scikit-learn-intelex 2024.4.0__py39-none-manylinux1_x86_64.whl → 2024.6.0__py39-none-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (44) hide show
  1. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +2 -2
  2. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/RECORD +43 -36
  3. sklearnex/_device_offload.py +8 -1
  4. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
  5. sklearnex/cluster/dbscan.py +3 -0
  6. sklearnex/cluster/tests/test_dbscan.py +8 -6
  7. sklearnex/conftest.py +11 -1
  8. sklearnex/covariance/incremental_covariance.py +217 -30
  9. sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  10. sklearnex/decomposition/pca.py +68 -13
  11. sklearnex/decomposition/tests/test_pca.py +6 -4
  12. sklearnex/dispatcher.py +46 -1
  13. sklearnex/ensemble/_forest.py +114 -22
  14. sklearnex/ensemble/tests/test_forest.py +13 -3
  15. sklearnex/glob/dispatcher.py +16 -2
  16. sklearnex/linear_model/__init__.py +5 -3
  17. sklearnex/linear_model/incremental_linear.py +464 -0
  18. sklearnex/linear_model/linear.py +27 -9
  19. sklearnex/linear_model/logistic_regression.py +13 -15
  20. sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  21. sklearnex/linear_model/tests/test_linear.py +2 -2
  22. sklearnex/neighbors/knn_regression.py +24 -0
  23. sklearnex/neighbors/tests/test_neighbors.py +2 -2
  24. sklearnex/preview/__init__.py +1 -1
  25. sklearnex/preview/decomposition/__init__.py +19 -0
  26. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  27. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  28. sklearnex/svm/_common.py +165 -20
  29. sklearnex/svm/nusvc.py +40 -4
  30. sklearnex/svm/nusvr.py +31 -2
  31. sklearnex/svm/svc.py +40 -4
  32. sklearnex/svm/svr.py +31 -2
  33. sklearnex/tests/_utils.py +70 -29
  34. sklearnex/tests/test_common.py +54 -0
  35. sklearnex/tests/test_memory_usage.py +195 -132
  36. sklearnex/tests/test_n_jobs_support.py +4 -0
  37. sklearnex/tests/test_patching.py +22 -10
  38. sklearnex/tests/test_run_to_run_stability.py +283 -0
  39. sklearnex/utils/_namespace.py +1 -1
  40. sklearnex/utils/tests/test_finite.py +89 -0
  41. sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
  42. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
  43. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +0 -0
  44. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
@@ -17,6 +17,10 @@
17
17
  import numpy as np
18
18
  import pytest
19
19
  from numpy.testing import assert_allclose
20
+ from sklearn.covariance.tests.test_covariance import (
21
+ test_covariance,
22
+ test_EmpiricalCovariance_validates_mahalanobis,
23
+ )
20
24
 
21
25
  from onedal.tests.utils._dataframes_support import (
22
26
  _convert_to_dataframe,
@@ -26,13 +30,14 @@ from onedal.tests.utils._dataframes_support import (
26
30
 
27
31
  @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
28
32
  @pytest.mark.parametrize("dtype", [np.float32, np.float64])
29
- def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
33
+ @pytest.mark.parametrize("assume_centered", [True, False])
34
+ def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype, assume_centered):
30
35
  from sklearnex.covariance import IncrementalEmpiricalCovariance
31
36
 
32
37
  X = np.array([[0, 1], [0, 1]])
33
38
  X = X.astype(dtype)
34
39
  X_split = np.array_split(X, 2)
35
- inccov = IncrementalEmpiricalCovariance()
40
+ inccov = IncrementalEmpiricalCovariance(assume_centered=assume_centered)
36
41
 
37
42
  for i in range(2):
38
43
  X_split_df = _convert_to_dataframe(
@@ -40,8 +45,12 @@ def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
40
45
  )
41
46
  result = inccov.partial_fit(X_split_df)
42
47
 
43
- expected_covariance = np.array([[0, 0], [0, 0]])
44
- expected_means = np.array([0, 1])
48
+ if assume_centered:
49
+ expected_covariance = np.array([[0, 0], [0, 1]])
50
+ expected_means = np.array([0, 0])
51
+ else:
52
+ expected_covariance = np.array([[0, 0], [0, 0]])
53
+ expected_means = np.array([0, 1])
45
54
 
46
55
  assert_allclose(expected_covariance, result.covariance_)
47
56
  assert_allclose(expected_means, result.location_)
@@ -49,7 +58,7 @@ def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
49
58
  X = np.array([[1, 2], [3, 6]])
50
59
  X = X.astype(dtype)
51
60
  X_split = np.array_split(X, 2)
52
- inccov = IncrementalEmpiricalCovariance()
61
+ inccov = IncrementalEmpiricalCovariance(assume_centered=assume_centered)
53
62
 
54
63
  for i in range(2):
55
64
  X_split_df = _convert_to_dataframe(
@@ -57,8 +66,12 @@ def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
57
66
  )
58
67
  result = inccov.partial_fit(X_split_df)
59
68
 
60
- expected_covariance = np.array([[1, 2], [2, 4]])
61
- expected_means = np.array([2, 4])
69
+ if assume_centered:
70
+ expected_covariance = np.array([[5, 10], [10, 20]])
71
+ expected_means = np.array([0, 0])
72
+ else:
73
+ expected_covariance = np.array([[1, 2], [2, 4]])
74
+ expected_means = np.array([2, 4])
62
75
 
63
76
  assert_allclose(expected_covariance, result.covariance_)
64
77
  assert_allclose(expected_means, result.location_)
@@ -87,9 +100,9 @@ def test_sklearnex_fit_on_gold_data(dataframe, queue, batch_size, dtype):
87
100
 
88
101
 
89
102
  @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
90
- @pytest.mark.parametrize("num_batches", [2, 4, 6, 8, 10])
91
- @pytest.mark.parametrize("row_count", [100, 1000, 2000])
92
- @pytest.mark.parametrize("column_count", [10, 100, 200])
103
+ @pytest.mark.parametrize("num_batches", [2, 10])
104
+ @pytest.mark.parametrize("row_count", [100, 1000])
105
+ @pytest.mark.parametrize("column_count", [10, 100])
93
106
  @pytest.mark.parametrize("dtype", [np.float32, np.float64])
94
107
  def test_sklearnex_partial_fit_on_random_data(
95
108
  dataframe, queue, num_batches, row_count, column_count, dtype
@@ -117,12 +130,13 @@ def test_sklearnex_partial_fit_on_random_data(
117
130
 
118
131
 
119
132
  @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
120
- @pytest.mark.parametrize("num_batches", [2, 4, 6, 8, 10])
121
- @pytest.mark.parametrize("row_count", [100, 1000, 2000])
122
- @pytest.mark.parametrize("column_count", [10, 100, 200])
133
+ @pytest.mark.parametrize("num_batches", [2, 10])
134
+ @pytest.mark.parametrize("row_count", [100, 1000])
135
+ @pytest.mark.parametrize("column_count", [10, 100])
123
136
  @pytest.mark.parametrize("dtype", [np.float32, np.float64])
137
+ @pytest.mark.parametrize("assume_centered", [True, False])
124
138
  def test_sklearnex_fit_on_random_data(
125
- dataframe, queue, num_batches, row_count, column_count, dtype
139
+ dataframe, queue, num_batches, row_count, column_count, dtype, assume_centered
126
140
  ):
127
141
  from sklearnex.covariance import IncrementalEmpiricalCovariance
128
142
 
@@ -132,12 +146,35 @@ def test_sklearnex_fit_on_random_data(
132
146
  X = X.astype(dtype)
133
147
  X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
134
148
  batch_size = row_count // num_batches
135
- inccov = IncrementalEmpiricalCovariance(batch_size=batch_size)
149
+ inccov = IncrementalEmpiricalCovariance(
150
+ batch_size=batch_size, assume_centered=assume_centered
151
+ )
136
152
 
137
153
  result = inccov.fit(X_df)
138
154
 
139
- expected_covariance = np.cov(X.T, bias=1)
140
- expected_means = np.mean(X, axis=0)
155
+ if assume_centered:
156
+ expected_covariance = np.dot(X.T, X) / X.shape[0]
157
+ expected_means = np.zeros_like(X[0])
158
+ else:
159
+ expected_covariance = np.cov(X.T, bias=1)
160
+ expected_means = np.mean(X, axis=0)
141
161
 
142
162
  assert_allclose(expected_covariance, result.covariance_, atol=1e-6)
143
163
  assert_allclose(expected_means, result.location_, atol=1e-6)
164
+
165
+
166
+ # Monkeypatch IncrementalEmpiricalCovariance into relevant sklearn.covariance tests
167
+ @pytest.mark.allow_sklearn_fallback
168
+ @pytest.mark.parametrize(
169
+ "sklearn_test",
170
+ [
171
+ test_covariance,
172
+ test_EmpiricalCovariance_validates_mahalanobis,
173
+ ],
174
+ )
175
+ def test_IncrementalEmpiricalCovariance_against_sklearn(monkeypatch, sklearn_test):
176
+ from sklearnex.covariance import IncrementalEmpiricalCovariance
177
+
178
+ class_name = ".".join([sklearn_test.__module__, "EmpiricalCovariance"])
179
+ monkeypatch.setattr(class_name, IncrementalEmpiricalCovariance)
180
+ sklearn_test()
@@ -21,6 +21,7 @@ from daal4py.sklearn._utils import daal_check_version
21
21
  if daal_check_version((2024, "P", 100)):
22
22
  import numbers
23
23
  from math import sqrt
24
+ from warnings import warn
24
25
 
25
26
  import numpy as np
26
27
  from scipy.sparse import issparse
@@ -35,9 +36,13 @@ if daal_check_version((2024, "P", 100)):
35
36
  if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
36
37
  from sklearn.utils import check_scalar
37
38
 
39
+ if sklearn_check_version("1.2"):
40
+ from sklearn.utils._param_validation import StrOptions
41
+
38
42
  from sklearn.decomposition import PCA as sklearn_PCA
39
43
 
40
44
  from onedal.decomposition import PCA as onedal_PCA
45
+ from sklearnex.utils import get_namespace
41
46
 
42
47
  @control_n_jobs(decorated_methods=["fit", "transform", "fit_transform"])
43
48
  class PCA(sklearn_PCA):
@@ -45,6 +50,16 @@ if daal_check_version((2024, "P", 100)):
45
50
 
46
51
  if sklearn_check_version("1.2"):
47
52
  _parameter_constraints: dict = {**sklearn_PCA._parameter_constraints}
53
+ # "onedal_svd" solver uses oneDAL's PCA-SVD algorithm
54
+ # and required for testing purposes to fully enable it in future.
55
+ # "covariance_eigh" solver is added for ability to explicitly request
56
+ # oneDAL's PCA-Covariance algorithm using any sklearn version < 1.5.
57
+ _parameter_constraints["svd_solver"] = [
58
+ StrOptions(
59
+ _parameter_constraints["svd_solver"][0].options
60
+ | {"onedal_svd", "covariance_eigh"}
61
+ )
62
+ ]
48
63
 
49
64
  if sklearn_check_version("1.1"):
50
65
 
@@ -107,7 +122,7 @@ if daal_check_version((2024, "P", 100)):
107
122
  target_type=numbers.Integral,
108
123
  )
109
124
 
110
- U, S, Vt = dispatch(
125
+ return dispatch(
111
126
  self,
112
127
  "fit",
113
128
  {
@@ -116,7 +131,6 @@ if daal_check_version((2024, "P", 100)):
116
131
  },
117
132
  X,
118
133
  )
119
- return U, S, Vt
120
134
 
121
135
  def _onedal_fit(self, X, queue=None):
122
136
  X = self._validate_data(
@@ -129,7 +143,7 @@ if daal_check_version((2024, "P", 100)):
129
143
  onedal_params = {
130
144
  "n_components": self.n_components,
131
145
  "is_deterministic": True,
132
- "method": "cov",
146
+ "method": "svd" if self._fit_svd_solver == "onedal_svd" else "cov",
133
147
  "whiten": self.whiten,
134
148
  }
135
149
  self._onedal_estimator = onedal_PCA(**onedal_params)
@@ -140,7 +154,13 @@ if daal_check_version((2024, "P", 100)):
140
154
  S = self.singular_values_
141
155
  Vt = self.components_
142
156
 
143
- return U, S, Vt
157
+ if sklearn_check_version("1.5"):
158
+ xp, _ = get_namespace(X)
159
+ x_is_centered = not self.copy
160
+
161
+ return U, S, Vt, X, x_is_centered, xp
162
+ else:
163
+ return U, S, Vt
144
164
 
145
165
  @wrap_output_data
146
166
  def transform(self, X):
@@ -156,32 +176,39 @@ if daal_check_version((2024, "P", 100)):
156
176
 
157
177
  def _onedal_transform(self, X, queue=None):
158
178
  check_is_fitted(self)
179
+ if sklearn_check_version("1.0"):
180
+ self._check_feature_names(X, reset=False)
159
181
  X = self._validate_data(
160
182
  X,
161
183
  dtype=[np.float64, np.float32],
162
184
  reset=False,
163
185
  )
164
186
  self._validate_n_features_in_after_fitting(X)
165
- if sklearn_check_version("1.0"):
166
- self._check_feature_names(X, reset=False)
167
187
 
168
188
  return self._onedal_estimator.predict(X, queue=queue)
169
189
 
170
190
  def fit_transform(self, X, y=None):
171
- U, S, Vt = self._fit(X)
172
- if U is None:
191
+ if sklearn_check_version("1.5"):
192
+ U, S, Vt, X_fit, x_is_centered, xp = self._fit(X)
193
+ else:
194
+ U, S, Vt = self._fit(X)
195
+ X_fit = X
196
+ if hasattr(self, "_onedal_estimator"):
173
197
  # oneDAL PCA was fit
174
198
  return self.transform(X)
175
- else:
199
+ elif U is not None:
176
200
  # Scikit-learn PCA was fit
177
201
  U = U[:, : self.n_components_]
178
202
 
179
203
  if self.whiten:
180
- U *= sqrt(X.shape[0] - 1)
204
+ U *= sqrt(X_fit.shape[0] - 1)
181
205
  else:
182
206
  U *= S[: self.n_components_]
183
207
 
184
208
  return U
209
+ else:
210
+ # Scikit-learn PCA["covariance_eigh"] was fit
211
+ return self._transform(X_fit, xp, x_is_centered=x_is_centered)
185
212
 
186
213
  def _onedal_supported(self, method_name, X):
187
214
  class_name = self.__class__.__name__
@@ -199,7 +226,13 @@ if daal_check_version((2024, "P", 100)):
199
226
  ),
200
227
  (
201
228
  self._is_solver_compatible_with_onedal(shape_tuple),
202
- f"Only 'full' svd solver is supported.",
229
+ (
230
+ "Only 'covariance_eigh' and 'onedal_svd' "
231
+ "solvers are supported."
232
+ if sklearn_check_version("1.5")
233
+ else "Only 'full', 'covariance_eigh' and 'onedal_svd' "
234
+ "solvers are supported."
235
+ ),
203
236
  ),
204
237
  (not issparse(X), "oneDAL PCA does not support sparse data"),
205
238
  ]
@@ -254,7 +287,13 @@ if daal_check_version((2024, "P", 100)):
254
287
 
255
288
  if self._fit_svd_solver == "auto":
256
289
  if sklearn_check_version("1.1"):
257
- if max(shape_tuple) <= 500 or n_components == "mle":
290
+ if (
291
+ sklearn_check_version("1.5")
292
+ and shape_tuple[1] <= 1_000
293
+ and shape_tuple[0] >= 10 * shape_tuple[1]
294
+ ):
295
+ self._fit_svd_solver = "covariance_eigh"
296
+ elif max(shape_tuple) <= 500 or n_components == "mle":
258
297
  self._fit_svd_solver = "full"
259
298
  elif 1 <= n_components < 0.8 * n_sf_min:
260
299
  self._fit_svd_solver = "randomized"
@@ -288,7 +327,23 @@ if daal_check_version((2024, "P", 100)):
288
327
  else:
289
328
  self._fit_svd_solver = "full"
290
329
 
291
- if self._fit_svd_solver == "full":
330
+ # Use oneDAL in next cases:
331
+ # 1. oneDAL SVD solver is explicitly set
332
+ # 2. solver is set or dispatched to "covariance_eigh"
333
+ # 3. solver is set or dispatched to "full" and sklearn version < 1.5
334
+ # 4. solver is set to "auto" and dispatched to "full"
335
+ if self._fit_svd_solver in ["onedal_svd", "covariance_eigh"]:
336
+ return True
337
+ elif not sklearn_check_version("1.5") and self._fit_svd_solver == "full":
338
+ self._fit_svd_solver = "covariance_eigh"
339
+ return True
340
+ elif self.svd_solver == "auto" and self._fit_svd_solver == "full":
341
+ warn(
342
+ "Sklearnex always uses `covariance_eigh` solver instead of `full` "
343
+ "when `svd_solver` parameter is set to `auto` "
344
+ "for performance purposes."
345
+ )
346
+ self._fit_svd_solver = "covariance_eigh"
292
347
  return True
293
348
  else:
294
349
  return False
@@ -41,16 +41,18 @@ def test_sklearnex_import(dataframe, queue):
41
41
  [3.6053038, 0.04224385],
42
42
  ]
43
43
 
44
- pca = PCA(n_components=2, svd_solver="full")
44
+ pca = PCA(n_components=2, svd_solver="covariance_eigh")
45
45
  pca.fit(X)
46
46
  X_transformed = pca.transform(X)
47
- X_fit_transformed = PCA(n_components=2, svd_solver="full").fit_transform(X)
47
+ X_fit_transformed = PCA(n_components=2, svd_solver="covariance_eigh").fit_transform(X)
48
48
 
49
49
  if daal_check_version((2024, "P", 100)):
50
50
  assert "sklearnex" in pca.__module__
51
51
  assert hasattr(pca, "_onedal_estimator")
52
52
  else:
53
53
  assert "daal4py" in pca.__module__
54
+
55
+ tol = 1e-5 if _as_numpy(X_transformed).dtype == np.float32 else 1e-7
54
56
  assert_allclose([6.30061232, 0.54980396], _as_numpy(pca.singular_values_))
55
- assert_allclose(X_transformed_expected, _as_numpy(X_transformed))
56
- assert_allclose(X_transformed_expected, _as_numpy(X_fit_transformed))
57
+ assert_allclose(X_transformed_expected, _as_numpy(X_transformed), rtol=tol)
58
+ assert_allclose(X_transformed_expected, _as_numpy(X_fit_transformed), rtol=tol)
sklearnex/dispatcher.py CHANGED
@@ -45,12 +45,14 @@ def get_patch_map_core(preview=False):
45
45
 
46
46
  if _is_new_patching_available():
47
47
  import sklearn.covariance as covariance_module
48
+ import sklearn.decomposition as decomposition_module
48
49
 
49
50
  # Preview classes for patching
50
51
  from .preview.cluster import KMeans as KMeans_sklearnex
51
52
  from .preview.covariance import (
52
53
  EmpiricalCovariance as EmpiricalCovariance_sklearnex,
53
54
  )
55
+ from .preview.decomposition import IncrementalPCA as IncrementalPCA_sklearnex
54
56
 
55
57
  # Since the state of the lru_cache without preview cannot be
56
58
  # guaranteed to not have already enabled sklearnex algorithms
@@ -62,7 +64,7 @@ def get_patch_map_core(preview=False):
62
64
  sklearn_obj = mapping["kmeans"][0][1]
63
65
  mapping.pop("kmeans")
64
66
  mapping["kmeans"] = [
65
- [(cluster_module, "kmeans", KMeans_sklearnex), sklearn_obj]
67
+ [(cluster_module, "KMeans", KMeans_sklearnex), sklearn_obj]
66
68
  ]
67
69
 
68
70
  # Covariance
@@ -76,6 +78,18 @@ def get_patch_map_core(preview=False):
76
78
  None,
77
79
  ]
78
80
  ]
81
+
82
+ # IncrementalPCA
83
+ mapping["incrementalpca"] = [
84
+ [
85
+ (
86
+ decomposition_module,
87
+ "IncrementalPCA",
88
+ IncrementalPCA_sklearnex,
89
+ ),
90
+ None,
91
+ ]
92
+ ]
79
93
  return mapping
80
94
 
81
95
  from daal4py.sklearn.monkeypatch.dispatcher import _get_map_of_algorithms
@@ -93,6 +107,7 @@ def get_patch_map_core(preview=False):
93
107
  # Scikit-learn* modules
94
108
  import sklearn as base_module
95
109
  import sklearn.cluster as cluster_module
110
+ import sklearn.covariance as covariance_module
96
111
  import sklearn.decomposition as decomposition_module
97
112
  import sklearn.ensemble as ensemble_module
98
113
  import sklearn.linear_model as linear_model_module
@@ -115,11 +130,17 @@ def get_patch_map_core(preview=False):
115
130
  from .utils.parallel import _FuncWrapperOld as _FuncWrapper_sklearnex
116
131
 
117
132
  from .cluster import DBSCAN as DBSCAN_sklearnex
133
+ from .covariance import (
134
+ IncrementalEmpiricalCovariance as IncrementalEmpiricalCovariance_sklearnex,
135
+ )
118
136
  from .decomposition import PCA as PCA_sklearnex
119
137
  from .ensemble import ExtraTreesClassifier as ExtraTreesClassifier_sklearnex
120
138
  from .ensemble import ExtraTreesRegressor as ExtraTreesRegressor_sklearnex
121
139
  from .ensemble import RandomForestClassifier as RandomForestClassifier_sklearnex
122
140
  from .ensemble import RandomForestRegressor as RandomForestRegressor_sklearnex
141
+ from .linear_model import (
142
+ IncrementalLinearRegression as IncrementalLinearRegression_sklearnex,
143
+ )
123
144
  from .linear_model import LinearRegression as LinearRegression_sklearnex
124
145
  from .linear_model import LogisticRegression as LogisticRegression_sklearnex
125
146
  from .neighbors import KNeighborsClassifier as KNeighborsClassifier_sklearnex
@@ -273,6 +294,30 @@ def get_patch_map_core(preview=False):
273
294
  ]
274
295
  mapping["localoutlierfactor"] = mapping["lof"]
275
296
 
297
+ # IncrementalEmpiricalCovariance
298
+ mapping["incrementalempiricalcovariance"] = [
299
+ [
300
+ (
301
+ covariance_module,
302
+ "IncrementalEmpiricalCovariance",
303
+ IncrementalEmpiricalCovariance_sklearnex,
304
+ ),
305
+ None,
306
+ ]
307
+ ]
308
+
309
+ # IncrementalLinearRegression
310
+ mapping["incrementallinearregression"] = [
311
+ [
312
+ (
313
+ linear_model_module,
314
+ "IncrementalLinearRegression",
315
+ IncrementalLinearRegression_sklearnex,
316
+ ),
317
+ None,
318
+ ]
319
+ ]
320
+
276
321
  # Configs
277
322
  mapping["set_config"] = [
278
323
  [(base_module, "set_config", set_config_sklearnex), None]