|
|
@@ -113,5 +113,5 @@ def test_sklearnex_reconstruct_model(dataframe, queue, dtype):
|
|
|
113
113
|
|
|
114
114
|
y_pred = linreg.predict(X)
|
|
115
115
|
|
|
116
|
-
tol = 1e-5 if
|
|
116
|
+
tol = 1e-5 if dtype == np.float32 else 1e-7
|
|
117
117
|
assert_allclose(gtr, _as_numpy(y_pred), rtol=tol)
|
|
@@ -47,9 +47,9 @@ def test_sklearnex_import_knn_regression(dataframe, queue):
|
|
|
47
47
|
y = _convert_to_dataframe([0, 0, 1, 1], sycl_queue=queue, target_df=dataframe)
|
|
48
48
|
neigh = KNeighborsRegressor(n_neighbors=2).fit(X, y)
|
|
49
49
|
y_test = _convert_to_dataframe([[1.5]], sycl_queue=queue, target_df=dataframe)
|
|
50
|
-
pred = _as_numpy(neigh.predict(y_test))
|
|
50
|
+
pred = _as_numpy(neigh.predict(y_test)).squeeze()
|
|
51
51
|
assert "sklearnex" in neigh.__module__
|
|
52
|
-
assert_allclose(pred,
|
|
52
|
+
assert_allclose(pred, 0.5)
|
|
53
53
|
|
|
54
54
|
|
|
55
55
|
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
@@ -17,6 +17,7 @@
|
|
|
17
17
|
from inspect import isclass
|
|
18
18
|
|
|
19
19
|
import numpy as np
|
|
20
|
+
from sklearn import clone
|
|
20
21
|
from sklearn.base import (
|
|
21
22
|
BaseEstimator,
|
|
22
23
|
ClassifierMixin,
|
|
@@ -87,18 +88,26 @@ mixin_map = [
|
|
|
87
88
|
]
|
|
88
89
|
|
|
89
90
|
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
91
|
+
class _sklearn_clone_dict(dict):
|
|
92
|
+
|
|
93
|
+
def __getitem__(self, key):
|
|
94
|
+
return clone(super().__getitem__(key))
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
SPECIAL_INSTANCES = _sklearn_clone_dict(
|
|
98
|
+
{
|
|
99
|
+
str(i): i
|
|
100
|
+
for i in [
|
|
101
|
+
LocalOutlierFactor(novelty=True),
|
|
102
|
+
SVC(probability=True),
|
|
103
|
+
NuSVC(probability=True),
|
|
104
|
+
KNeighborsClassifier(algorithm="brute"),
|
|
105
|
+
KNeighborsRegressor(algorithm="brute"),
|
|
106
|
+
NearestNeighbors(algorithm="brute"),
|
|
107
|
+
LogisticRegression(solver="newton-cg"),
|
|
108
|
+
]
|
|
109
|
+
}
|
|
110
|
+
)
|
|
102
111
|
|
|
103
112
|
|
|
104
113
|
def gen_models_info(algorithms):
|
|
@@ -96,7 +96,11 @@ def remove_duplicated_estimators(estimators_list):
|
|
|
96
96
|
return estimators_map.values()
|
|
97
97
|
|
|
98
98
|
|
|
99
|
-
BANNED_ESTIMATORS = (
|
|
99
|
+
BANNED_ESTIMATORS = (
|
|
100
|
+
"IncrementalEmpiricalCovariance", # dataframe_f issues
|
|
101
|
+
"IncrementalLinearRegression", # TODO fix memory leak issue in private CI for data_shape = (1000, 100), data_transform_function = dataframe_f
|
|
102
|
+
"TSNE", # too slow for using in testing on common data size
|
|
103
|
+
)
|
|
100
104
|
estimators = [
|
|
101
105
|
TrainTestSplitEstimator,
|
|
102
106
|
FiniteCheckEstimator,
|
|
@@ -22,6 +22,7 @@ import pytest
|
|
|
22
22
|
from sklearn.base import BaseEstimator
|
|
23
23
|
from sklearn.datasets import make_classification
|
|
24
24
|
|
|
25
|
+
from sklearnex.decomposition import PCA
|
|
25
26
|
from sklearnex.dispatcher import get_patch_map
|
|
26
27
|
from sklearnex.svm import SVC, NuSVC
|
|
27
28
|
|
|
@@ -73,6 +74,9 @@ def test_n_jobs_support(caplog, estimator_class, n_jobs):
|
|
|
73
74
|
# by default, [Nu]SVC.predict_proba is restricted by @available_if decorator
|
|
74
75
|
if estimator_class in [SVC, NuSVC]:
|
|
75
76
|
estimator_kwargs["probability"] = True
|
|
77
|
+
# explicitly request oneDAL's PCA-Covariance algorithm
|
|
78
|
+
if estimator_class == PCA:
|
|
79
|
+
estimator_kwargs["svd_solver"] = "covariance_eigh"
|
|
76
80
|
estimator_instance = estimator_class(**estimator_kwargs)
|
|
77
81
|
# check `n_jobs` parameter doc entry
|
|
78
82
|
check_estimator_doc(estimator_class)
|
|
@@ -61,12 +61,15 @@ def test_pairwise_distances_patching(caplog, dataframe, queue, dtype, metric):
|
|
|
61
61
|
pytest.skip("pairwise_distances does not support GPU queues")
|
|
62
62
|
|
|
63
63
|
rng = nprnd.default_rng()
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
64
|
+
if dataframe == "pandas":
|
|
65
|
+
X = _convert_to_dataframe(
|
|
66
|
+
rng.random(size=1000).astype(dtype).reshape(1, -1),
|
|
67
|
+
target_df=dataframe,
|
|
68
|
+
)
|
|
69
|
+
else:
|
|
70
|
+
X = _convert_to_dataframe(
|
|
71
|
+
rng.random(size=1000), sycl_queue=queue, target_df=dataframe, dtype=dtype
|
|
72
|
+
)[None, :]
|
|
70
73
|
|
|
71
74
|
_ = pairwise_distances(X, metric=metric)
|
|
72
75
|
assert all(
|
|
@@ -90,14 +93,17 @@ def test_roc_auc_score_patching(caplog, dataframe, queue, dtype):
|
|
|
90
93
|
|
|
91
94
|
with caplog.at_level(logging.WARNING, logger="sklearnex"):
|
|
92
95
|
rng = nprnd.default_rng()
|
|
96
|
+
X = rng.integers(2, size=1000)
|
|
97
|
+
y = rng.integers(2, size=1000)
|
|
98
|
+
|
|
93
99
|
X = _convert_to_dataframe(
|
|
94
|
-
|
|
100
|
+
X,
|
|
95
101
|
sycl_queue=queue,
|
|
96
102
|
target_df=dataframe,
|
|
97
103
|
dtype=dtype,
|
|
98
104
|
)
|
|
99
105
|
y = _convert_to_dataframe(
|
|
100
|
-
|
|
106
|
+
y,
|
|
101
107
|
sycl_queue=queue,
|
|
102
108
|
target_df=dataframe,
|
|
103
109
|
dtype=dtype,
|
|
@@ -142,6 +148,19 @@ def test_standard_estimator_patching(caplog, dataframe, queue, dtype, estimator,
|
|
|
142
148
|
and dtype in [np.uint32, np.uint64]
|
|
143
149
|
):
|
|
144
150
|
pytest.skip("Windows segmentation fault for Ridge.predict for unsigned ints")
|
|
151
|
+
elif estimator == "IncrementalLinearRegression" and dtype in [
|
|
152
|
+
np.int8,
|
|
153
|
+
np.int16,
|
|
154
|
+
np.int32,
|
|
155
|
+
np.int64,
|
|
156
|
+
np.uint8,
|
|
157
|
+
np.uint16,
|
|
158
|
+
np.uint32,
|
|
159
|
+
np.uint64,
|
|
160
|
+
]:
|
|
161
|
+
pytest.skip(
|
|
162
|
+
"IncrementalLinearRegression fails on oneDAL side with int types because dataset is filled by zeroes"
|
|
163
|
+
)
|
|
145
164
|
elif method and not hasattr(est, method):
|
|
146
165
|
pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
|
|
147
166
|
|
|
@@ -294,7 +294,7 @@ MODELS_INFO = [
|
|
|
294
294
|
"dataset": "regression",
|
|
295
295
|
},
|
|
296
296
|
{
|
|
297
|
-
"model": PCA(n_components=0.5, svd_solver="
|
|
297
|
+
"model": PCA(n_components=0.5, svd_solver="covariance_eigh", random_state=0),
|
|
298
298
|
"methods": ["transform", "get_covariance", "get_precision", "score_samples"],
|
|
299
299
|
"dataset": "classifier",
|
|
300
300
|
},
|
scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import time
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
import numpy.random as rand
|
|
21
|
+
import pytest
|
|
22
|
+
from numpy.testing import assert_raises
|
|
23
|
+
|
|
24
|
+
from sklearnex.utils import _assert_all_finite
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
28
|
+
@pytest.mark.parametrize(
|
|
29
|
+
"shape",
|
|
30
|
+
[
|
|
31
|
+
[16, 2048],
|
|
32
|
+
[
|
|
33
|
+
2**16 + 3,
|
|
34
|
+
],
|
|
35
|
+
[1000, 1000],
|
|
36
|
+
],
|
|
37
|
+
)
|
|
38
|
+
@pytest.mark.parametrize("allow_nan", [False, True])
|
|
39
|
+
def test_sum_infinite_actually_finite(dtype, shape, allow_nan):
|
|
40
|
+
X = np.array(shape, dtype=dtype)
|
|
41
|
+
X.fill(np.finfo(dtype).max)
|
|
42
|
+
_assert_all_finite(X, allow_nan=allow_nan)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
46
|
+
@pytest.mark.parametrize(
|
|
47
|
+
"shape",
|
|
48
|
+
[
|
|
49
|
+
[16, 2048],
|
|
50
|
+
[
|
|
51
|
+
2**16 + 3,
|
|
52
|
+
],
|
|
53
|
+
[1000, 1000],
|
|
54
|
+
],
|
|
55
|
+
)
|
|
56
|
+
@pytest.mark.parametrize("allow_nan", [False, True])
|
|
57
|
+
@pytest.mark.parametrize("check", ["inf", "NaN", None])
|
|
58
|
+
@pytest.mark.parametrize("seed", [0, int(time.time())])
|
|
59
|
+
def test_assert_finite_random_location(dtype, shape, allow_nan, check, seed):
|
|
60
|
+
rand.seed(seed)
|
|
61
|
+
X = rand.uniform(high=np.finfo(dtype).max, size=shape).astype(dtype)
|
|
62
|
+
|
|
63
|
+
if check:
|
|
64
|
+
loc = rand.randint(0, X.size - 1)
|
|
65
|
+
X.reshape((-1,))[loc] = float(check)
|
|
66
|
+
|
|
67
|
+
if check is None or (allow_nan and check == "NaN"):
|
|
68
|
+
_assert_all_finite(X, allow_nan=allow_nan)
|
|
69
|
+
else:
|
|
70
|
+
assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
74
|
+
@pytest.mark.parametrize("allow_nan", [False, True])
|
|
75
|
+
@pytest.mark.parametrize("check", ["inf", "NaN", None])
|
|
76
|
+
@pytest.mark.parametrize("seed", [0, int(time.time())])
|
|
77
|
+
def test_assert_finite_random_shape_and_location(dtype, allow_nan, check, seed):
|
|
78
|
+
lb, ub = 32768, 1048576 # lb is a patching condition, ub 2^20
|
|
79
|
+
rand.seed(seed)
|
|
80
|
+
X = rand.uniform(high=np.finfo(dtype).max, size=rand.randint(lb, ub)).astype(dtype)
|
|
81
|
+
|
|
82
|
+
if check:
|
|
83
|
+
loc = rand.randint(0, X.size - 1)
|
|
84
|
+
X[loc] = float(check)
|
|
85
|
+
|
|
86
|
+
if check is None or (allow_nan and check == "NaN"):
|
|
87
|
+
_assert_all_finite(X, allow_nan=allow_nan)
|
|
88
|
+
else:
|
|
89
|
+
assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)
|