scikit-learn-intelex 2024.4.0__py311-none-manylinux1_x86_64.whl → 2024.6.0__py311-none-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +2 -2
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/RECORD +43 -36
- sklearnex/_device_offload.py +8 -1
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
- sklearnex/cluster/dbscan.py +3 -0
- sklearnex/cluster/tests/test_dbscan.py +8 -6
- sklearnex/conftest.py +11 -1
- sklearnex/covariance/incremental_covariance.py +217 -30
- sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
- sklearnex/decomposition/pca.py +68 -13
- sklearnex/decomposition/tests/test_pca.py +6 -4
- sklearnex/dispatcher.py +46 -1
- sklearnex/ensemble/_forest.py +114 -22
- sklearnex/ensemble/tests/test_forest.py +13 -3
- sklearnex/glob/dispatcher.py +16 -2
- sklearnex/linear_model/__init__.py +5 -3
- sklearnex/linear_model/incremental_linear.py +464 -0
- sklearnex/linear_model/linear.py +27 -9
- sklearnex/linear_model/logistic_regression.py +13 -15
- sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
- sklearnex/linear_model/tests/test_linear.py +2 -2
- sklearnex/neighbors/knn_regression.py +24 -0
- sklearnex/neighbors/tests/test_neighbors.py +2 -2
- sklearnex/preview/__init__.py +1 -1
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +228 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/svm/_common.py +165 -20
- sklearnex/svm/nusvc.py +40 -4
- sklearnex/svm/nusvr.py +31 -2
- sklearnex/svm/svc.py +40 -4
- sklearnex/svm/svr.py +31 -2
- sklearnex/tests/_utils.py +70 -29
- sklearnex/tests/test_common.py +54 -0
- sklearnex/tests/test_memory_usage.py +195 -132
- sklearnex/tests/test_n_jobs_support.py +4 -0
- sklearnex/tests/test_patching.py +22 -10
- sklearnex/tests/test_run_to_run_stability.py +283 -0
- sklearnex/utils/_namespace.py +1 -1
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
|
@@ -1,428 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2020 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
import random
|
|
18
|
-
|
|
19
|
-
import numpy as np
|
|
20
|
-
import pytest
|
|
21
|
-
|
|
22
|
-
import daal4py as d4p
|
|
23
|
-
from sklearnex import patch_sklearn
|
|
24
|
-
|
|
25
|
-
patch_sklearn()
|
|
26
|
-
|
|
27
|
-
from scipy import sparse
|
|
28
|
-
from sklearn.cluster import DBSCAN, KMeans
|
|
29
|
-
from sklearn.datasets import (
|
|
30
|
-
load_breast_cancer,
|
|
31
|
-
load_diabetes,
|
|
32
|
-
load_iris,
|
|
33
|
-
make_classification,
|
|
34
|
-
make_regression,
|
|
35
|
-
)
|
|
36
|
-
from sklearn.decomposition import PCA
|
|
37
|
-
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
|
38
|
-
from sklearn.linear_model import (
|
|
39
|
-
ElasticNet,
|
|
40
|
-
Lasso,
|
|
41
|
-
LinearRegression,
|
|
42
|
-
LogisticRegression,
|
|
43
|
-
LogisticRegressionCV,
|
|
44
|
-
Ridge,
|
|
45
|
-
)
|
|
46
|
-
from sklearn.manifold import TSNE
|
|
47
|
-
from sklearn.metrics import pairwise_distances, roc_auc_score
|
|
48
|
-
from sklearn.model_selection import train_test_split
|
|
49
|
-
from sklearn.neighbors import (
|
|
50
|
-
KNeighborsClassifier,
|
|
51
|
-
KNeighborsRegressor,
|
|
52
|
-
LocalOutlierFactor,
|
|
53
|
-
NearestNeighbors,
|
|
54
|
-
)
|
|
55
|
-
from sklearn.svm import SVC, SVR, NuSVC, NuSVR
|
|
56
|
-
|
|
57
|
-
from daal4py.sklearn._utils import daal_check_version
|
|
58
|
-
|
|
59
|
-
# to reproduce errors even in CI
|
|
60
|
-
d4p.daalinit(nthreads=100)
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
def get_class_name(x):
|
|
64
|
-
return x.__class__.__name__
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
def method_processing(X, clf, methods):
|
|
68
|
-
res = []
|
|
69
|
-
name = []
|
|
70
|
-
for i in methods:
|
|
71
|
-
if i == "predict":
|
|
72
|
-
res.append(clf.predict(X))
|
|
73
|
-
name.append(get_class_name(clf) + ".predict(X)")
|
|
74
|
-
elif i == "predict_proba":
|
|
75
|
-
res.append(clf.predict_proba(X))
|
|
76
|
-
name.append(get_class_name(clf) + ".predict_proba(X)")
|
|
77
|
-
elif i == "decision_function":
|
|
78
|
-
res.append(clf.decision_function(X))
|
|
79
|
-
name.append(get_class_name(clf) + ".decision_function(X)")
|
|
80
|
-
elif i == "kneighbors":
|
|
81
|
-
dist, idx = clf.kneighbors(X)
|
|
82
|
-
res.append(dist)
|
|
83
|
-
name.append("dist")
|
|
84
|
-
res.append(idx)
|
|
85
|
-
name.append("idx")
|
|
86
|
-
elif i == "fit_predict":
|
|
87
|
-
predict = clf.fit_predict(X)
|
|
88
|
-
res.append(predict)
|
|
89
|
-
name.append(get_class_name(clf) + ".fit_predict")
|
|
90
|
-
elif i == "fit_transform":
|
|
91
|
-
res.append(clf.fit_transform(X))
|
|
92
|
-
name.append(get_class_name(clf) + ".fit_transform")
|
|
93
|
-
elif i == "transform":
|
|
94
|
-
res.append(clf.transform(X))
|
|
95
|
-
name.append(get_class_name(clf) + ".transform(X)")
|
|
96
|
-
elif i == "get_covariance":
|
|
97
|
-
res.append(clf.get_covariance())
|
|
98
|
-
name.append(get_class_name(clf) + ".get_covariance()")
|
|
99
|
-
elif i == "get_precision":
|
|
100
|
-
res.append(clf.get_precision())
|
|
101
|
-
name.append(get_class_name(clf) + ".get_precision()")
|
|
102
|
-
elif i == "score_samples":
|
|
103
|
-
res.append(clf.score_samples(X))
|
|
104
|
-
name.append(get_class_name(clf) + ".score_samples(X)")
|
|
105
|
-
return res, name
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
def func(X, Y, clf, methods):
|
|
109
|
-
clf.fit(X, Y)
|
|
110
|
-
res, name = method_processing(X, clf, methods)
|
|
111
|
-
|
|
112
|
-
for i in clf.__dict__.keys():
|
|
113
|
-
ans = getattr(clf, i)
|
|
114
|
-
if isinstance(ans, (bool, float, int, np.ndarray, np.float64)):
|
|
115
|
-
if isinstance(ans, np.ndarray) and None in ans:
|
|
116
|
-
continue
|
|
117
|
-
res.append(ans)
|
|
118
|
-
name.append(get_class_name(clf) + "." + i)
|
|
119
|
-
return res, name
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
def _run_test(model, methods, dataset):
|
|
123
|
-
datasets = []
|
|
124
|
-
if dataset in ["blobs", "classifier", "sparse"]:
|
|
125
|
-
X1, y1 = load_iris(return_X_y=True)
|
|
126
|
-
if dataset == "sparse":
|
|
127
|
-
X1 = sparse.csr_matrix(X1)
|
|
128
|
-
datasets.append((X1, y1))
|
|
129
|
-
X2, y2 = load_breast_cancer(return_X_y=True)
|
|
130
|
-
if dataset == "sparse":
|
|
131
|
-
X2 = sparse.csr_matrix(X2)
|
|
132
|
-
datasets.append((X2, y2))
|
|
133
|
-
elif dataset == "regression":
|
|
134
|
-
X1, y1 = make_regression(
|
|
135
|
-
n_samples=500, n_features=10, noise=64.0, random_state=42
|
|
136
|
-
)
|
|
137
|
-
datasets.append((X1, y1))
|
|
138
|
-
X2, y2 = load_diabetes(return_X_y=True)
|
|
139
|
-
datasets.append((X2, y2))
|
|
140
|
-
else:
|
|
141
|
-
raise ValueError("Unknown dataset type")
|
|
142
|
-
|
|
143
|
-
for X, y in datasets:
|
|
144
|
-
baseline, name = func(X, y, model, methods)
|
|
145
|
-
for i in range(10):
|
|
146
|
-
res, _ = func(X, y, model, methods)
|
|
147
|
-
|
|
148
|
-
for a, b, n in zip(res, baseline, name):
|
|
149
|
-
np.testing.assert_allclose(
|
|
150
|
-
a, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
|
|
151
|
-
)
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
MODELS_INFO = [
|
|
155
|
-
{
|
|
156
|
-
"model": KNeighborsClassifier(
|
|
157
|
-
n_neighbors=10, algorithm="brute", weights="uniform"
|
|
158
|
-
),
|
|
159
|
-
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
160
|
-
"dataset": "classifier",
|
|
161
|
-
},
|
|
162
|
-
{
|
|
163
|
-
"model": KNeighborsClassifier(
|
|
164
|
-
n_neighbors=10, algorithm="brute", weights="distance"
|
|
165
|
-
),
|
|
166
|
-
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
167
|
-
"dataset": "classifier",
|
|
168
|
-
},
|
|
169
|
-
{
|
|
170
|
-
"model": KNeighborsClassifier(
|
|
171
|
-
n_neighbors=10, algorithm="kd_tree", weights="uniform"
|
|
172
|
-
),
|
|
173
|
-
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
174
|
-
"dataset": "classifier",
|
|
175
|
-
},
|
|
176
|
-
{
|
|
177
|
-
"model": KNeighborsClassifier(
|
|
178
|
-
n_neighbors=10, algorithm="kd_tree", weights="distance"
|
|
179
|
-
),
|
|
180
|
-
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
181
|
-
"dataset": "classifier",
|
|
182
|
-
},
|
|
183
|
-
{
|
|
184
|
-
"model": KNeighborsRegressor(
|
|
185
|
-
n_neighbors=10, algorithm="kd_tree", weights="distance"
|
|
186
|
-
),
|
|
187
|
-
"methods": ["predict", "kneighbors"],
|
|
188
|
-
"dataset": "regression",
|
|
189
|
-
},
|
|
190
|
-
{
|
|
191
|
-
"model": KNeighborsRegressor(
|
|
192
|
-
n_neighbors=10, algorithm="kd_tree", weights="uniform"
|
|
193
|
-
),
|
|
194
|
-
"methods": ["predict", "kneighbors"],
|
|
195
|
-
"dataset": "regression",
|
|
196
|
-
},
|
|
197
|
-
{
|
|
198
|
-
"model": KNeighborsRegressor(
|
|
199
|
-
n_neighbors=10, algorithm="brute", weights="distance"
|
|
200
|
-
),
|
|
201
|
-
"methods": ["predict", "kneighbors"],
|
|
202
|
-
"dataset": "regression",
|
|
203
|
-
},
|
|
204
|
-
{
|
|
205
|
-
"model": KNeighborsRegressor(
|
|
206
|
-
n_neighbors=10, algorithm="brute", weights="uniform"
|
|
207
|
-
),
|
|
208
|
-
"methods": ["predict", "kneighbors"],
|
|
209
|
-
"dataset": "regression",
|
|
210
|
-
},
|
|
211
|
-
{
|
|
212
|
-
"model": NearestNeighbors(n_neighbors=10, algorithm="brute"),
|
|
213
|
-
"methods": ["kneighbors"],
|
|
214
|
-
"dataset": "blobs",
|
|
215
|
-
},
|
|
216
|
-
{
|
|
217
|
-
"model": NearestNeighbors(n_neighbors=10, algorithm="kd_tree"),
|
|
218
|
-
"methods": ["kneighbors"],
|
|
219
|
-
"dataset": "blobs",
|
|
220
|
-
},
|
|
221
|
-
{
|
|
222
|
-
"model": LocalOutlierFactor(n_neighbors=10, novelty=False),
|
|
223
|
-
"methods": ["fit_predict"],
|
|
224
|
-
"dataset": "blobs",
|
|
225
|
-
},
|
|
226
|
-
{
|
|
227
|
-
"model": LocalOutlierFactor(n_neighbors=10, novelty=True),
|
|
228
|
-
"methods": ["predict"],
|
|
229
|
-
"dataset": "blobs",
|
|
230
|
-
},
|
|
231
|
-
{
|
|
232
|
-
"model": DBSCAN(algorithm="brute", n_jobs=-1),
|
|
233
|
-
"methods": [],
|
|
234
|
-
"dataset": "blobs",
|
|
235
|
-
},
|
|
236
|
-
{
|
|
237
|
-
"model": SVC(kernel="rbf"),
|
|
238
|
-
"methods": ["predict", "decision_function"],
|
|
239
|
-
"dataset": "classifier",
|
|
240
|
-
},
|
|
241
|
-
{
|
|
242
|
-
"model": SVC(kernel="rbf"),
|
|
243
|
-
"methods": ["predict", "decision_function"],
|
|
244
|
-
"dataset": "sparse",
|
|
245
|
-
},
|
|
246
|
-
{
|
|
247
|
-
"model": NuSVC(kernel="rbf"),
|
|
248
|
-
"methods": ["predict", "decision_function"],
|
|
249
|
-
"dataset": "classifier",
|
|
250
|
-
},
|
|
251
|
-
{
|
|
252
|
-
"model": SVR(kernel="rbf"),
|
|
253
|
-
"methods": ["predict"],
|
|
254
|
-
"dataset": "regression",
|
|
255
|
-
},
|
|
256
|
-
{
|
|
257
|
-
"model": NuSVR(kernel="rbf"),
|
|
258
|
-
"methods": ["predict"],
|
|
259
|
-
"dataset": "regression",
|
|
260
|
-
},
|
|
261
|
-
{
|
|
262
|
-
"model": TSNE(random_state=0),
|
|
263
|
-
"methods": ["fit_transform"],
|
|
264
|
-
"dataset": "classifier",
|
|
265
|
-
},
|
|
266
|
-
{
|
|
267
|
-
"model": KMeans(random_state=0, init="k-means++"),
|
|
268
|
-
"methods": ["predict"],
|
|
269
|
-
"dataset": "blobs",
|
|
270
|
-
},
|
|
271
|
-
{
|
|
272
|
-
"model": KMeans(random_state=0, init="random"),
|
|
273
|
-
"methods": ["predict"],
|
|
274
|
-
"dataset": "blobs",
|
|
275
|
-
},
|
|
276
|
-
{
|
|
277
|
-
"model": KMeans(random_state=0, init="k-means++"),
|
|
278
|
-
"methods": ["predict"],
|
|
279
|
-
"dataset": "sparse",
|
|
280
|
-
},
|
|
281
|
-
{
|
|
282
|
-
"model": KMeans(random_state=0, init="random"),
|
|
283
|
-
"methods": ["predict"],
|
|
284
|
-
"dataset": "sparse",
|
|
285
|
-
},
|
|
286
|
-
{
|
|
287
|
-
"model": ElasticNet(random_state=0),
|
|
288
|
-
"methods": ["predict"],
|
|
289
|
-
"dataset": "regression",
|
|
290
|
-
},
|
|
291
|
-
{
|
|
292
|
-
"model": Lasso(random_state=0),
|
|
293
|
-
"methods": ["predict"],
|
|
294
|
-
"dataset": "regression",
|
|
295
|
-
},
|
|
296
|
-
{
|
|
297
|
-
"model": PCA(n_components=0.5, svd_solver="full", random_state=0),
|
|
298
|
-
"methods": ["transform", "get_covariance", "get_precision", "score_samples"],
|
|
299
|
-
"dataset": "classifier",
|
|
300
|
-
},
|
|
301
|
-
{
|
|
302
|
-
"model": RandomForestClassifier(
|
|
303
|
-
random_state=0, oob_score=True, max_samples=0.5, max_features="sqrt"
|
|
304
|
-
),
|
|
305
|
-
"methods": ["predict", "predict_proba"],
|
|
306
|
-
"dataset": "classifier",
|
|
307
|
-
},
|
|
308
|
-
{
|
|
309
|
-
"model": LogisticRegression(random_state=0, solver="newton-cg", max_iter=1000),
|
|
310
|
-
"methods": ["predict", "predict_proba"],
|
|
311
|
-
"dataset": "classifier",
|
|
312
|
-
},
|
|
313
|
-
{
|
|
314
|
-
"model": LogisticRegression(random_state=0, solver="lbfgs", max_iter=1000),
|
|
315
|
-
"methods": ["predict", "predict_proba"],
|
|
316
|
-
"dataset": "classifier",
|
|
317
|
-
},
|
|
318
|
-
{
|
|
319
|
-
"model": LogisticRegressionCV(
|
|
320
|
-
random_state=0, solver="newton-cg", n_jobs=-1, max_iter=1000
|
|
321
|
-
),
|
|
322
|
-
"methods": ["predict", "predict_proba"],
|
|
323
|
-
"dataset": "classifier",
|
|
324
|
-
},
|
|
325
|
-
{
|
|
326
|
-
"model": LogisticRegressionCV(
|
|
327
|
-
random_state=0, solver="lbfgs", n_jobs=-1, max_iter=1000
|
|
328
|
-
),
|
|
329
|
-
"methods": ["predict", "predict_proba"],
|
|
330
|
-
"dataset": "classifier",
|
|
331
|
-
},
|
|
332
|
-
{
|
|
333
|
-
"model": RandomForestRegressor(
|
|
334
|
-
random_state=0, oob_score=True, max_samples=0.5, max_features="sqrt"
|
|
335
|
-
),
|
|
336
|
-
"methods": ["predict"],
|
|
337
|
-
"dataset": "regression",
|
|
338
|
-
},
|
|
339
|
-
{
|
|
340
|
-
"model": LinearRegression(),
|
|
341
|
-
"methods": ["predict"],
|
|
342
|
-
"dataset": "regression",
|
|
343
|
-
},
|
|
344
|
-
{
|
|
345
|
-
"model": Ridge(random_state=0),
|
|
346
|
-
"methods": ["predict"],
|
|
347
|
-
"dataset": "regression",
|
|
348
|
-
},
|
|
349
|
-
]
|
|
350
|
-
|
|
351
|
-
TO_SKIP = [
|
|
352
|
-
"TSNE", # Absolute diff is 1e-10, potential problem in KNN,
|
|
353
|
-
# will be fixed for next release. (UPD. KNN is fixed but there is a problem
|
|
354
|
-
# with stability of stock sklearn. It is already stable in master, so, we
|
|
355
|
-
# need to wait for the next sklearn release)
|
|
356
|
-
"LogisticRegression", # Absolute diff is 1e-8, will be fixed for next release
|
|
357
|
-
"LogisticRegressionCV", # Absolute diff is 1e-10, will be fixed for next release
|
|
358
|
-
"RandomForestRegressor", # Absolute diff is 1e-14 in OOB score,
|
|
359
|
-
# will be fixed for next release
|
|
360
|
-
]
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
@pytest.mark.parametrize("model_head", MODELS_INFO)
|
|
364
|
-
def test_models(model_head):
|
|
365
|
-
stable_algos = []
|
|
366
|
-
if get_class_name(model_head["model"]) in stable_algos and daal_check_version(
|
|
367
|
-
(2021, "P", 300)
|
|
368
|
-
):
|
|
369
|
-
try:
|
|
370
|
-
TO_SKIP.remove(get_class_name(model_head["model"]))
|
|
371
|
-
except ValueError:
|
|
372
|
-
pass
|
|
373
|
-
if get_class_name(model_head["model"]) in TO_SKIP:
|
|
374
|
-
pytest.skip("Unstable", allow_module_level=False)
|
|
375
|
-
_run_test(model_head["model"], model_head["methods"], model_head["dataset"])
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
@pytest.mark.parametrize("features", range(5, 10))
|
|
379
|
-
def test_train_test_split(features):
|
|
380
|
-
X, y = make_classification(
|
|
381
|
-
n_samples=4000,
|
|
382
|
-
n_features=features,
|
|
383
|
-
n_informative=features,
|
|
384
|
-
n_redundant=0,
|
|
385
|
-
n_clusters_per_class=8,
|
|
386
|
-
random_state=0,
|
|
387
|
-
)
|
|
388
|
-
(
|
|
389
|
-
baseline_X_train,
|
|
390
|
-
baseline_X_test,
|
|
391
|
-
baseline_y_train,
|
|
392
|
-
baseline_y_test,
|
|
393
|
-
) = train_test_split(X, y, test_size=0.33, random_state=0)
|
|
394
|
-
baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
|
|
395
|
-
for _ in range(10):
|
|
396
|
-
X_train, X_test, y_train, y_test = train_test_split(
|
|
397
|
-
X, y, test_size=0.33, random_state=0
|
|
398
|
-
)
|
|
399
|
-
res = [X_train, X_test, y_train, y_test]
|
|
400
|
-
for a, b in zip(res, baseline):
|
|
401
|
-
np.testing.assert_allclose(
|
|
402
|
-
a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
|
|
403
|
-
)
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
@pytest.mark.parametrize("metric", ["cosine", "correlation"])
|
|
407
|
-
def test_pairwise_distances(metric):
|
|
408
|
-
X = np.random.rand(1000)
|
|
409
|
-
X = np.array(X, dtype=np.float64)
|
|
410
|
-
baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
411
|
-
for _ in range(5):
|
|
412
|
-
res = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
413
|
-
for a, b in zip(res, baseline):
|
|
414
|
-
np.testing.assert_allclose(
|
|
415
|
-
a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
|
|
416
|
-
)
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
@pytest.mark.parametrize("array_size", [100, 1000, 10000])
|
|
420
|
-
def test_roc_auc(array_size):
|
|
421
|
-
a = [random.randint(0, 1) for i in range(array_size)]
|
|
422
|
-
b = [random.randint(0, 1) for i in range(array_size)]
|
|
423
|
-
baseline = roc_auc_score(a, b)
|
|
424
|
-
for _ in range(5):
|
|
425
|
-
res = roc_auc_score(a, b)
|
|
426
|
-
np.testing.assert_allclose(
|
|
427
|
-
baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
|
|
428
|
-
)
|
{scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt
RENAMED
|
File without changes
|
|
File without changes
|
{scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt
RENAMED
|
File without changes
|