scikit-learn-intelex 2024.4.0__py310-none-win_amd64.whl → 2024.5.0__py310-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (106) hide show
  1. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +8 -1
  2. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
  3. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
  4. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  5. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +68 -13
  6. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +2 -2
  7. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +31 -0
  8. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +5 -4
  9. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
  10. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +387 -0
  11. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +2 -2
  12. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  13. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
  14. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
  15. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +21 -12
  16. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +5 -1
  17. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +4 -0
  18. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +27 -8
  19. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +1 -1
  20. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
  21. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/METADATA +227 -230
  22. scikit_learn_intelex-2024.5.0.dist-info/RECORD +104 -0
  23. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/WHEEL +1 -1
  24. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
  25. scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
  26. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  27. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  28. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  29. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  30. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  31. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  32. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
  33. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  34. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -0
  35. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  36. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  37. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  38. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
  39. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  40. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  41. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  42. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  43. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -0
  44. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  45. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  46. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  47. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  48. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +0 -0
  49. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  50. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  51. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  52. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  53. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  54. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  55. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  56. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  57. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  58. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  59. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  60. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  61. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  62. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
  63. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
  64. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
  65. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -0
  66. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
  67. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -0
  68. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  69. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  70. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
  71. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  72. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
  73. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
  74. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  75. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  76. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  77. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  78. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  79. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  80. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  81. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  82. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  83. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  84. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  86. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  87. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  88. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  89. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  90. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  91. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  92. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +0 -0
  93. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +0 -0
  94. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +0 -0
  95. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +0 -0
  96. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +0 -0
  97. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  98. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  99. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  100. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  101. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  102. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +0 -0
  103. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  104. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  105. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/LICENSE.txt +0 -0
  106. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,200 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _as_numpy,
23
+ _convert_to_dataframe,
24
+ get_dataframes_and_queues,
25
+ )
26
+ from sklearnex.linear_model import IncrementalLinearRegression
27
+
28
+
29
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
30
+ @pytest.mark.parametrize("fit_intercept", [True, False])
31
+ @pytest.mark.parametrize("macro_block", [None, 1024])
32
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
33
+ def test_sklearnex_fit_on_gold_data(dataframe, queue, fit_intercept, macro_block, dtype):
34
+ X = np.array([[1], [2]])
35
+ X = X.astype(dtype=dtype)
36
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
37
+ y = np.array([1, 2])
38
+ y = y.astype(dtype=dtype)
39
+ y_df = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
40
+
41
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
42
+ if macro_block is not None:
43
+ hparams = inclin.get_hyperparameters("fit")
44
+ hparams.cpu_macro_block = macro_block
45
+ hparams.gpu_macro_block = macro_block
46
+ inclin.fit(X_df, y_df)
47
+
48
+ y_pred = inclin.predict(X_df)
49
+
50
+ tol = 2e-6 if dtype == np.float32 else 1e-7
51
+ assert_allclose(inclin.coef_, [1], atol=tol)
52
+ if fit_intercept:
53
+ assert_allclose(inclin.intercept_, [0], atol=tol)
54
+ assert_allclose(_as_numpy(y_pred), y, atol=tol)
55
+
56
+
57
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
58
+ @pytest.mark.parametrize("fit_intercept", [True, False])
59
+ @pytest.mark.parametrize("macro_block", [None, 1024])
60
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
61
+ def test_sklearnex_partial_fit_on_gold_data(
62
+ dataframe, queue, fit_intercept, macro_block, dtype
63
+ ):
64
+ X = np.array([[1], [2], [3], [4]])
65
+ X = X.astype(dtype=dtype)
66
+ y = X + 3
67
+ y = y.astype(dtype=dtype)
68
+ X_split = np.array_split(X, 2)
69
+ y_split = np.array_split(y, 2)
70
+
71
+ inclin = IncrementalLinearRegression()
72
+ if macro_block is not None:
73
+ hparams = inclin.get_hyperparameters("fit")
74
+ hparams.cpu_macro_block = macro_block
75
+ hparams.gpu_macro_block = macro_block
76
+ for i in range(2):
77
+ X_split_df = _convert_to_dataframe(
78
+ X_split[i], sycl_queue=queue, target_df=dataframe
79
+ )
80
+ y_split_df = _convert_to_dataframe(
81
+ y_split[i], sycl_queue=queue, target_df=dataframe
82
+ )
83
+ inclin.partial_fit(X_split_df, y_split_df)
84
+
85
+ assert inclin.n_features_in_ == 1
86
+ tol = 2e-6 if dtype == np.float32 else 1e-7
87
+ assert_allclose(inclin.coef_, [[1]], atol=tol)
88
+ if fit_intercept:
89
+ assert_allclose(inclin.intercept_, 3, atol=tol)
90
+
91
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
92
+ y_pred = inclin.predict(X_df)
93
+
94
+ assert_allclose(_as_numpy(y_pred), y, atol=tol)
95
+
96
+
97
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
98
+ @pytest.mark.parametrize("fit_intercept", [True, False])
99
+ @pytest.mark.parametrize("macro_block", [None, 1024])
100
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
101
+ def test_sklearnex_partial_fit_multitarget_on_gold_data(
102
+ dataframe, queue, fit_intercept, macro_block, dtype
103
+ ):
104
+ X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
105
+ X = X.astype(dtype=dtype)
106
+ y = np.dot(X, [1, 2]) + 3
107
+ y = y.astype(dtype=dtype)
108
+ X_split = np.array_split(X, 2)
109
+ y_split = np.array_split(y, 2)
110
+
111
+ inclin = IncrementalLinearRegression()
112
+ if macro_block is not None:
113
+ hparams = inclin.get_hyperparameters("fit")
114
+ hparams.cpu_macro_block = macro_block
115
+ hparams.gpu_macro_block = macro_block
116
+ for i in range(2):
117
+ X_split_df = _convert_to_dataframe(
118
+ X_split[i], sycl_queue=queue, target_df=dataframe
119
+ )
120
+ y_split_df = _convert_to_dataframe(
121
+ y_split[i], sycl_queue=queue, target_df=dataframe
122
+ )
123
+ inclin.partial_fit(X_split_df, y_split_df)
124
+
125
+ assert inclin.n_features_in_ == 2
126
+ tol = 7e-6 if dtype == np.float32 else 1e-7
127
+ assert_allclose(inclin.coef_, [1.0, 2.0], atol=tol)
128
+ if fit_intercept:
129
+ assert_allclose(inclin.intercept_, 3.0, atol=tol)
130
+
131
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
132
+ y_pred = inclin.predict(X_df)
133
+
134
+ assert_allclose(_as_numpy(y_pred), y, atol=tol)
135
+
136
+
137
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
138
+ @pytest.mark.parametrize("fit_intercept", [True, False])
139
+ @pytest.mark.parametrize("num_samples", [100, 1000])
140
+ @pytest.mark.parametrize("num_features", [5, 10])
141
+ @pytest.mark.parametrize("num_targets", [1, 2])
142
+ @pytest.mark.parametrize("num_blocks", [1, 10])
143
+ @pytest.mark.parametrize("macro_block", [None, 1024])
144
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
145
+ def test_sklearnex_partial_fit_on_random_data(
146
+ dataframe,
147
+ queue,
148
+ fit_intercept,
149
+ num_samples,
150
+ num_features,
151
+ num_targets,
152
+ num_blocks,
153
+ macro_block,
154
+ dtype,
155
+ ):
156
+ seed = 42
157
+ gen = np.random.default_rng(seed)
158
+ intercept = gen.random(size=num_targets, dtype=dtype)
159
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
160
+
161
+ X = gen.random(size=(num_samples, num_features), dtype=dtype)
162
+ if fit_intercept:
163
+ y = X @ coef + intercept[np.newaxis, :]
164
+ else:
165
+ y = X @ coef
166
+
167
+ X_split = np.array_split(X, num_blocks)
168
+ y_split = np.array_split(y, num_blocks)
169
+
170
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
171
+ if macro_block is not None:
172
+ hparams = inclin.get_hyperparameters("fit")
173
+ hparams.cpu_macro_block = macro_block
174
+ hparams.gpu_macro_block = macro_block
175
+ for i in range(num_blocks):
176
+ X_split_df = _convert_to_dataframe(
177
+ X_split[i], sycl_queue=queue, target_df=dataframe
178
+ )
179
+ y_split_df = _convert_to_dataframe(
180
+ y_split[i], sycl_queue=queue, target_df=dataframe
181
+ )
182
+ inclin.partial_fit(X_split_df, y_split_df)
183
+
184
+ tol = 1e-4 if dtype == np.float32 else 1e-7
185
+ assert_allclose(coef, inclin.coef_.T, atol=tol)
186
+
187
+ if fit_intercept:
188
+ assert_allclose(intercept, inclin.intercept_, atol=tol)
189
+
190
+ X_test = gen.random(size=(num_samples, num_features), dtype=dtype)
191
+ if fit_intercept:
192
+ expected_y_pred = X_test @ coef + intercept[np.newaxis, :]
193
+ else:
194
+ expected_y_pred = X_test @ coef
195
+
196
+ X_test_df = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
197
+
198
+ y_pred = inclin.predict(X_test_df)
199
+
200
+ assert_allclose(expected_y_pred, _as_numpy(y_pred), atol=tol)
@@ -52,7 +52,7 @@ def test_sklearnex_import_linear(dataframe, queue, dtype, macro_block):
52
52
  assert "sklearnex" in linreg.__module__
53
53
  assert linreg.n_features_in_ == 2
54
54
 
55
- tol = 1e-5 if X.dtype == np.float32 else 1e-7
55
+ tol = 1e-5 if dtype == np.float32 else 1e-7
56
56
  assert_allclose(_as_numpy(linreg.intercept_), 3.0, rtol=tol)
57
57
  assert_allclose(_as_numpy(linreg.coef_), [1.0, 2.0], rtol=tol)
58
58
 
@@ -113,5 +113,5 @@ def test_sklearnex_reconstruct_model(dataframe, queue, dtype):
113
113
 
114
114
  y_pred = linreg.predict(X)
115
115
 
116
- tol = 1e-5 if X.dtype == np.float32 else 1e-7
116
+ tol = 1e-5 if dtype == np.float32 else 1e-7
117
117
  assert_allclose(gtr, _as_numpy(y_pred), rtol=tol)
@@ -47,9 +47,9 @@ def test_sklearnex_import_knn_regression(dataframe, queue):
47
47
  y = _convert_to_dataframe([0, 0, 1, 1], sycl_queue=queue, target_df=dataframe)
48
48
  neigh = KNeighborsRegressor(n_neighbors=2).fit(X, y)
49
49
  y_test = _convert_to_dataframe([[1.5]], sycl_queue=queue, target_df=dataframe)
50
- pred = _as_numpy(neigh.predict(y_test))
50
+ pred = _as_numpy(neigh.predict(y_test)).squeeze()
51
51
  assert "sklearnex" in neigh.__module__
52
- assert_allclose(pred, [0.5])
52
+ assert_allclose(pred, 0.5)
53
53
 
54
54
 
55
55
  @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
@@ -17,6 +17,7 @@
17
17
  from inspect import isclass
18
18
 
19
19
  import numpy as np
20
+ from sklearn import clone
20
21
  from sklearn.base import (
21
22
  BaseEstimator,
22
23
  ClassifierMixin,
@@ -87,18 +88,26 @@ mixin_map = [
87
88
  ]
88
89
 
89
90
 
90
- SPECIAL_INSTANCES = {
91
- str(i): i
92
- for i in [
93
- LocalOutlierFactor(novelty=True),
94
- SVC(probability=True),
95
- NuSVC(probability=True),
96
- KNeighborsClassifier(algorithm="brute"),
97
- KNeighborsRegressor(algorithm="brute"),
98
- NearestNeighbors(algorithm="brute"),
99
- LogisticRegression(solver="newton-cg"),
100
- ]
101
- }
91
+ class _sklearn_clone_dict(dict):
92
+
93
+ def __getitem__(self, key):
94
+ return clone(super().__getitem__(key))
95
+
96
+
97
+ SPECIAL_INSTANCES = _sklearn_clone_dict(
98
+ {
99
+ str(i): i
100
+ for i in [
101
+ LocalOutlierFactor(novelty=True),
102
+ SVC(probability=True),
103
+ NuSVC(probability=True),
104
+ KNeighborsClassifier(algorithm="brute"),
105
+ KNeighborsRegressor(algorithm="brute"),
106
+ NearestNeighbors(algorithm="brute"),
107
+ LogisticRegression(solver="newton-cg"),
108
+ ]
109
+ }
110
+ )
102
111
 
103
112
 
104
113
  def gen_models_info(algorithms):
@@ -96,7 +96,11 @@ def remove_duplicated_estimators(estimators_list):
96
96
  return estimators_map.values()
97
97
 
98
98
 
99
- BANNED_ESTIMATORS = ("TSNE",) # too slow for using in testing on common data size
99
+ BANNED_ESTIMATORS = (
100
+ "IncrementalEmpiricalCovariance", # dataframe_f issues
101
+ "IncrementalLinearRegression", # TODO fix memory leak issue in private CI for data_shape = (1000, 100), data_transform_function = dataframe_f
102
+ "TSNE", # too slow for using in testing on common data size
103
+ )
100
104
  estimators = [
101
105
  TrainTestSplitEstimator,
102
106
  FiniteCheckEstimator,
@@ -22,6 +22,7 @@ import pytest
22
22
  from sklearn.base import BaseEstimator
23
23
  from sklearn.datasets import make_classification
24
24
 
25
+ from sklearnex.decomposition import PCA
25
26
  from sklearnex.dispatcher import get_patch_map
26
27
  from sklearnex.svm import SVC, NuSVC
27
28
 
@@ -73,6 +74,9 @@ def test_n_jobs_support(caplog, estimator_class, n_jobs):
73
74
  # by default, [Nu]SVC.predict_proba is restricted by @available_if decorator
74
75
  if estimator_class in [SVC, NuSVC]:
75
76
  estimator_kwargs["probability"] = True
77
+ # explicitly request oneDAL's PCA-Covariance algorithm
78
+ if estimator_class == PCA:
79
+ estimator_kwargs["svd_solver"] = "covariance_eigh"
76
80
  estimator_instance = estimator_class(**estimator_kwargs)
77
81
  # check `n_jobs` parameter doc entry
78
82
  check_estimator_doc(estimator_class)
@@ -61,12 +61,15 @@ def test_pairwise_distances_patching(caplog, dataframe, queue, dtype, metric):
61
61
  pytest.skip("pairwise_distances does not support GPU queues")
62
62
 
63
63
  rng = nprnd.default_rng()
64
- X = _convert_to_dataframe(
65
- rng.random(size=1000).reshape(1, -1),
66
- sycl_queue=queue,
67
- target_df=dataframe,
68
- dtype=dtype,
69
- )
64
+ if dataframe == "pandas":
65
+ X = _convert_to_dataframe(
66
+ rng.random(size=1000).astype(dtype).reshape(1, -1),
67
+ target_df=dataframe,
68
+ )
69
+ else:
70
+ X = _convert_to_dataframe(
71
+ rng.random(size=1000), sycl_queue=queue, target_df=dataframe, dtype=dtype
72
+ )[None, :]
70
73
 
71
74
  _ = pairwise_distances(X, metric=metric)
72
75
  assert all(
@@ -90,14 +93,17 @@ def test_roc_auc_score_patching(caplog, dataframe, queue, dtype):
90
93
 
91
94
  with caplog.at_level(logging.WARNING, logger="sklearnex"):
92
95
  rng = nprnd.default_rng()
96
+ X = rng.integers(2, size=1000)
97
+ y = rng.integers(2, size=1000)
98
+
93
99
  X = _convert_to_dataframe(
94
- rng.integers(2, size=1000),
100
+ X,
95
101
  sycl_queue=queue,
96
102
  target_df=dataframe,
97
103
  dtype=dtype,
98
104
  )
99
105
  y = _convert_to_dataframe(
100
- rng.integers(2, size=1000),
106
+ y,
101
107
  sycl_queue=queue,
102
108
  target_df=dataframe,
103
109
  dtype=dtype,
@@ -142,6 +148,19 @@ def test_standard_estimator_patching(caplog, dataframe, queue, dtype, estimator,
142
148
  and dtype in [np.uint32, np.uint64]
143
149
  ):
144
150
  pytest.skip("Windows segmentation fault for Ridge.predict for unsigned ints")
151
+ elif estimator == "IncrementalLinearRegression" and dtype in [
152
+ np.int8,
153
+ np.int16,
154
+ np.int32,
155
+ np.int64,
156
+ np.uint8,
157
+ np.uint16,
158
+ np.uint32,
159
+ np.uint64,
160
+ ]:
161
+ pytest.skip(
162
+ "IncrementalLinearRegression fails on oneDAL side with int types because dataset is filled by zeroes"
163
+ )
145
164
  elif method and not hasattr(est, method):
146
165
  pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
147
166
 
@@ -294,7 +294,7 @@ MODELS_INFO = [
294
294
  "dataset": "regression",
295
295
  },
296
296
  {
297
- "model": PCA(n_components=0.5, svd_solver="full", random_state=0),
297
+ "model": PCA(n_components=0.5, svd_solver="covariance_eigh", random_state=0),
298
298
  "methods": ["transform", "get_covariance", "get_precision", "score_samples"],
299
299
  "dataset": "classifier",
300
300
  },
@@ -0,0 +1,89 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import time
18
+
19
+ import numpy as np
20
+ import numpy.random as rand
21
+ import pytest
22
+ from numpy.testing import assert_raises
23
+
24
+ from sklearnex.utils import _assert_all_finite
25
+
26
+
27
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
28
+ @pytest.mark.parametrize(
29
+ "shape",
30
+ [
31
+ [16, 2048],
32
+ [
33
+ 2**16 + 3,
34
+ ],
35
+ [1000, 1000],
36
+ ],
37
+ )
38
+ @pytest.mark.parametrize("allow_nan", [False, True])
39
+ def test_sum_infinite_actually_finite(dtype, shape, allow_nan):
40
+ X = np.array(shape, dtype=dtype)
41
+ X.fill(np.finfo(dtype).max)
42
+ _assert_all_finite(X, allow_nan=allow_nan)
43
+
44
+
45
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
46
+ @pytest.mark.parametrize(
47
+ "shape",
48
+ [
49
+ [16, 2048],
50
+ [
51
+ 2**16 + 3,
52
+ ],
53
+ [1000, 1000],
54
+ ],
55
+ )
56
+ @pytest.mark.parametrize("allow_nan", [False, True])
57
+ @pytest.mark.parametrize("check", ["inf", "NaN", None])
58
+ @pytest.mark.parametrize("seed", [0, int(time.time())])
59
+ def test_assert_finite_random_location(dtype, shape, allow_nan, check, seed):
60
+ rand.seed(seed)
61
+ X = rand.uniform(high=np.finfo(dtype).max, size=shape).astype(dtype)
62
+
63
+ if check:
64
+ loc = rand.randint(0, X.size - 1)
65
+ X.reshape((-1,))[loc] = float(check)
66
+
67
+ if check is None or (allow_nan and check == "NaN"):
68
+ _assert_all_finite(X, allow_nan=allow_nan)
69
+ else:
70
+ assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)
71
+
72
+
73
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
74
+ @pytest.mark.parametrize("allow_nan", [False, True])
75
+ @pytest.mark.parametrize("check", ["inf", "NaN", None])
76
+ @pytest.mark.parametrize("seed", [0, int(time.time())])
77
+ def test_assert_finite_random_shape_and_location(dtype, allow_nan, check, seed):
78
+ lb, ub = 32768, 1048576 # lb is a patching condition, ub 2^20
79
+ rand.seed(seed)
80
+ X = rand.uniform(high=np.finfo(dtype).max, size=rand.randint(lb, ub)).astype(dtype)
81
+
82
+ if check:
83
+ loc = rand.randint(0, X.size - 1)
84
+ X[loc] = float(check)
85
+
86
+ if check is None or (allow_nan and check == "NaN"):
87
+ _assert_all_finite(X, allow_nan=allow_nan)
88
+ else:
89
+ assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)